Engineering Ralstonia eutropha for Production of Isobutanol from CO2, H2, and O2

  • Christopher J. Brigham
  • Claudia S. Gai
  • Jingnan Lu
  • Daan R. Speth
  • R. Mark Worden
  • Anthony J. Sinskey

Abstract

Isobutanol (IBT) can be used as a 100% replacement for gasoline in existing automobile engines, has >90% of the energy density of gasoline and is compatible with established fuel distribution infrastructure. The facultatively autotrophic bacterium Ralstonia eutropha can utilize H2 for energy and CO2 for carbon and is also employed in industrial processes that produce biodegradable plastics. Using a carefully designed production pathway, R. eutropha, a genetically tractable organism, can be modified to produce biofuels from autotrophic growth. Microbial production of IBT can be achieved by directing the flow of carbon through a ­synthetic production pathway involving the branched-chain amino acid biosynthesis pathway, a heterologously expressed ketoisovalerate decarboxylase, and a broad substrate specificity alcohol dehydrogenase. We discuss the motivations and the methods used to engineer R. eutropha to produce the liquid transportation fuel IBT from CO2, H2, and O2.

Keywords

Zeolite Explosive Photosynthesis Gasoline Tryptophan 

Notes

Acknowledgments

We thank John W. Quimby for critical review of this manuscript. D.S. is ­supported by the following foundations: Nijmeegs Universiteitsfonds (SNUF), Fundatie van de Vrijvrouwe van Renswoude te’s-Gravenhage, and Dr. Hendrik Muller’s Vaderlandsch Fonds. Other authors are supported, fully or in part, by the Advanced Research Projects Agency—Energy (ARPA-E) Electrofuels project. We wish to thank the ARPA-E directors and staff for their support.

References

  1. 1.
    Zinoviev S, Muller-Langer F, Das P, Bertero N, Fornasiero P et al (2010) Next-generation biofuels: survey of emerging technologies and sustainability issues. ChemSusChem 3:1106–1133CrossRefGoogle Scholar
  2. 2.
    Beall DS, Ohta K, Ingram LO (1991) Parametric studies of ethanol production form xylose and other sugars by recombinant Escherichia coli. Biotechnol Bioeng 38:296–303CrossRefGoogle Scholar
  3. 3.
    Ohta K, Beall DS, Mejia JP, Shanmugam KT, Ingram LO (1991) Genetic improvement of Escherichia coli for ethanol production: chromosomal integration of Zymomonas mobilis genes encoding pyruvate decarboxylase and alcohol dehydrogenase II. Appl Environ Microbiol 57:893–900Google Scholar
  4. 4.
    Atsumi S, Hanai T, Liao JC (2008) Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 451:86–89CrossRefGoogle Scholar
  5. 5.
    Atsumi S, Higashide W, Liao JC (2009) Direct photosynthetic recycling of carbon dioxide to isobutyraldehyde. Nat Biotechnol 27:1177–1180CrossRefGoogle Scholar
  6. 6.
    Fischer R, Wild S (2011) The greenest machine at Sebring: Dyson’s isobutanol powered Mazda. Motor Trend Online: Motor Trend Magazine, Source Interlink Media. http://wot.motortrend.com/greenest-machine-sebring-dysons-isobutanol-powered-mazda. Accessed 21 March 2011
  7. 7.
    DeMeza T (2010) American LeMans Series approves renewable isobutanol fuel. Sports Car Monitor: High Gear Media. http://www.motorauthority.com/news/1043521_american-lemans-series-approves-renewable-isobutanol-fuel. Accessed 17 March 2010
  8. 8.
    Glassner D, Peters M, Gruber P (2009) Hydrocarbon fuels from biomass. In: 31st Symposium on Biotechnology for Fuels and Chemicals, San Francisco, CA, 12–16 May 2009Google Scholar
  9. 9.
    Schlegel H, Lafferty R (1971) Novel energy and carbon sources. Adv Biochem Eng 1:143–168CrossRefGoogle Scholar
  10. 10.
