Skip to main content

A Perspective on the Evolution of the Coronary Circulation in Fishes and the Transition to Terrestrial Life

  • Chapter
  • First Online:
Ontogeny and Phylogeny of the Vertebrate Heart

Abstract

Coronary development in birds and mammals occurs in concert with myocardial compaction, likely in response to myocardial hypoxia. Furthermore, the degree of compaction of a cardiac chamber greatly reflects its work rate. These same driving forces likely featured prominently during the evolution of the coronary circulation among chordates. Yet, the means of supplying oxygen to fish hearts represent solutions that are far more diverse, possibly more complex and certainly more mysterious than those for the adult mammalian heart. To date, a coronary circulation has always been found associated with compact myocardium in fish; this is true for ventricle and the conus arteriosus. However, most fish species likely do not have a coronary circulation, nor do they have a thickened compact myocardium, and instead rely on the other oxygen supply route for the fish heart, the luminal oxygen supply to spongy myocardium. The archetype for the chambered vertebrate heart was likely avascular because no cyclostome has a coronary circulation. Nevertheless, the coronary circulation likely appeared when the first jawed vertebrates evolved because all extant elasmobranchs possess a coronary circulation that supplies the spongy and compact myocardial layers of the ventricle, as well as the compact myocardium of the conus. Extant species of basal teleosts provide evidence of a progressive evolutionary transition toward a loss of conal myocardium and the development of three forms of ventricular anatomy seen among modern day teleost species. The most prominent form is a reversion back to the archetypal spongy ventricle that lacks a coronary circulation. Most of the remaining teleosts have limited the coronary circulation to the outer compact myocardium and left the spongy myocardium avascular. A few species have a highly developed coronary system that serves both the spongy and compact myocardium, as in elasmobranchs. Thus, beyond the highly developed coronary circulations of endothermic sharks and tunas, cardiac evolution among fishes appears to have moved toward independence from a coronary circulation, beginning perhaps in the cyprinid lineage. Indeed, fish hearts comprise at least 30% and most often 100% spongy myocardium. Although air breathing in fishes increased the security of the luminal oxygen supply to the heart, it did not supplant the need for a coronary circulation. Many mysteries still remain regarding the coronary circulation in fishes including the extent to which the spongy myocardium is vascularized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Angelini A, Melancini P, Barbero F, Thiene G (1999) Evolutionary persistense of spongy myocardium in humans. Circulation 99:2475

    Article  PubMed  CAS  Google Scholar 

  • Axelsson M (2005) The circulatory system and its control. In: Farrell AP, Steffensen JF (eds) Physiology of polar fishes. Fish physiology, vol 22. Elsevier, San Diego

    Google Scholar 

  • Axelsson M, Farrell AP (1993) Coronary blood flow in vivo in the coho salmon (Oncorhynchus kisutch). Am J Physiol 264:R963–971

    PubMed  CAS  Google Scholar 

  • Brill RW (1996) Selective advantages conferred by the high performance physiology of tunas, bilfishes, and dolphin fish. Comp Biochem Physiol 113A:3–15

    Article  CAS  Google Scholar 

  • Brill RW, Bushnell PG (2001) Tuna metabolism and energetics. In: Block BA, Stevens ED (eds) Tuna: physiology, ecology and evolution. Fish physiology, vol 19. Academic, San Diego, pp 79–120

    Google Scholar 

  • Budgett JS (1901) On some points in the anatomy of Polypterus. Trans Zool Soc Lond 15:323–341

    Article  Google Scholar 

  • Bushnell P, Jones DR, Farrell AP (1992) The arterial system. In: Hoar WS, Randall DJ, Farrell AP (eds) Fish physiology, vol 12A. Academic, New York, pp 89–139

    Google Scholar 

  • Cox GK, Sandblom E, Farrell AP (2010a) Cardiac responses to anoxia in the Pacific hagfish, Eptatretus stoutii. J Exp Biol 213:3692–3698

    Article  PubMed  Google Scholar 

  • Cox GK, Sandblom E, Richards JG, Farrell AP (2010b) Anoxic survival of the Pacific hagfish (Eptatretus stoutii). J Comp Physiol B 181:361–371

