Experimental CMOS Gm-C Filter Circuits

  • Ville Saari
  • Jussi Ryynänen
  • Saska Lindfors
Chapter
Part of the Analog Circuits and Signal Processing book series (ACSP)

Abstract

In this chapter, a total of three continuous-time gm-C low-pass filter implementations are presented, together with their measured performance. They include two evolution versions of fifth-order 240-MHz gm-C filters that were designed and implemented in this work as a part of two single-chip WiMedia UWB direct-conversion receivers in a standard 0.13 and 65-nm CMOS technology, respectively. The 65-nm CMOS filter implementation was also embedded into the I-branch of a single-chip 60-GHz dual-conversion receiver. Correspondingly, a third-order 1-GHz gm-C filter was designed for the Q-branch, rather as a test structure. The 1-GHz design is the third experimental gm-C filter circuit implemented in this work. All three filter implementations are original work in this book. Moreover, all of them were synthesized from lossy LC prototype filters in order to investigate and demonstrate the feasibility of the filter design approach presented in Chap. 4 and, especially, to benefit from the approach. The fifth-order 240-MHz gm-C filter implementations have previously been published in [1] and [2], respectively. The 1-GHz filter implementation has not been published because it did not function properly in the measurements, unlike the simulations. The second evolution version of the two WiMedia UWB receivers and the 60-GHz radio receiver, both implemented in a 65-nm CMOS technology, have been published in [3] and [4, 5], respectively. To the best of the authors’ knowledge, and based on [5], the latter is the first published 60-GHz radio receiver implementation that also contains an analog baseband circuit with an ADC on the same silicon chip with a 60-GHz receiver front-end. In the first evolution version of the two WiMedia UWB receivers, some re-design and, hence, re-processing needed to be done for the RF front-end and therefore, the first UWB receiver implementation has not been published as a complete RF receiver circuit. Instead, each individual circuit block has been published separately. This chapter is mainly based on the contents of the first four references of this chapter.