    Brigham CJ, Budde CF, Holder JW, Zeng Q, Mahan AE et al (2010) Elucidation of beta-oxidation pathways in Ralstonia eutropha H16 by examination of global gene expression. J Bacteriol 192:5454–5464CrossRefGoogle Scholar
  11. 11.
    Yang YH, Brigham CJ, Budde CF, Boccazzi P, Willis LB et al (2010) Optimization of growth media components for polyhydroxyalkanoate (PHA) production from organic acids by Ralstonia eutropha. Appl Microbiol Biotechnol 87:2037–2045CrossRefGoogle Scholar
  12. 12.
    Anderson AJ, Dawes EA (1990) Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiol Rev 54:450–472Google Scholar
  13. 13.
    Tian J, Sinskey AJ, Stubbe J (2005) Kinetic studies of polyhydroxybutyrate granule formation in Wautersia eutropha H16 by transmission electron microscopy. J Bacteriol 187:3814–3824CrossRefGoogle Scholar
  14. 14.
    Ishizaki A, Tanaka K, Taga N (2001) Microbial production of poly-D-3-hydroxybutyrate from CO2. Appl Microbiol Biotechnol 57:6–12CrossRefGoogle Scholar
  15. 15.
    Ishizaki A, Tanaka K (1990) Batch culture of Alcaligenes eutrophus ATCC 17697T using recycled gas closed circuit culture system. J Ferment Bioeng 69:170–174CrossRefGoogle Scholar
  16. 16.
    Ishizaki A, Tanaka K (1991) Production of poly-[beta]-hydroxybutyric acid from carbon dioxide by Alcaligenes eutrophus ATCC 17697T. J Ferment Bioeng 70:254–257CrossRefGoogle Scholar
  17. 17.
    Burgdorf T, Lenz O, Buhrke T, van der Linden E, Jones AK et al (2005) [NiFe]-hydrogenases of Ralstonia eutropha H16: modular enzymes for oxygen-tolerant biological hydrogen oxidation. J Mol Microbiol Biotechnol 10:181–196CrossRefGoogle Scholar
  18. 18.
    Schink B, Schlegel HG (1979) The membrane-bound hydrogenase of Alcaligenes eutrophus: I. Solubilization, purification, and biochemical properties. Biochim Biophys Acta 567:315–324CrossRefGoogle Scholar
  19. 19.
    Schneider K, Schlegel HG (1976) Purification and properties of soluble hydrogenase from Alcaligenes eutrophus H16. Biochim Biophys Acta 452:66–80CrossRefGoogle Scholar
  20. 20.
    Hogrefe C, Romermann D, Friedrich B (1984) Alcaligenes eutrophus hydrogenase genes (Hox). J Bacteriol 158:43–48Google Scholar
  21. 21.
    Vignais PM, Colbeau A (2004) Molecular biology of microbial hydrogenases. Curr Issues Mol Biol 6:159–188Google Scholar
  22. 22.
    Schwartz E, Gerischer U, Friedrich B (1998) Transcriptional regulation of Alcaligenes eutrophus hydrogenase genes. J Bacteriol 180:3197–3204Google Scholar
  23. 23.
    York GM, Junker BH, Stubbe JA, Sinskey AJ (2001) Accumulation of the PhaP phasin of Ralstonia eutropha is dependent on production of polyhydroxybutyrate in cells. J Bacteriol 183:4217–4226CrossRefGoogle Scholar
  24. 24.
    Moroney JV, Ma Y, Frey WD, Fusilier KA, Pham TT et al (2011) The carbonic anhydrase isoforms of Chlamydomonas reinhardtii: intracellular location, expression, and physiological roles. Photosynth Res 109(1–3):133–149CrossRefGoogle Scholar
  25. 25.
    Lindskog S (1997) Structure and mechanism of carbonic anhydrase. Pharmacol Ther 74:1–20CrossRefGoogle Scholar
  26. 26.
    Smith KS, Ferry JG (2000) Prokaryotic carbonic anhydrases. FEMS Microbiol Rev 24:335–366CrossRefGoogle Scholar
  27. 27.
    Schwartz E, Voigt B, Zuhlke D, Pohlmann A, Lenz O et al (2009) A proteomic view of the facultatively chemolithoautotrophic lifestyle of Ralstonia eutropha H16. Proteomics 9:5132–5142CrossRefGoogle Scholar
  28. 28.