    Article  PubMed  Google Scholar 

  • Davie PS (1990) Pacific Marlins. Anatomy and Physiology. Massey University Printery, Palmerston North, New Zealand

    Google Scholar 

  • Davie PS, Farrell AP (1991a) Cardiac performance of an isolated heart preparation from the dogfish (Squalus acanthias): the effects of hypoxia and coronary artery perfusion. Can J Zool 69:1822–1828

    Article  Google Scholar 

  • Davie PS, Farrell AP (1991b) The coronary and luminal circulations of the myocardium of fishes. Can J Zool 69:1993–2001

    Article  Google Scholar 

  • Davie PS, Franklin CE (1992) Myocardial oxygen consumption and mechanical efficiency of a perfused dogfish heart preparation. J Comp Physiol B 162:256–262

    Article  PubMed  CAS  Google Scholar 

  • Daxboeck C (1982) Effect of coronary artery ablation on exercise performance in Salmo gairdneri. Can J Zool 60:375–381

    Article  Google Scholar 

  • De Andres AV, Muñoz-Chapuli R, Sans-Coma V, Garcia-Garrido L (1990) Anatomical studies of the coronary system in elasmobranchs: I. Coronary arteries in lamnoid sharks. Am J Anat 187:303–310

    Article  PubMed  Google Scholar 

  • De Andres AV, Muñoz-Chapuli R, Sans-Coma V, Garcia-Garrido L (1992) Anatomical studies of the coronary system in elasmobranchs: II. Coronary arteries in hexanchoid, squaloid, and carcharhinoid sharks. Anat Rec 233:429–439

    Article  PubMed  Google Scholar 

  • Duncker DJ, Bache RJ (2008) Regulation of coronary blood flow during exercise. Physiol Rev 88:1009–1086

    Article  PubMed  CAS  Google Scholar 

  • Emery SH, Mangano C, Randazzo V (1985) Ventricle morphology in pelagic elasmobranch fishes. Comp Biochem Physiol A 82:635–643

    Article  PubMed  CAS  Google Scholar 

  • Fänge R (1986) Lymphoid organs in sturgeons (Acipenseridae). Vet Immunol Immunop 12:153–161

    Article  Google Scholar 

  • Farmer C (1997) Did lungs and the intracardiac shunt evolve to oxygenate the heart in vertebrates? Paleobiology 23:358–372

    Google Scholar 

  • Farmer CG (1999) Evolution of the vertebrate cardio-pulmonary system. Annu Rev Physiol 61:573–592

    Article  PubMed  CAS  Google Scholar 

  • Farrell AP (1987) Coronary flow in a perfused rainbow trout heart. J Exp Biol 129:107–123

    PubMed  CAS  Google Scholar 

  • Farrell AP (1991) From hagfish to tuna: a perspective on cardiac function in fish. Physiol Zool 64:1137–1164

    Google Scholar 

  • Farrell AP (1996) Features heightening cardiovascular performance in fishes, with special reference to tunas. Comp Biochem Physiol A 113:61–67

    Article  Google Scholar 

  • Farrell AP (1997) Evolution of cardiovascular systems: insights into ontogeny. In: Burggren WW, Keller B (eds) Development of the cardiovascular system: molecules to organisms. Cambridge University Press, Cambridge, pp 101–113

    Google Scholar 

  • Farrell AP (2007) Cardiovascular systems in primitive fishes. In: McKenzie DJ, Farrell AP, Brauner CJ (eds) Primitive fishes. Fish physiology, vol 26. Academic, San Diego, pp 53–120

    Google Scholar 

  • Farrell AP, Clutterham SM (2003) On-line venous oxygen tensions in rainbow trout during graded exercise at two acclimation temperatures. J Exp Biol 206:487–496

    Article  PubMed  CAS  Google Scholar 

  • Farrell AP, Jones DR (1992) The heart. In: Hoar WS, Randall DJ, Farrell AP (eds) Fish physiology, vol 12A. Academic, San Diego, pp 1–88