Keywords

Attenuation Settling 

References

  1. 1.
    Saari V, Kaltiokallio M, Lindfors S, Ryynänen J, Halonen K (2007) A 1.2-V 240-MHz CMOS continuous-time low-pass filter for a UWB radio receiver. In: IEEE international solid-state circuits conference (ISSCC) digest of technical papers, San Francisco, Feb 2007, pp 122–123Google Scholar
  2. 2.
    Saari V, Kaltiokallio M, Lindfors S, Ryynänen J, Halonen KAI (2009) A 240-MHz low-pass filter with variable gain in 65-nm CMOS for a UWB radio receiver. IEEE Trans Circ Syst I Reg Pap 56(7):1488–1499CrossRefGoogle Scholar
  3. 3.
    Kaltiokallio M, Saari V, Rapinoja T, Stadius K, Ryynänen J, Lindfors S, Halonen K (2008) A WiMedia UWB receiver with a synthesizer. In: Proceedings of the European solid-state circuits conference (ESSCIRC), Edinburgh, Sept 2008, pp 330–333Google Scholar
  4. 4.
    Varonen M, Kaltiokallio M, Saari V, Viitala O, Kärkkäinen M, Lindfors S, Ryynänen J, Halonen K (2009) A 60 GHz CMOS receiver with an on-chip ADC. In: IEEE radio frequency integrated circuits (RFIC) symposium on digest papers, Boston, 2009, pp 445–448Google Scholar
  5. 5.
    Varonen M (2010) Design and characterization of monolithic millimeter-wave active and passive components, low-noise and power amplifiers, resistive mixers, and radio front-ends. Doctoral thesis, Aalto University School of Science and Technology, Espoo, 2010, p 83Google Scholar
  6. 6.
    Viitala O, Lindfors S, Halonen K (2006) A 5-bit 1-GS/s Flash-ADC in 0.13-μm CMOS using active interpolation. In: Proceedings of the European solid-state circuits conference (ESSCIRC), Montreux, Sept 2006, pp 412–415Google Scholar
  7. 7.
    MultiBand OFDM Alliance, “Multiband OFDM physical layer proposal for IEEE 802.15 task group 3a,” MBOA-SIG, Sept 2004Google Scholar
  8. 8.
    Kaukovuori J, Ryynänen J, Halonen KAI (2007) A dual-band direct-conversion RF front-end for WiMedia UWB receiver. In: IEEE radio frequency integrated circuits (RFIC) symposium on digest papers, Honolulu, June 2007, pp 211–214Google Scholar
  9. 9.
    Stadius K, Rapinoja T, Kaukovuori J, Ryynänen J, Halonen KAI (2007) Multitone fast frequency-hopping synthesizer for UWB radio. IEEE Trans Microw Theory Tech 55(8):1633–1641CrossRefGoogle Scholar
  10. 10.
    Kaukovuori J (2007) CMOS radio frequency circuits for short-range direct-conversion receivers. Doctoral thesis, Helsinki University of Technology, Espoo, p 201Google Scholar
  11. 11.
    Järvinen JAM, Kaukovuori J, Ryynänen J, Jussila J, Kivekäs K, Honkanen M, Halonen KAI (2005) 2.4-GHz receiver for sensor applications. IEEE J Solid-State Circ 40(7):1426–1433CrossRefGoogle Scholar
  12. 12.
    Varonen M, Kärkkäinen M, Kantanen M, Halonen KAI (2008) Millimeter-wave integrated circuits in 65-nm CMOS. IEEE J Solid-State Circ 43(9):1991–2002CrossRefGoogle Scholar
  13. 13.
    Tanaka A, Okada H, Kodama H, Ishikawa H (2006) A 1.1V 3.1-to-9.5GHz MB-OFBM UWB transceiver in 90nm CMOS. In: IEEE international solid-state circuits conference (ISSCC) digest of technical papers, San Francisco, Feb 2006, pp 398–399Google Scholar
  14. 14.
    Valdes-Garcia A, Mishra C, Bahmani F, Silva-Martinez J, Sánchez-Sinencio E (2007) An 11-band 3–10 GHz receiver in SiGe BiCMOS for multiband OFDM UWB communication. IEEE J Solid-State Circ 42(4):935–948CrossRefGoogle Scholar
  15. 15.
    Werther O, Cavin M, Schneider A, Renninger R, Liang B, Bu L, Jin Y, Rogers J, Marcincavage J (2008) A fully integrated 14 band 3.1 to 10.6 GHz 0.13 μm SiGe BiCMOS UWB RF transceiver. IEEE J Solid-State Circ 43(12):2829–2843CrossRefGoogle Scholar