    McCourt JA, Duggleby RG (2006) Acetohydroxyacid synthase and its role in the biosynthetic pathway for branched-chain amino acids. Amino Acids 31:173–210CrossRefGoogle Scholar
  29. 29.
    Jendrossek D, Kruger N, Steinbuchel A (1990) Characterization of alcohol dehydrogenase genes of derepressible wild-type Alcaligenes eutrophus H16 and constitutive mutants. J Bacteriol 172:4844–4851Google Scholar
  30. 30.
    Steinbuchel A, Fruend C, Jendrossek D, Schlegel HG (1987) Isolation of mutants of Alcaligenes eutrophus unable to derepress the fermentative alcohol dehydrogenase. Arch Microbiol 148:178–186CrossRefGoogle Scholar
  31. 31.
    Steinbuchel A, Schlegel HG (1984) A multifunctional fermentative alcohol dehydrogenase from the strict aerobe Alcaligenes eutrophus: purification and properties. Eur J Biochem 141:555–564CrossRefGoogle Scholar
  32. 32.
    Jarboe LR (2011) YqhD: a broad-substrate range aldehyde reductase with various applications in production of biorenewable fuels and chemicals. Appl Microbiol Biotechnol 89:249–257CrossRefGoogle Scholar
  33. 33.
    Atsumi S, Wu TY, Eckl EM, Hawkins SD, Buelter T et al (2010) Engineering the isobutanol biosynthetic pathway in Escherichia coli by comparison of three aldehyde reductase/alcohol dehydrogenase genes. Appl Microbiol Biotechnol 85:651–657CrossRefGoogle Scholar
  34. 34.
    Steinbuchel A, Hustede E, Liebergesell M, Pieper U, Timm A et al (1992) Molecular basis for biosynthesis and accumulation of polyhydroxyalkanoic acids in bacteria. FEMS Microbiol Rev 9:217–230Google Scholar
  35. 35.
    Steinbuchel A, Schlegel HG (1989) Excretion of pyruvate by mutants of Alcaligenes eutrophus, which are impaired in the accumulation of poly(beta-hydroxybutyric acid) (PHB), under conditions permitting synthesis of PHB. Appl Microbiol Biotechnol 31:168–175CrossRefGoogle Scholar
  36. 36.
    Lenz O, Ludwig M, Schubert T, Burstel I, Ganskow S et al (2010) H2 conversion in the presence of O2 as performed by the membrane-bound [NiFe]-hydrogenase of Ralstonia eutropha. Chemphyschem 11:1107–1119CrossRefGoogle Scholar
  37. 37.
    Bernhard M, Benelli B, Hochkoeppler A, Zannoni D, Friedrich B (1997) Functional and structural role of the cytochrome b subunit of the membrane-bound hydrogenase complex of Alcaligenes eutrophus H16. Eur J Biochem 248:179–186CrossRefGoogle Scholar
  38. 38.
    Goris T, Wait AF, Saggu M, Fritsch J, Heidary N et al (2011) A unique iron-sulfur cluster is crucial for oxygen tolerance of a [NiFe]-hydrogenase. Nat Chem Biol 7:310–318CrossRefGoogle Scholar
  39. 39.
    Burgdorf T, van der Linden E, Bernhard M, Yin QY, Back JW et al (2005) The soluble NAD+-Reducing [NiFe]-hydrogenase from Ralstonia eutropha H16 consists of six subunits and can be specifically activated by NADPH. J Bacteriol 187:3122–3132CrossRefGoogle Scholar
  40. 40.
    Happe RP, Roseboom W, Egert G, Friedrich CG, Massanz C et al (2000) Unusual FTIR and EPR properties of the H2-activating site of the cytoplasmic NAD-reducing hydrogenase from Ralstonia eutropha. FEBS Lett 466:259–263CrossRefGoogle Scholar
  41. 41.