    Google Scholar 

  • Farrell AP, Stecyk JA (2007) The heart as a working model to explore themes and strategies for anoxic survival in ectothermic vertebrates. Comp Biochem Physiol A 147:300–312

    Article  CAS  Google Scholar 

  • Farrell AP, Steffensen JF (1987) Coronary ligation reduces maximum sustained swimming speed in Chinook salmon, Oncorhynchus tshawytscha. Comp Biochem Physiol A 87(1):35–37

    Article  PubMed  CAS  Google Scholar 

  • Farrell AP, Hammons AM, Graham MS, Tibbits GF (1988) Cardiac growth in rainbow trout, Salmo gairdneri. Can J Zool 66:2368–2373

    Article  Google Scholar 

  • Farrell AP, Davie PS, Franklin CE, Johansen JA, Brill RW (1992) Cardiac physiology in tunas I: in vitro perfused heart preparations from yellowfin and skipjack tunas. Can J Zool 70:1200–1210

    Article  Google Scholar 

  • Farrell AP, Gamperl AK, Francis ETB (1998) Comparative aspects of heart morphology. In: Gans C, Gaunt AS (eds) Biology of the Reptilia, vol 19. Society for the Study of Amphibians and Reptiles, Ithaca, pp 375–424

    Google Scholar 

  • Farrell AP, Simonot DL, Seymour RS, Clark TD (2007) A novel technique for estimating the compact myocardium in fishes reveals surprising results for an athletic air-breathing fish, the Pacific tarpon. J Fish Biol 71:389–398

    Article  Google Scholar 

  • Farrell AP, Eliason EJ, Sandblom E, Clark TD (2009) Fish cardiorespiratory physiology in an era of climate change. Can J Zool 87:835–851

    Article  CAS  Google Scholar 

  • Forster ME (1989) Performance of the heart of the hagfish, Eptatretus cirrhatus. Fish Physiol Biochem 6:327–331

    Article  Google Scholar 

  • Forster ME (1991) Myocardial oxygen consumption and lactate release by the hypoxic hagfish heart. J Exp Biol 156:583–590

    Google Scholar 

  • Forster ME, Davison W, Axelsson M, Farrell AP (1992) Cardiovascular responses to hypoxia in the hagfish, Eptatretus cirrhatus. Respir Physiol 88:373–386

    Article  PubMed  CAS  Google Scholar 

  • Foxon GE (1950) A description of the coronary arteries in dipnoan fishes and some remarks on their importance from the evolutionary standpoint. J Anat 84:121–131

    PubMed  CAS  Google Scholar 

  • Franklin CE, Davie PS (1992) Dimensional analysis of the ventricle of an in situ perfused trout heart using echocardiography. J Exp Biol 166:47–60

    PubMed  CAS  Google Scholar 

  • Gamperl AK, Farrell AP (2004) Cardiac plasticity in fishes: environmental influences and intraspecific differences. J Exp Biol 207:2539–2550

    Article  PubMed  CAS  Google Scholar 

  • Gamperl A, Pinder A, Grant R, Boutilier R (1994) Influence of hypoxia and adrenaline administration on coronary blood flow and cardiac performance in seawater rainbow trout (Oncorhynchus mykiss). J Exp Biol 193:209–232

    PubMed  CAS  Google Scholar 

  • Gamperl AK, Axelsson M, Farrell AP (1995) Effects of swimming and environmental hypoxia on coronary blood flow in rainbow trout. Am J Physiol 269:R1258–1266

    PubMed  CAS  Google Scholar 

  • Goo S, Joshi P, Sands G, Gerneke D, Taberner A, Dollie Q, LeGrice I, Loiselle D (2009) Trabeculae carneae as models of the ventricular walls: implications for the delivery of oxygen. J Gen Physiol 134:339–350

    Article  PubMed  Google Scholar 

  • Graham JB (1997) Air-breathing fishes. Evolution, diversity and adaptation. Academic, San Diego

    Google Scholar 

  • Grant RT, Regnier M (1926) The comparative anatomy of the cardiac coronary vessels. Heart J Stud Circ 8:285–317