  16. 16.
    Pavan S, Tsividis YP, Nagaraj K (2000) Widely programmable high-frequency continuous-time filters in digital CMOS technology. IEEE J Solid-State Circ 35(4):503–511CrossRefGoogle Scholar
  17. 17.
    Dosho S, Morie T, Fujiyama H (2002) A 200-MHz seventh-order equiripple continuous-time filter by design of nonlinearity suppression in 0.25-μm CMOS process. IEEE J Solid-State Circ 37(5):559–565CrossRefGoogle Scholar
  18. 18.
    Silva-Martinez J, Adut J, Rocha-Perez JM, Robinson M, Rokhsaz S (2003) A 60-mW 200-MHz continuous-time seventh-order linear phase filter with on-chip automatic tuning system. IEEE J Solid-State Circ 38(2):216–225CrossRefGoogle Scholar
  19. 19.
    Chen M, Silva-Martinez J, Rokhsaz S, Robinson M (2003) A 2-Vpp 80–200-MHz fourth-order continuous-time linear phase filter with automatic frequency tuning. IEEE J Solid-State Circ 38(10):1745–1749CrossRefGoogle Scholar
  20. 20.
    Pandey P, Silva-Martinez J, Liu X (2006) A CMOS 140-mW fourth-order continuous-time low-pass filter stabilized with a class-AB common-mode feedback operating at 550 MHz. IEEE Trans Circ Syst I Reg Pap 53(4):811–820CrossRefGoogle Scholar
  21. 21.
    Kolm R, Zimmermann H (2006) A 3rd-order 235 MHz low-pass gmC-filter in 120 nm CMOS. In: Proceedings of the European solid-state circuits conference (ESSCIRC), Montreux, Sept 2006, pp 215–218Google Scholar
  22. 22.
    D’Amico S, Ryckaert J, Baschirotto A (2006) A up-to-1 GHz low-power baseband chain for UWB receivers. In: Proceedings of the European solid-state circuits conference (ESSCIRC), Montreux, Sept 2006, pp 263–266Google Scholar
  23. 23.
    Pavan S, Laxminidhi T (2006) A 70–500 MHz programmable CMOS filter compensated for MOS nonquasistatic effects. In: Proceedings of the European solid-state circuits conference (ESSCIRC), Montreux, Sept 2006, pp 328–331Google Scholar
  24. 24.
    Lu Y, Krithivasan R, Kuo W-ML, Li X, Cressler JD, Gustat H, Heinemann B (2006) A 70 MHz – 4.1 GHz 5th-order elliptic gm-C low-pass filter in complementary SiGe technology. In: Proceedings of the IEEE bipolar/BiCMOS circuits and technology meeting, Maastricht, Oct 2006, pp 1–4Google Scholar
  25. 25.
    Kwon K, Kim H-T, Lee K (2009) A 50–300-MHz highly linear and low-noise CMOS gm-C filter adopting multiple gated transistors for digital TV tuner ICs. IEEE Trans Microw Theory Tech 57(2):306–313CrossRefGoogle Scholar
  26. 26.
    Mobarak M, Onabajo M, Silva-Martinez J, Sánchez-Sinencio E (2010) Attenuation-predistortion linearization of CMOS OTAs with digital correction of process variations in OTA-C filter applications. IEEE J Solid-State Circ 45(2):351–367CrossRefGoogle Scholar
  27. 27.
    Shih H-Y, Kuo C-N, Chen W-H, Yang T-Y, Juang K-C (2010) A 250 MHz 14 dB-NF 73 dB-gain 82 dB-DR analog baseband chain with digital-assisted DC-offset calibration for ultra-wideband. IEEE J Solid-State Circ 45(2):338–349CrossRefGoogle Scholar
  28. 28.
    Li W, Huang Y, Hong Z (2010) 70–280 MHz 21 mW 53 dB SFDR gm-C filter. Electron Lett 46(17):1187–1188CrossRefGoogle Scholar
  29. 29.
    Roovers R, Leenaerts DMW, Bergervoet J, Harish KS, van de Beek RCH, van der Weide G, Waite H, Zhang Y, Aggarwal S, Razzell C (2005) An interference-robust receiver for ultra-wideband radio in SiGe BiCMOS technology. IEEE J Solid-State Circ 40(12):2563–2572CrossRefGoogle Scholar
  30. 30.
    Lo S, Sever I, Ma S-P, Jang P, Zou A, Arnott C, Ghatak K, Schwartz A, Huynh L, Phan VT, Nguyen T (2006) A dual-antenna phase-array UWB transceiver in 0.18-μm CMOS. IEEE J Solid-State Circ 41(12):2776–2786CrossRefGoogle Scholar