    Van der Linden E, Burgdorf T, Bernhard M, Bleijlevens B, Friedrich B et al (2004) The soluble [NiFe]-hydrogenase from Ralstonia eutropha contains four cyanides in its active site, one of which is responsible for the insensitivity towards oxygen. J Biol Inorg Chem 9:616–626CrossRefGoogle Scholar
  42. 42.
    Horch M, Lauterbach L, Saggu M, Hildebrandt P, Lendzian F et al (2010) Probing the active site of an O2-tolerant NAD+-reducing [NiFe]-hydrogenase from Ralstonia eutropha H16 by in situ EPR and FTIR spectroscopy. Angew Chem Int Ed Engl 49:8026–8029CrossRefGoogle Scholar
  43. 43.
    Badger MR, Price GD (1994) The role of carbonic anhydrase in photosynthesis. Annu Rev Plant Physiol Plant Mol Biol 45:369–392CrossRefGoogle Scholar
  44. 44.
    Xu Y, Feng L, Jeffrey PD, Shi Y, Morel FM (2008) Structure and metal exchange in the cadmium carbonic anhydrase of marine diatoms. Nature 452:56–61CrossRefGoogle Scholar
  45. 45.
    Tripp BC, Smith K, Ferry JG (2001) Carbonic anhydrase: new insights for an ancient enzyme. J Biol Chem 276:48615–48618CrossRefGoogle Scholar
  46. 46.
    Elleuche S, Poeggeler S (2010) Carbonic anhydrases in fungi. Microbiology 156:23–29CrossRefGoogle Scholar
  47. 47.
    Rowlett RS (2010) Structure and catalytic mechanism of the beta-carbonic anhydrases. Biochim Biophys Acta 1804:362–373CrossRefGoogle Scholar
  48. 48.
    Kusian B, Sultemeyer D, Bowien B (2002) Carbonic anhydrase is essential for growth of Ralstonia eutropha at ambient CO(2) concentrations. J Bacteriol 184:5018–5026CrossRefGoogle Scholar
  49. 49.
    Ferry JG (2010) The gamma class of carbonic anhydrases. Biochim Biophys Acta 1804:374–381CrossRefGoogle Scholar
  50. 50.
    Cannon GC, Heinhorst S, Kerfeld CA (2010) Carboxysomal carbonic anhydrases: structure and role in microbial CO2 fixation. Biochim Biophys Acta 1804:382–392CrossRefGoogle Scholar
  51. 51.
    Kerfeld CA, Heinhorst S, Cannon GC (2010) Bacterial microcompartments. Annu Rev Microbiol 64:391–408CrossRefGoogle Scholar
  52. 52.
    Kusian B, Bowien B (1995) Operator binding of the CbbR protein, which activates the duplicate cbb CO2 assimilation operons of Alcaligenes eutrophus. J Bacteriol 177:6568–6574Google Scholar
  53. 53.
    Schaferjohann J, Yoo JG, Bowien B (1995) Analysis of the genes forming the distal parts of the two cbb CO2 fixation operons from Alcaligenes eutrophus. Arch Microbiol 163:291–299CrossRefGoogle Scholar
  54. 54.
    Kusian B, Bednarski R, Husemann M, Bowien B (1995) Characterization of the duplicate ribulose-1,5-bisphosphate carboxylase genes and cbb promoters of Alcaligenes eutrophus. J Bacteriol 177:4442–4450Google Scholar
  55. 55.
    Windhovel U, Bowien B (1990) On the operon structure of the cfx gene clusters in Alcaligenes eutrophus. Arch Microbiol 154:85–91CrossRefGoogle Scholar
  56. 56.
    Bowien B, Kusian B (2002) Genetics and control of CO(2) assimilation in the chemoautotroph Ralstonia eutropha. Arch Microbiol 178:85–93CrossRefGoogle Scholar
  57. 57.
    Kusian B, Bowien B (1997) Organization and regulation of cbb CO2 assimilation genes in autotrophic bacteria. FEMS Microbiol Rev 21:135–155CrossRefGoogle Scholar
  58. 58.
    Kohlmann Y, Pohlmann A, Otto A, Becher D, Cramm R et al (2011) Analyses of soluble and membrane proteomes of Ralstonia eutropha H16 reveal major changes in the protein complement in adaptation to lithoautotrophy. J Proteome Res 10(6):2767–2776CrossRefGoogle Scholar
  59. 59.