    Google Scholar 

  • Greer Walker M, Santer RM, Benjamin M, Norman D (1985) Heart structure of some deep-sea fish (Teleostei: Macrouridae). J Zool Lond A 205:75–89

    Article  Google Scholar 

  • Grimes AC, Kirby ML (2009) The outflow tract of the heart in fishes: anatomy, genes and evolution. J Fish Biol 74:983–1036

    Article  PubMed  CAS  Google Scholar 

  • Guerrero A, Icardo JM, Duran AC, Gallego A, Domezain A, Colvee E, Sans-Coma V (2004) Differentiation of the cardiac outflow tract components in alevins of the sturgeon Acipenser naccarii (Osteichthyes, Acipenseriformes): implications for heart evolution. J Morphol 260:172–183

    Article  PubMed  Google Scholar 

  • Hagensen MK, Abe AS, Falk E, Wang T (2008) Physiological importance of the coronary arterial blood supply to the rattlesnake heart. J Exp Biol 211:3588–93

    Article  PubMed  Google Scholar 

  • Halpern MH, May MM (1958) Phylogenetic study of the extracardiac arteries to the heart. Am J Anat 102:469–481

    Article  PubMed  CAS  Google Scholar 

  • Hansen CA, Sidell BD (1983) Atlantic hagfish cardiac muscle: metabolic basis of tolerance to anoxia. Am J Physiol 244:R356–R362

    PubMed  CAS  Google Scholar 

  • Holeton GF, Randall DJ (1967) The effect of hypoxia upon the partial pressure of gases in the blood and water afferent and efferent to the gills of rainbow trout. J Exp Biol 46:317–327

    PubMed  CAS  Google Scholar 

  • Hu N, Sedmera D, Yost HJ, Clark EB (2000) Structure and function of the developing zebrafish heart. Anat Rec 260:148–157

    Article  PubMed  CAS  Google Scholar 

  • Icardo JM (1990) Development of the outflow tract. A study in hearts with situs solitus and situs inversus. Ann NY Acad Sci 588:26–40

    Article  PubMed  CAS  Google Scholar 

  • Icardo JM (1996) Developmental biology of the vertebrate heart. J Exp Zool 275:144–161

    Article  PubMed  CAS  Google Scholar 

  • Icardo JM, Colvee E, Cerra MC, Tota B (1999) Bulbus arteriosus of the Antarctic teleosts. I. The white-blooded Chionodraco hamatus. Anat Rec 254:396–407

    Article  PubMed  CAS  Google Scholar 

  • Icardo JM, Colvee E, Cerra MC, Tota B (1999) Bulbus arteriosus of the Antarctic teleosts. II. The red-blooded Trematomus bernacchii. Anat Rec 256:116–126

    Article  PubMed  CAS  Google Scholar 

  • Icardo JM, Guerrero A, Duran AC, Domezain A, Colvee E, Sans-Coma V (2004) The development of the sturgeon heart. Anat Embryol 208:439–449

    Article  PubMed  Google Scholar 

  • Icardo JM, Amelio D, Garofalo F, Colvee E, Cerra MC, Wong WP, Tota B, Ip YK (2008) The structural characteristics of the heart ventricle of the African lungfish Protopterus dolloi: freshwater and aestivation. J Anat 213:106–119

    Article  PubMed  Google Scholar 

  • Icardo JM, Guerrero A, Duran AC, Colvee E, Domezain A, Sans-Coma V (2009) The development of the epicardium in the sturgeon Acipenser naccarii. Anat Rec 292:1593–1601

    Article  Google Scholar 

  • Ilves KL, Randall DJ (2007) Why have primitive fishes survived? In: McKenzie DJ, Farrell AP, Brauner C (eds) Primitive fishes. Fish physiology, vol 26. Academic, San Diego, pp 515–536

    Google Scholar 

  • Jensen B, Nielsen JM, Axelsson M, Pedersen M, Lofman C, Wang T (2010) How the python heart separates pulmonary and systemic blood pressures and blood flows. J Exp Biol 213:1611–1617

    Article  PubMed  Google Scholar 

  • Johansen K (1965) Cardiovascular dynamics in fishes, amphibians, and reptiles. Ann NY Acad Sci 127:414–442