  31. 31.
    Ismail A, Abidi A (2005) A 3.1- to 8.2-GHz zero-IF receiver and direct frequency synthesizer in 0.18-μm SiGe BiCMOS for mode-2 MB-OFDM UWB communication. IEEE J Solid-State Circ 40(12):2573–2582CrossRefGoogle Scholar
  32. 32.
    Gopinathan V, Tarsia M, Choi D (1999) Design considerations and implementation of a programmable high-frequency continuous-time filter and variable-gain amplifier in submicrometer CMOS. IEEE J Solid-State Circ 34(12):1698–1707CrossRefGoogle Scholar
  33. 33.
    Harrison J, Weste N (2002) 350 MHz opamp-RC filter in 0.18 μm CMOS. Electron Lett 38(6):259–260CrossRefGoogle Scholar
  34. 34.
    Harrison J, Weste N (2003) A 500 MHz CMOS anti-alias filter using feed-forward op-amps with local common-mode feedback. In: IEEE international solid-state circuits Conference (ISSCC) digest of technical papers, San Francisco, Feb 2003, pp 132–133Google Scholar
  35. 35.
    D’Amico S, De Matteis M, Baschirotto A (2008) A 6th-order 100 μA 280 MHz source-follower-based single-loop continuous-time filter. In IEEE international solid-state circuits conference (ISSCC) digest of technical papers, San Francisco, Feb 2008, pp 72–73Google Scholar
  36. 36.
    Laxminidhi T, Prasadu V, Pavan S (2009) Widely programmable high-frequency active RC filters in CMOS technology. IEEE Trans Circ Syst I Reg Pap 56(2):327–336CrossRefGoogle Scholar
  37. 37.
    D’Amico S, Baschirotto A, Philips K, Rousseaux O, Gyselinckx B (2009) A 240 MHz programmable gain amplifier & filter for ultra low power low-rate UWB receivers. In: Proceedings of the European solid-state circuits conference (ESSCIRC), Athens, Sept 2009, pp 260–263Google Scholar
  38. 38.
    Sandner C, Derksen S, Draxelmayr D, Ek S, Filimon V, Leach G, Marsili S, Matveev D, Mertens KLR, Michl F, Paule H, Punzenberger M, Reindl C, Salerno R, Tiebout M, Wiesbauer A, Winter I, Zhang Z (2006) A WiMedia/MBOA-compliant CMOS RF transceiver for UWB. IEEE J Solid-State Circ 41(12):2787–2794CrossRefGoogle Scholar
  39. 39.
    Bergervoet JR, Harish KS, Lee S, Leenaerts D, van de Beek R, van der Weide G, Roovers R (2007) A WiMedia-compliant UWB transceiver in 65 nm CMOS. In: IEEE international solid-state circuits conference (ISSCC) digest of technical papers, San Francisco, Feb 2007, pp 112–113Google Scholar
  40. 40.
    Chamla D, Kaiser A, Cathelin A, Belot D (2005) A gm-C low-pass filter for zero-IF mobile applications with a very wide tuning range. IEEE J Solid-State Circ 40(7):1443–1450CrossRefGoogle Scholar
  41. 41.
    Mitomo T, Fujimoto R, Ono N, Tachibana R, Hoshino H, Yoshihara Y, Tsutsumi Y, Seto I (2008) A 60-GHz CMOS receiver front-end with frequency synthesizer. IEEE J Solid-State Circ 43(4):1030–1037CrossRefGoogle Scholar
  42. 42.
    Parsa A, Razavi B,(2008) A 60 GHz CMOS receiver using a 30 GHz LO. In: IEEE international solid-state circuits conference (ISSCC) digest of technical papers, San Francisco, Feb 2008, pp 190–191Google Scholar
  43. 43.
    Afshar B, Wang Y, Niknejad AM (2008) A robust 24 mW 60 GHz receiver in 90 nm standard CMOS. In: IEEE international solid-state circuits conference (ISSCC) digest of technical papers, San Francisco, Feb 2008, pp 182–183Google Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Ville Saari
    • 1
  • Jussi Ryynänen
    • 2
  • Saska Lindfors
    • 3
  1. 1.EPCOS Nordic OyEspooFinland
  2. 2.Electronic Circuit Design Unit School of Electrical Engineering Department of Micro- and NanosciencesAalto UniversityEspooFinland
  3. 3.Texas InstrumentsHelsinkiFinland

Personalised recommendations