    Jeffke T, Gropp NH, Kaiser C, Grzeszik C, Kusian B et al (1999) Mutational analysis of the cbb operon (CO2 assimilation) promoter of Ralstonia eutropha. J Bacteriol 181:4374–4380Google Scholar
  60. 60.
    Grzeszik C, Jeffke T, Schaferjohann J, Kusian B, Bowien B (2000) Phosphoenolpyruvate is a signal metabolite in transcriptional control of the cbb CO2 fixation operons in Ralstonia eutropha. J Mol Microbiol Biotechnol 2:311–320Google Scholar
  61. 61.
    Schaferjohann J, Bednarski R, Bowien B (1996) Regulation of CO2 assimilation in Ralstonia eutropha: premature transcription termination within the cbb operon. J Bacteriol 178:6714–6719Google Scholar
  62. 62.
    Liu C, Young AL, Starling-Windhof A, Bracher A, Saschenbrecker S et al (2010) Coupled chaperone action in folding and assembly of hexadecameric Rubisco. Nature 463:197–202CrossRefGoogle Scholar
  63. 63.
    Neuwald AF, Aravind L, Spouge JL, Koonin EV (1999) AAA+: a class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexes. Genome Res 9:27–43Google Scholar
  64. 64.
    Hansen S, Vollan VB, Hough E, Andersen K (1999) The crystal structure of rubisco from Alcaligenes eutrophus reveals a novel central eight-stranded beta-barrel formed by beta-strands from four subunits. J Mol Biol 288:609–621CrossRefGoogle Scholar
  65. 65.
    Gubernator B, Bartoszewski R, Kroliczewski J, Wildner G, Szczepanik A (2008) Ribulose-1,5-bisphosphate carboxylase/oxygenase from thermophilic cyanobacterium Thermosynechocystis elongatus. Photosynth Res 95:101–109CrossRefGoogle Scholar
  66. 66.
    Spreitzer RJ, Salvucci ME (2002) Rubisco: structure, regulatory interactions, and possibilities for a better enzyme. Annu Rev Plant Biol 53:449–475CrossRefGoogle Scholar
  67. 67.
    Tabita FR (1999) Microbial ribulose 1,5-bisphosphate carboxylase/oxygenase: a different perspective. Photosynth Res 60:1–28CrossRefGoogle Scholar
  68. 68.
    Peterhansel C, Niessen M, Kebeish RM (2008) Metabolic engineering towards the enhancement of photosynthesis. Photochem Photobiol 84:1317–1323CrossRefGoogle Scholar
  69. 69.
    Hansen S, Hough E, Andersen K (1999) Purification, crystallization and preliminary X-ray studies of two isoforms of Rubisco from Alcaligenes eutrophus. Acta Crystallogr D Biol Crystallogr 55:310–313CrossRefGoogle Scholar
  70. 70.
    Vyazmensky M, Zherdev Y, Slutzker A, Belenky I, Kryukov O et al (2009) Interactions between large and small subunits of different acetohydroxyacid synthase isozymes of Escherichia coli. Biochemistry 48:8731–8737CrossRefGoogle Scholar
  71. 71.
    Chipman D, Barak Z, Schloss JV (1998) Biosynthesis of 2-aceto-2-hydroxy acids: acetolactate synthases and acetohydroxyacid synthases. Biochim Biophys Acta 1385:401–419CrossRefGoogle Scholar
  72. 72.
    Mendel S, Elkayam T, Sella C, Vinogradov V, Vyazmensky M et al (2001) Acetohydroxyacid synthase: a proposed structure for regulatory subunits supported by evidence from mutagenesis. J Mol Biol 307:465–477CrossRefGoogle Scholar
  73. 73.
    Mendel S, Vinogradov M, Vyazmensky M, Chipman DM, Barak Z (2003) The N-terminal domain of the regulatory subunit is sufficient for complete activation of acetohydroxyacid synthase III from Escherichia coli. J Mol Biol 325:275–284CrossRefGoogle Scholar
  74. 74.