    Article  PubMed  CAS  Google Scholar 

  • Korsmeyer KE, Dewar H, Lai NC, Graham JB (1996) The aerobic capacity of tunas: adaptation for multiple metabolic demands. Comp Biochem Physiol A 113:17–24

    Article  Google Scholar 

  • McKenzie DJ, Farrell AP, Brauner CJ (eds) (2007) Primitive fishes. Fish physiology, vol 26. Academic, San Diego

    Google Scholar 

  • Millot J, Anthony J, Robineau D (1978) Anatomie de Latimeria chalumnae. Tome 3, Appareils digestifs, respiratoire, urogenetal, circulatoire, glandes endocrine, teguments, ecailles, conclusions generales. Paris, Editions de Centre National de Rech. Scient., 198 pp

    Google Scholar 

  • Muñoz-Chapuli R, De Andres AV, Dingerkus G (1994) Coronary artery anatomy and elasmobranch phylogeny. Acta Zool Stockholm 75:249–254

    Article  Google Scholar 

  • O’Donogue CH, Abbot E (1928) The blood vascular sustem of the spiny dogfish Squlaus acanthias and Squalus sucklii. Trans R Soc Edinb 55:823–890

    Google Scholar 

  • Ostadal B, Schieble Th (1971) Terminal blood bed in heart of fish. Z Anat Entwicklungs 134:101–110

    Article  CAS  Google Scholar 

  • Parker TJ (1886) On the blood vessels of Mustelus anataricus. Phil Trans R Soc Lond Biol 177:685–732

    Article  Google Scholar 

  • Parker GH, Davis FK (1899) The blood vessels of the heart of Carachias, Raja and Amia. Proc Boston Soc Nat Hist 29:163–178

    Google Scholar 

  • Pieperhoff S, Bennett W, Farrell AP (2009) The intercellular organization of the two muscular systems in the adult salmonid heart, the compact and the spongy myocardium. J Anat 215:536–547

    Article  PubMed  Google Scholar 

  • Poupa O, Gesser H, Jonsson S, Sullivan L (1974) Coronary supplied compact shell of ventricular myocardium in salmonids: growth and enzyme pattern. Comp Biochem Physiol A 48:85–95

    Article  PubMed  CAS  Google Scholar 

  • Pratt FH (1898) The nutrition of the heart through the vessels of Thebesius and coronary veins. Am J Physiol 1:86–103

    Google Scholar 

  • Romenskii O (1978) Blood supply of the compact and spongy myocardium of fish, amphibia and reptiles. Arkh Anat Gistol Embriol 75:91–95

    PubMed  Google Scholar 

  • Sanchez-Quintana D, Hurle JM (1987) Ventricular myocardial architecture in marine fishes. Anat Rec 217:263–273

    Article  PubMed  CAS  Google Scholar 

  • Santer RM (1985) Morphology and innervation of the fish heart. Adv Anat Embryol Cell Biol 89:1–99

    Article  PubMed  CAS  Google Scholar 

  • Santer RM, Greer Walker M (1980) Morphological studies on the ventricle of teleost and elasmobranch hearts. J Zool 190:259–272

    Article  Google Scholar 

  • Satchell GH (1991) Physiology and form of fish circulation. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Saunders RL, Farrell AP, Knox DE (1992) Progression of coronary arterial lesions in Atlantic salmon (Salmo salar) as a function of growth rate. Can J Fish Aquatic Sci 49:878–884

    Article  Google Scholar 

  • Sedmera D, Watanabe M (2006) Growing the coronary tree: the quail saga. Anat Rec A 288:933–935

    Google Scholar 

  • Sedmera D, Pexieder T, Vuillemin M, Thompson RP, Anderson RH (2000) Developmental patterning of the myocardium. Anat Rec 258:319–337

    Article  PubMed  CAS  Google Scholar 

  • Seymour RS, Farrell AP, Christian K, Clark TD, Bennett MB, Wells RM, Baldwin J (2007) Continuous measurement of oxygen tensions in the air-breathing organ of Pacific tarpon (Megalops cyprinoides) in relation to aquatic hypoxia and exercise. J Comp Physiol B 177:579–587

    Article  PubMed  CAS  Google Scholar 

  • Shipman B (1989) Patterns of ventilation and acid-base recovery following exhausting activity in the air-breathing fish Lepisosteus oculatus. M.Sc. Thesis. University of Texas, Arlington

    Google Scholar 

  • Stainier DY, Lee RK, Fishman MC (1993) Cardiovascular development in the zebrafish. I. Myocardial fate map and heart tube formation. Development 119:31–40

    PubMed  CAS  Google Scholar 

  • Sugishita Y, Watanabe M, Fisher SA (2004) Role of myocardial hypoxia in remodeling of the embryonic avian cardiac outflow tract. Dev Biol 267:294–308

    Article  PubMed  CAS  Google Scholar 

  • Thebesius AC (1708) Dissertatio Medica de Cirulo Sanguinis in Corde. Elsevier, Lugduni Batacorum

    Google Scholar 

  • Tomanek RJ (1996) Formation of the coronary vasculature: a brief review. Cardiovasc Res 31:E46–E51

    PubMed  Google Scholar 

  • Tota B (1978) Functional cardiac morphology and biochemistry in Atlantic bluefin tuna. In: Sharp GD, Dizon AE (eds) The physiological ecology of tunas. Academic, New York, pp 89–112

    Google Scholar 

  • Tota B (1983) Vascular and metabolic zonation in the ventricular myocardium of mammals and fishes. Comp Biochem Physiol A 76:423–437

    Article  PubMed  CAS  Google Scholar 

  • Tota B (1989) Myoarchitecture and vascularization of the elasmobranch heart ventricle. J Exp Zool:122–135

    Google Scholar 

  • Tota B, Cimini V, Salvatore G, Zummo G (1983) Comparative study of the arterial and lacunary systems of the ventricular myocardium of elasmobranch and teleost fishes. Am J Anat 167:15–32

    Article  PubMed  CAS  Google Scholar 

  • Tota B, Acierno R, Agnisola C (1991) Mechanical Performance of the isolated and perfused heart of the haemoglobinless Antarctic icefish Chionodraco hamatus (Lonnberg): effects of loading conditions and temperature. Philos Trans Roy Soc B 332:191–198

    Article  Google Scholar 

  • Van Citters RL, Watson NW (1967) Coronary disease in spawning steelhead trout, Salmo gairdneri. Science 159:105–107

    Article  Google Scholar 

  • Voboril Z, Schieble T (1970) Blood supply of turtle heart. Z Anat Entwicklungs 130:95–98

    Article  CAS  Google Scholar 

  • Wanga J, Eckberg WR, Anderson WA (2001) Ultrastructural differentiation of cardiomyocytes of the zebrafish during the 8-26-somite stages. J Submicrosc Cytol Pathol 33:275–287

    PubMed  CAS  Google Scholar 

  • Wells RMG, Forster ME, Davison W, Taylor HH, Davie PS, Satchell GH (1986) Blood oxygen transport in the free swimming hagfish, Eptatretus cirrhatus. J Exp Biol 123:43–53

    PubMed  CAS  Google Scholar 

  • Zaccone D, Grimes AC, Sfacteria A, Jaroszewska M, Caristina G, Manganaro M, Farrell AP, Zaccone G, Dabrowski K, Marino F (2011) Complex innervation patterns of the conus arteriosus in the heart of the longnose gar, Lepisosteus osseus. Acta Histochem 113:578–584

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We are deeply indebted to the courtesy shown to us by the staff of the Natural History Museum of London, UK, who provided open access to their fish collection and especially Oliver Crimmen, Patrick Campbell, James Maclain, and Ralf Britz. This work was by funded by the Natural Sciences and Engineering Council of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Farrell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Farrell, A.P., Farrell, N.D., Jourdan, H., Cox, G.K. (2012). A Perspective on the Evolution of the Coronary Circulation in Fishes and the Transition to Terrestrial Life. In: Sedmera, D., Wang, T. (eds) Ontogeny and Phylogeny of the Vertebrate Heart. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3387-3_4

Download citation

Publish with us

Policies and ethics