    Steinmetz A, Vyazmensky M, Meyer D, Barak ZE, Golbik R et al (2010) Valine 375 and phenylalanine 109 confer affinity and specificity for pyruvate as donor substrate in acetohydroxy acid synthase isozyme II from Escherichia coli. Biochemistry 49:5188–5199CrossRefGoogle Scholar
  75. 75.
    de la Plaza M, Fernandez de Palencia P, Pelaez C, Requena T (2004) Biochemical and molecular characterization of alpha-ketoisovalerate decarboxylase, an enzyme involved in the formation of aldehydes from amino acids by Lactococcus lactis. FEMS Microbiol Lett 238:367–374CrossRefGoogle Scholar
  76. 76.
    Sulzenbacher G, Alvarez K, Van Den Heuvel RH, Versluis C, Spinelli S et al (2004) Crystal structure of E. coli alcohol dehydrogenase YqhD: evidence of a covalently modified NADP coenzyme. J Mol Biol 342:489–502CrossRefGoogle Scholar
  77. 77.
    Nair RV, Bennett GN, Papoutsakis ET (1994) Molecular characterization of an aldehyde/alcohol dehydrogenase gene from Clostridium acetobutylicum ATCC 824. J Bacteriol 176:871–885Google Scholar
  78. 78.
    Fontaine L, Meynial-Salles I, Girbal L, Yang X, Croux C et al (2002) Molecular characterization and transcriptional analysis of adhE2, the gene encoding the NADH-dependent aldehyde/alcohol dehydrogenase responsible for butanol production in alcohologenic cultures of Clostridium acetobutylicum ATCC 824. J Bacteriol 184:821–830CrossRefGoogle Scholar
  79. 79.
    Dawes EA, Senior PJ (1973) The role and regulation of energy reserve polymers in micro-organisms. Adv Microb Physiol 10:135–266CrossRefGoogle Scholar
  80. 80.
    Schubert P, Steinbuchel A, Schlegel HG (1988) Cloning of the Alcaligenes eutrophus genes for synthesis of poly-beta-hydroxybutyric acid (PHB) and synthesis of PHB in Escherichia coli. J Bacteriol 170:5837–5847Google Scholar
  81. 81.
    Sauer U, Canonaco F, Heri S, Perrenoud A, Fischer E (2004) The soluble and membrane-bound transhydrogenases UdhA and PntAB have divergent functions in NADPH metabolism of Escherichia coli. J Biol Chem 279:6613–6619CrossRefGoogle Scholar
  82. 82.
    Sanchez AM, Andrews J, Hussein I, Bennett GN, San KY (2006) Effect of overexpression of a soluble pyridine nucleotide transhydrogenase (UdhA) on the production of poly(3-hydroxybutyrate) in Escherichia coli. Biotechnol Prog 22:420–425CrossRefGoogle Scholar
  83. 83.
    Boonstra B, Rathbone DA, French CE, Walker EH, Bruce NC (2000) Cofactor regeneration by a soluble pyridine nucleotide transhydrogenase for biological production of hydromorphone. Appl Environ Microbiol 66:5161–5166CrossRefGoogle Scholar
  84. 84.
    Moreira dos Santos M, Raghevendran V, Kotter P, Olsson L, Nielsen J (2004) Manipulation of malic enzyme in Saccharomyces cerevisiae for increasing NADPH production capacity aerobically in different cellular compartments. Metab Eng 6:352–363CrossRefGoogle Scholar
  85. 85.
    Sauer U, Eikmanns BJ (2005) The PEP-pyruvate-oxaloacetate node as the switch point for carbon flux distribution in bacteria. FEMS Microbiol Rev 29:765–794CrossRefGoogle Scholar
  86. 86.
    Ogata H, Goto S, Fujibuchi W, Kanehisa M (1998) Computation with the KEGG pathway database. Biosystems 47:119–128CrossRefGoogle Scholar
  87. 87.
    Boccazzi P, Zanzotto A, Szita N, Bhattacharya S, Jensen KF et al (2005) Gene expression analysis of Escherichia coli grown in miniaturized bioreactor platforms for high-throughput analysis of growth and genomic data. Appl Microbiol Biotechnol 68:518–532CrossRefGoogle Scholar
  88. 88.
    Lee HL, Boccazzi P, Ram RJ, Sinskey AJ (2006) Microbioreactor arrays with integrated mixers and fluid injectors for high-throughput experimentation with pH and dissolved oxygen control. Lab Chip 6:1229–1235CrossRefGoogle Scholar
  89. 89.
    Zanzotto A, Szita N, Boccazzi P, Lessard P, Sinskey AJ et al (2004) Membrane-aerated microbioreactor for high-throughput bioprocessing. Biotechnol Bioeng 87:243–254CrossRefGoogle Scholar
  90. 90.
    Zhang Z, Szita N, Boccazzi P, Sinskey AJ, Jensen KF (2006) A well-mixed, polymer-based microbioreactor with integrated optical measurements. Biotechnol Bioeng 93:286–296CrossRefGoogle Scholar
  91. 91.
    Kichise T, Fukui T, Yoshida Y, Doi Y (1999) Biosynthesis of polyhydroxyalkanoates (PHA) by recombinant Ralstonia eutropha and effects of PHA synthase activity on in vivo PHA biosynthesis. Int J Biol Macromol 25:69–77CrossRefGoogle Scholar
  92. 92.
    Nielsen L, Larsson M, Holst O, Mattiasson B (1988) Adsorbents for extractive bioconversion applied to the acetone-butanol fermentation. Appl Microbiol Biotechnol 28:335–339CrossRefGoogle Scholar
  93. 93.
    Qureshi N, Hughes S, Maddox IS, Cotta MA (2005) Energy-efficient recovery of butanol from model solutions and fermentation broth by adsorption. Bioprocess Biosyst Eng 27:215–222CrossRefGoogle Scholar
  94. 94.
    Yang XP, Tsai GJ, Tsao GT (1994) Enhancement of in situ adsorption on the acetone-butanol fermentation by Clostridium acetobutylicum. Sep Technol 4:1818–1824CrossRefGoogle Scholar
  95. 95.
    Nielsen DR, Prather KJ (2009) In situ product recovery of n-butanol using polymeric resins. Biotechnol Bioeng 102:811–821CrossRefGoogle Scholar
  96. 96.
    Garrett H, Grisham R, Grisham C (eds) (2008) Biochemistry, 4th edn. Cangage Learning, BostonGoogle Scholar
  97. 97.
    Kovach ME, Elzer PH, Hill DS, Robertson GT, Farris MA et al (1995) Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 166:175–176CrossRefGoogle Scholar
  98. 98.
    York GM, Lupberger J, Tian J, Lawrence AG, Stubbe J et al (2003) Ralstonia eutropha H16 encodes two and possibly three intracellular poly[D-(-)-3-hydroxybutyrate] depolymerase genes. J Bacteriol 185:3788–3794CrossRefGoogle Scholar
  99. 99.
    Peoples OP, Sinskey AJ (1989) Poly-beta-hydroxybutyrate (PHB) biosynthesis in Alcaligenes eutrophus H16. Identification and characterization of the PHB polymerase gene (phbC). J Biol Chem 264:15298–15303Google Scholar
  100. 100.
    Gere DR, Tengrove R (1999) Fast gas chromatographic separation and detection of blood alcohol compounds for forensic methods. Agilent Technologies, WilmingtonGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Christopher J. Brigham
    • 1
  • Claudia S. Gai
    • 1
  • Jingnan Lu
    • 2
  • Daan R. Speth
    • 1
    • 3
  • R. Mark Worden
    • 4
  • Anthony J. Sinskey
    • 1
    • 5
    • 6
  1. 1.Department of BiologyMassachusetts Institute of TechnologyCambridgeUSA
  2. 2.Department of ChemistryMassachusetts Institute of TechnologyCambridgeUSA
  3. 3.Department of Microbiology, IWWRRadboud University NijmegenNijmegenThe Netherlands
  4. 4.Department of Chemical Engineering and Materials ScienceMichigan State UniversityEast LansingUSA
  5. 5.Engineering Systems DivisionMassachusetts Institute of TechnologyCambridgeUSA
  6. 6.Health Sciences Technology DivisionMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations