Advertisement

Epigenetic Reprogramming in Lung Carcinomas

  • András Kádár
  • Tibor A. Rauch
Chapter

Abstract

Lung carcinomas have been the leading causes of cancer-associated death in both sexes worldwide. Epidemiological studies demonstrated that cigarette smoking and other environmental factors such as radon or asbestos can also contribute to lung cancer development. Environmental chemicals can promote cancer formation by causing lesions in genomic DNA and/or by inducing various alterations in the epigenomes of cells lining the airways. Epithelial cells whose epigenome has significantly become altered or damaged can become transformed (i.e., reprogrammed) and start to exhibit malignant properties. With the advent of the postgenomic era and its advanced methodological arsenal, genome-wide analysis tools have become available that have contributed to the identification of the involved epigenetic factors and map disease-associated epigenome profile changes. These studies proved that DNA methylation, posttranslational modification of histones, and noncoding RNAs are also involved in lung cancer development. Coordinated epigenetic and genetic studies can provide new insights into the etiology of lung carcinomas, and perhaps extend the currently used diagnostic and therapeutic arsenal for cancer patients.

Keywords

Lung Carcinoma Methylation Level HDAC Inhibitor Methylation Frequency Squamous Cell Carcinoma Sample 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Anglim, P. P., Alonzo, T. A. & Laird-Offringa, I. A. (2008). DNA methylation-based biomarkers for early detection of non-small cell lung cancer: an update. Mol Cancer 7:81.Google Scholar
  2. Bachellerie, J. P., Cavaille, J. & Huttenhofer, A. (2002). The expanding snoRNA world. Biochimie 84, 775–790.Google Scholar
  3. Bartel, D. P. (2009). MicroRNAs: target recognition and regulatory functions. Cell 136, 215–233.Google Scholar
  4. Bauman, J., Verschraegen, C., Belinsky, S., Muller, C., Rutledge, T., Fekrazad, M., Ravindranathan, M., Lee, S. J. & Jones, D. (2012). A phase I study of 5-azacytidine and erlotinib in advanced solid tumor malignancies. Cancer Chemother Pharmacol 69, 547–554.Google Scholar
  5. Baylin, S. B., Hoppener, J. W., de Bustros, A., Steenbergh, P. H., Lips, C. J. & Nelkin, B. D. (1986). DNA methylation patterns of the calcitonin gene in human lung cancers and lymphomas. Cancer Res 46, 2917–2922.Google Scholar
  6. Belancio, V. P., Roy-Engel, A. M. & Deininger, P. L. (2010). All y’all need to know ‘bout retroelements in cancer. Semin Cancer Biol 20, 200–210.Google Scholar
  7. Brueckner, B., Garcia, B. R., Siedlecki, P., Musch, T., Kliem, H. C., Zielenkiewicz, P., Suhai, S., Wiessler, M. & Lyko, F. (2005). Epigenetic reactivation of tumor suppressor genes by a novel small-molecule inhibitor of human DNA methyltransferases. Cancer Res 65, 6305–6311.Google Scholar
  8. Chan, E., Prado, D. E. & Weidhaas, J. B. (2011). Cancer microRNAs: from subtype profiling to predictors of response to therapy. Trends Mol Med 17, 235–243.Google Scholar
  9. Chi, P., Allis, C. D. & Wang, G. G. (2010). Covalent histone modifications--miswritten, misinterpreted and mis-erased in human cancers. Nat Rev Cancer 10, 457–469.Google Scholar
  10. Choi, J. E., Kim, D. S., Kim, E. J., Chae, M. H., Cha, S. I., Kim, C. H., Jheon, S., Jung, T. H. & Park, J. Y. (2008). Aberrant methylation of ADAMTS1 in non-small cell lung cancer. Cancer Genet Cytogenet 187, 80–84.Google Scholar
  11. Choi, J. H., Li, Y., Guo, J., Pei, L., Rauch, T. A., Kramer, R. S., Macmil, S. L., Wiley, G. B., Bennett, L. B., Schnabel, J. L., Taylor, K. H., Kim, S., Xu, D., Sreekumar, A., Pfeifer, G. P., Roe, B. A., Caldwell, C. W., Bhalla, K. N. & Shi, H. (2010). Genome-wide DNA methylation maps in follicular lymphoma cells determined by methylation-enriched bisulfite sequencing. PLoS ONE 5, e13020.Google Scholar
  12. Choi, J. K., Bae, J. B., Lyu, J., Kim, T. Y. & Kim, Y. J. (2009). Nucleosome deposition and DNA methylation at coding region boundaries. Genome Biol 10, R89.Google Scholar
  13. Cuneo, K. C., Fu, A., Osusky, K., Huamani, J., Hallahan, D. E. & Geng, L. (2007). Histone deacetylase inhibitor NVP-LAQ824 sensitizes human nonsmall cell lung cancer to the cytotoxic effects of ionizing radiation. Anticancer Drugs 18, 793–800.Google Scholar
  14. Dammann, R., Strunnikova, M., Schagdarsurengin, U., Rastetter, M., Papritz, M., Hattenhorst, U. E., Hofmann, H. S., Silber, R. E., Burdach, S. & Hansen, G. (2005). CpG island methylation and expression of tumour-associated genes in lung carcinoma. Eur J Cancer 41, 1223–1236.Google Scholar
  15. Dammann, R., Takahashi, T. & Pfeifer, G. P. (2001). The CpG island of the novel tumor suppressor gene RASSF1A is intensely methylated in primary small cell lung carcinomas. Oncogene 20, 3563–3567.Google Scholar
  16. Deaton, A. M. & Bird, A. (2011). CpG islands and the regulation of transcription. Genes Dev 25, 1010–1022.Google Scholar
  17. Dekker, F. J., Ghizzoni, M., van der, M. N., Wisastra, R. & Haisma, H. J. (2009). Inhibition of the PCAF histone acetyl transferase and cell proliferation by isothiazolones. Bioorg Med Chem 17, 460–466.Google Scholar
  18. Dekker, F. J. & Haisma, H. J. (2009). Histone acetyl transferases as emerging drug targets. Drug Discov Today 14, 942–948.Google Scholar
  19. Doi, A., Park, I. H., Wen, B., Murakami, P., Aryee, M. J., Irizarry, R., Herb, B., Ladd-Acosta, C., Rho, J., Loewer, S., Miller, J., Schlaeger, T., Daley, G. Q. & Feinberg, A. P. (2009). Differential methylation of tissue- and cancer-specific CpG island shores distinguishes human induced pluripotent stem cells, embryonic stem cells and fibroblasts. Nat Genet 41, 1350–1353.Google Scholar
  20. Dooley, A. L., Winslow, M. M., Chiang, D. Y., Banerji, S., Stransky, N., Dayton, T. L., Snyder, E. L., Senna, S., Whittaker, C. A., Bronson, R. T., Crowley, D., Barretina, J., Garraway, L., Meyerson, M. & Jacks, T. (2011). Nuclear factor I/B is an oncogene in small cell lung cancer. Genes Dev 25, 1470–1475.Google Scholar
  21. Dunwell, T., Hesson, L., Rauch, T. A., Wang, L., Clark, R. E., Dallol, A., Gentle, D., Catchpoole, D., Maher, E. R., Pfeifer, G. P. & Latif, F. (2010). A genome-wide screen identifies frequently methylated genes in haematological and epithelial cancers. Mol Cancer 9:44.Google Scholar
  22. Estecio, M. R. & Issa, J. P. (2011). Dissecting DNA hypermethylation in cancer. FEBS Lett 585, 2078–2086.Google Scholar
  23. Esteller, M., Hamilton, S. R., Burger, P. C., Baylin, S. B. & Herman, J. G. (1999). Inactivation of the DNA repair gene O6-methylguanine-DNA methyltransferase by promoter hypermethylation is a common event in primary human neoplasia. Cancer Res 59, 793–797.Google Scholar
  24. Feinberg, A. P. & Vogelstein, B. (1983). Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature 301, 89–92.Google Scholar
  25. Feltus, F. A., Lee, E. K., Costello, J. F., Plass, C. & Vertino, P. M. (2003). Predicting aberrant CpG island methylation. Proc Natl Acad Sci U S A 100, 12253–12258.Google Scholar
  26. Fiorentino, F. P., Macaluso, M., Miranda, F., Montanari, M., Russo, A., Bagella, L. & Giordano, A. (2011). CTCF and BORIS regulate Rb2/p130 gene transcription: a novel mechanism and a new paradigm for understanding the biology of lung cancer. Mol Cancer Res 9, 225–233.Google Scholar
  27. Gaudet, F., Hodgson, J. G., Eden, A., Jackson-Grusby, L., Dausman, J., Gray, J. W., Leonhardt, H. & Jaenisch, R. (2003). Induction of tumors in mice by genomic hypomethylation. Science 300, 489–492.Google Scholar
  28. Ghizzoni, M., Boltjes, A., Graaf, C., Haisma, H. J. & Dekker, F. J. (2010). Improved inhibition of the histone acetyltransferase PCAF by an anacardic acid derivative. Bioorg Med Chem 18, 5826–5834.Google Scholar
  29. Gibb, E. A., Brown, C. J. & Lam, W. L. (2011). The functional role of long non-coding RNA in human carcinomas. Mol Cancer 10:38.Google Scholar
  30. Goodier, J. L. & Kazazian, H. H., Jr. (2008). Retrotransposons revisited: the restraint and rehabilitation of parasites. Cell 135, 23–35.Google Scholar
  31. Gridelli, C., Maione, P., Rossi, A., Bareschino, M. A., Schettino, C., Sacco, P. C. & Zeppa, R. (2011a). Pemetrexed in advanced non-small cell lung cancer. Expert Opin Drug Saf 10, 311–317.Google Scholar
  32. Gridelli, C., Morgillo, F., Favaretto, A., de Marinis, F., Chella, A., Cerea, G., Mattioli, R., Tortora, G., Rossi, A., Fasano, M., Pasello, G., Ricciardi, S., Maione, P., Di Maio, M. & Ciardiello, F. (2011b). Sorafenib in combination with erlotinib or with gemcitabine in elderly patients with advanced non-small-cell lung cancer: a randomized phase II study. Ann Oncol 22, 1528–1534.Google Scholar
  33. Gridelli, C., Rossi, A. & Maione, P. (2008). The potential role of histone deacetylase inhibitors in the treatment of non-small-cell lung cancer. Crit Rev Oncol Hematol 68, 29–36.Google Scholar
  34. Hagemann, S., Heil, O., Lyko, F. & Brueckner, B. (2011). Azacytidine and decitabine induce gene-specific and non-random DNA demethylation in human cancer cell lines. PLoS ONE 6, e17388.Google Scholar
  35. Heller, G., Zielinski, C. C. & Zochbauer-Muller, S. (2010). Lung cancer: from single-gene methylation to methylome profiling. Cancer Metastasis Rev 29, 95–107.Google Scholar
  36. Holliday, R. & Pugh, J. E. (1975). DNA modification mechanisms and gene activity during development. Science 187, 226–232.Google Scholar
  37. Inoue, A. & Zhang, Y. (2011). Replication-Dependent Loss of 5-Hydroxymethylcytosine in Mouse Preimplantation Embryos. Science 334, 194.Google Scholar
  38. Iqbal, K., Jin, S. G., Pfeifer, G. P. & Szabo, P. E. (2011). Reprogramming of the paternal genome upon fertilization involves genome-wide oxidation of 5-methylcytosine. Proc Natl Acad Sci U S A 108, 3642–3647.Google Scholar
  39. Irimia, M., Fraga, M. F., Sanchez-Cespedes, M. & Esteller, M. (2004). CpG island promoter hypermethylation of the Ras-effector gene NORE1A occurs in the context of a wild-type K-ras in lung cancer. Oncogene 23, 8695–8699.Google Scholar
  40. Irizarry, R. A., Ladd-Acosta, C., Wen, B., Wu, Z., Montano, C., Onyango, P., Cui, H., Gabo, K., Rongione, M., Webster, M., Ji, H., Potash, J. B., Sabunciyan, S. & Feinberg, A. P. (2009). The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores. Nat Genet 41, 178–186.Google Scholar
  41. Italiano, A., Attias, R., Aurias, A., Perot, G., Burel-Vandenbos, F., Otto, J., Venissac, N. & Pedeutour, F. (2006). Molecular cytogenetic characterization of a metastatic lung sarcomatoid carcinoma: 9p23 neocentromere and 9p23-p24 amplification including JAK2 and JMJD2C. Cancer Genet Cytogenet 167, 122–130.Google Scholar
  42. Ji, P., Diederichs, S., Wang, W., Boing, S., Metzger, R., Schneider, P. M., Tidow, N., Brandt, B., Buerger, H., Bulk, E., Thomas, M., Berdel, W. E., Serve, H. & Muller-Tidow, C. (2003). MALAT-1, a novel noncoding RNA, and thymosin beta4 predict metastasis and survival in early-stage non-small cell lung cancer. Oncogene 22, 8031–8041.Google Scholar
  43. Jiang, C. L., Jin, S. G. & Pfeifer, G. P. (2004). MBD3L1 is a transcriptional repressor that interacts with methyl-CpG-binding protein 2 (MBD2) and components of the NuRD complex. J Biol Chem 279, 52456–52464.Google Scholar
  44. Jin, C. G., Yiang, Y., Qiu, R., Rauch, T. A., Wang, Y., Schackert, G., Krex, D., Lu, Q. & Pfeifer, G. P. (2011). 5-hydroxymethylcytosine is strongly depleted in human cancers, but its levels do not correlate with IDH1 mutations. Cancer Res 71, 7360–7365.Google Scholar
  45. Jones, P. A. & Baylin, S. B. (2007). The epigenomics of cancer. Cell 128, 683–692.Google Scholar
  46. Kalari, S. & Pfeifer, G. P. (2010). Identification of driver and passenger DNA methylation in cancer by epigenomic analysis. Adv Genet 70, 277–308.Google Scholar
  47. Kaneko-Ishino, T. & Ishino, F. (2010). Retrotransposon silencing by DNA methylation contributed to the evolution of placentation and genomic imprinting in mammals. Dev Growth Differ 52, 533–543.Google Scholar
  48. Kansara, M., Tsang, M., Kodjabachian, L., Sims, N. A., Trivett, M. K., Ehrich, M., Dobrovic, A., Slavin, J., Choong, P. F., Simmons, P. J., Dawid, I. B. & Thomas, D. M. (2009). Wnt inhibitory factor 1 is epigenetically silenced in human osteosarcoma, and targeted disruption accelerates osteosarcomagenesis in mice. J Clin Invest 119, 837–851.Google Scholar
  49. Komatsu, N., Kawamata, N., Takeuchi, S., Yin, D., Chien, W., Miller, C. W. & Koeffler, H. P. (2006). SAHA, a HDAC inhibitor, has profound anti-growth activity against non-small cell lung cancer cells. Oncol Rep 15, 187–191.Google Scholar
  50. Kriaucionis, S. & Heintz, N. (2009). The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science 324, 929–930.Google Scholar
  51. Lai, A. Y. & Wade, P. A. (2011). Cancer biology and NuRD: a multifaceted chromatin remodelling complex. Nat Rev Cancer 11, 588–596.Google Scholar
  52. Laird, P. W. (2010). Principles and challenges of genomewide DNA methylation analysis. Nat Rev Genet 11, 191–203.Google Scholar
  53. Lee, M. N., Tseng, R. C., Hsu, H. S., Chen, J. Y., Tzao, C., Ho, W. L. & Wang, Y. C. (2007). Epigenetic inactivation of the chromosomal stability control genes BRCA1, BRCA2, and XRCC5 in non-small cell lung cancer. Clin Cancer Res 13, 832–838.Google Scholar
  54. Li, H., Rauch, T., Chen, Z. X., Szabo, P. E., Riggs, A. D. & Pfeifer, G. P. (2006). The histone methyltransferase SETDB1 and the DNA methyltransferase DNMT3A interact directly and localize to promoters silenced in cancer cells. J Biol Chem 281, 19489–19500.Google Scholar
  55. Licchesi, J. D., Westra, W. H., Hooker, C. M., Machida, E. O., Baylin, S. B. & Herman, J. G. (2008). Epigenetic alteration of Wnt pathway antagonists in progressive glandular neoplasia of the lung. Carcinogenesis 29, 895–904.Google Scholar
  56. Lin, P. Y., Yu, S. L. & Yang, P. C. (2010). MicroRNA in lung cancer. Br J Cancer 103, 1144–1148.Google Scholar
  57. Liu, X., Sempere, L. F., Guo, Y., Korc, M., Kauppinen, S., Freemantle, S. J. & Dmitrovsky, E. (2011). Involvement of microRNAs in lung cancer biology and therapy. Transl Res 157, 200–208.Google Scholar
  58. Loprevite, M., Tiseo, M., Grossi, F., Scolaro, T., Semino, C., Pandolfi, A., Favoni, R. & Ardizzoni, A. (2005). In vitro study of CI-994, a histone deacetylase inhibitor, in non-small cell lung cancer cell lines. Oncol Res 15, 39–48.Google Scholar
  59. Mancini, D. N., Singh, S. M., Archer, T. K. & Rodenhiser, D. I. (1999). Site-specific DNA methylation in the neurofibromatosis (NF1) promoter interferes with binding of CREB and SP1 transcription factors. Oncogene 18, 4108–4119.Google Scholar
  60. Margueron, R. & Reinberg, D. (2011). The Polycomb complex PRC2 and its mark in life. Nature 469, 343–349.Google Scholar
  61. McCabe, M. T., Lee, E. K. & Vertino, P. M. (2009). A multifactorial signature of DNA sequence and polycomb binding predicts aberrant CpG island methylation. Cancer Res 69, 282–291.Google Scholar
  62. Mizuno, K., Osada, H., Konishi, H., Tatematsu, Y., Yatabe, Y., Mitsudomi, T., Fujii, Y. & Takahashi, T. (2002). Aberrant hypermethylation of the CHFR prophase checkpoint gene in human lung cancers. Oncogene 21, 2328–2333.Google Scholar
  63. Murr, R. (2010). Interplay between different epigenetic modifications and mechanisms. Adv Genet 70, 101–141.Google Scholar
  64. Novak, P., Jensen, T., Oshiro, M. M., Wozniak, R. J., Nouzova, M., Watts, G. S., Klimecki, W. T., Kim, C. & Futscher, B. W. (2006). Epigenetic inactivation of the HOXA gene cluster in breast cancer. Cancer Res 66, 10664–10670.Google Scholar
  65. Ogata, H., Kobayashi, T., Chinen, T., Takaki, H., Sanada, T., Minoda, Y., Koga, K., Takaesu, G., Maehara, Y., Iida, M. & Yoshimura, A. (2006). Deletion of the SOCS3 gene in liver parenchymal cells promotes hepatitis-induced hepatocarcinogenesis. Gastroenterology 131, 179–193.Google Scholar
  66. Oliver, S. S. & Denu, J. M. (2011). Dynamic interplay between histone H3 modifications and protein interpreters: emerging evidence for a “histone language”. Chembiochem 12, 299–307.Google Scholar
  67. Otterson, G. A., Khleif, S. N., Chen, W., Coxon, A. B. & Kaye, F. J. (1995). CDKN2 gene silencing in lung cancer by DNA hypermethylation and kinetics of p16INK4 protein induction by 5-aza 2′deoxycytidine. Oncogene 11, 1211–1216.Google Scholar
  68. Prasanth, K. V. & Spector, D. L. (2007). Eukaryotic regulatory RNAs: an answer to the ‘genome complexity’ conundrum. Genes Dev 21, 11–42.Google Scholar
  69. Rauch, T., Li, H., Wu, X. & Pfeifer, G. P. (2006). MIRA-assisted microarray analysis, a new technology for the determination of DNA methylation patterns, identifies frequent methylation of homeodomain-containing genes in lung cancer cells. Cancer Res 66, 7939–7947.Google Scholar
  70. Rauch, T. & Pfeifer, G. P. (2005). Methylated-CpG island recovery assay: a new technique for the rapid detection of methylated-CpG islands in cancer. Lab Invest 85, 1172–1180.Google Scholar
  71. Rauch, T., Wang, Z., Zhang, X., Zhong, X., Wu, X., Lau, S. K., Kernstine, K. H., Riggs, A. D. & Pfeifer, G. P. (2007). Homeobox gene methylation in lung cancer studied by genome-wide analysis with a microarray-based methylated CpG island recovery assay. Proc Natl Acad Sci U S A 104, 5527–5532.Google Scholar
  72. Rauch, T. A., Zhong, X., Wu, X., Wang, M., Kernstine, K. H., Wang, Z., Riggs, A. D. & Pfeifer, G. P. (2008). High-resolution mapping of DNA hypermethylation and hypomethylation in lung cancer. Proc Natl Acad Sci U S A 105, 252–257.Google Scholar
  73. Riggs, A. D. (1975). X inactivation, differentiation, and DNA methylation. Cytogenet Cell Genet 14, 9–25.Google Scholar
  74. Riggs, A. D. & Jones, P. A. (1983). 5-methylcytosine, gene regulation, and cancer. Adv Cancer Res 40, 1–30.Google Scholar
  75. Rubin, A. F. & Green, P. (2009). Mutation patterns in cancer genomes. Proc Natl Acad Sci U S A 106, 21766–21770.Google Scholar
  76. Ruike, Y., Imanaka, Y., Sato, F., Shimizu, K. & Tsujimoto, G. (2010). Genome-wide analysis of aberrant methylation in human breast cancer cells using methyl-DNA immunoprecipitation combined with high-throughput sequencing. BMC Genomics 11:137.Google Scholar
  77. Sacco, P. C., Maione, P., Rossi, A., Bareschino, M. A., Schettino, C., Guida, C., Elmo, M., Ambrosio, R., Barbato, V., Zeppa, R., Palazzolo, G. & Gridelli, C. (2011). Combination of radiotherapy and targeted therapies in the treatment of locally advanced non-small cell lung cancer. Target Oncol 6, 171–180.Google Scholar
  78. Schanen, B. C. & Li, X. (2011). Transcriptional regulation of mammalian miRNA genes. Genomics 97, 1–6.Google Scholar
  79. Sharp, A. J., Stathaki, E., Migliavacca, E., Brahmachary, M., Montgomery, S. B., Dupre, Y. & Antonarakis, S. E. (2011). DNA methylation profiles of human active and inactive X chromosomes. Genome Res 21, 1592–1600.Google Scholar
  80. Shivapurkar, N., Toyooka, S., Eby, M. T., Huang, C. X., Sathyanarayana, U. G., Cunningham, H. T., Reddy, J. L., Brambilla, E., Takahashi, T., Minna, J. D., Chaudhary, P. M. & Gazdar, A. F. (2002). Differential inactivation of caspase-8 in lung cancers. Cancer Biol Ther 1, 65–69.Google Scholar
  81. Siomi, M. C., Sato, K., Pezic, D. & Aravin, A. A. (2011). PIWI-interacting small RNAs: the vanguard of genome defence. Nat Rev Mol Cell Biol 12, 246–258.Google Scholar
  82. Smith, I. M., Glazer, C. A., Mithani, S. K., Ochs, M. F., Sun, W., Bhan, S., Vostrov, A., Abdullaev, Z., Lobanenkov, V., Gray, A., Liu, C., Chang, S. S., Ostrow, K. L., Westra, W. H., Begum, S., Dhara, M. & Califano, J. (2009). Coordinated activation of candidate proto-oncogenes and cancer testes antigens via promoter demethylation in head and neck cancer and lung cancer. PLoS ONE 4, e4961.Google Scholar
  83. Stresemann, C., Brueckner, B., Musch, T., Stopper, H. & Lyko, F. (2006). Functional diversity of DNA methyltransferase inhibitors in human cancer cell lines. Cancer Res 66, 2794–2800.Google Scholar
  84. Suzuki, C., Takahashi, K., Hayama, S., Ishikawa, N., Kato, T., Ito, T., Tsuchiya, E., Nakamura, Y. & Daigo, Y. (2007). Identification of Myc-associated protein with JmjC domain as a novel therapeutic target oncogene for lung cancer. Mol Cancer Ther 6, 542–551.Google Scholar
  85. Suzuki, M., Mohamed, S., Nakajima, T., Kubo, R., Tian, L., Fujiwara, T., Suzuki, H., Nagato, K., Chiyo, M., Motohashi, S., Yasufuku, K., Iyoda, A., Yoshida, S., Sekine, Y., Shibuya, K., Hiroshima, K., Nakatani, Y., Yoshino, I. & Fujisawa, T. (2008). Aberrant methylation of CXCL12 in non-small cell lung cancer is associated with an unfavorable prognosis. Int J Oncol 33, 113–119.Google Scholar
  86. Suzuki, M. M. & Bird, A. (2008). DNA methylation landscapes: provocative insights from epigenomics. Nat Rev Genet 9, 465–476.Google Scholar
  87. Szyf, M. (2009). Epigenetics, DNA methylation, and chromatin modifying drugs. Annu Rev Pharmacol Toxicol 49, 243–263.Google Scholar
  88. Tahiliani, M., Koh, K. P., Shen, Y., Pastor, W. A., Bandukwala, H., Brudno, Y., Agarwal, S., Iyer, L. M., Liu, D. R., Aravind, L. & Rao, A. (2009). Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324, 930–935.Google Scholar
  89. Tommasi, S., Dammann, R., Zhang, Z., Wang, Y., Liu, L., Tsark, W. M., Wilczynski, S. P., Li, J., You, M. & Pfeifer, G. P. (2005). Tumor susceptibility of Rassf1a knockout mice. Cancer Res 65, 92–98.Google Scholar
  90. Tommasi, S., Karm, D. L., Wu, X., Yen, Y. & Pfeifer, G. P. (2009). Methylation of homeobox genes is a frequent and early epigenetic event in breast cancer. Breast Cancer Res 11, R14.Google Scholar
  91. Tripathi, V., Ellis, J. D., Shen, Z., Song, D. Y., Pan, Q., Watt, A. T., Freier, S. M., Bennett, C. F., Sharma, A., Bubulya, P. A., Blencowe, B. J., Prasanth, S. G. & Prasanth, K. V. (2010). The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Mol Cell 39, 925–938.Google Scholar
  92. Tuschl, T. (2001). RNA interference and small interfering RNAs. Chembiochem 2, 239–245.Google Scholar
  93. Tycko, B. (2010a). Allele-specific DNA methylation: beyond imprinting. Hum Mol Genet 19, R210-R220.Google Scholar
  94. Tycko, B. (2010b). Mapping allele-specific DNA methylation: a new tool for maximizing information from GWAS. Am J Hum Genet 86, 109–112.Google Scholar
  95. Van Den Broeck A., Brambilla, E., Moro-Sibilot, D., Lantuejoul, S., Brambilla, C., Eymin, B., Khochbin, S. & Gazzeri, S. (2008a). Loss of histone H4K20 trimethylation occurs in preneoplasia and influences prognosis of non-small cell lung cancer. Clin Cancer Res 14, 7237–7245.Google Scholar
  96. Van Den Broeck A., Brambilla, E., Moro-Sibilot, D., Lantuejoul, S., Brambilla, C., Eymin, B., Khochbin, S. & Gazzeri, S. (2008b). Loss of histone H4K20 trimethylation occurs in preneoplasia and influences prognosis of non-small cell lung cancer. Clin Cancer Res 14, 7237–7245.Google Scholar
  97. Van Den Broeck A., Brambilla, E., Moro-Sibilot, D., Lantuejoul, S., Brambilla, C., Eymin, B., Khochbin, S. & Gazzeri, S. (2008c). Loss of histone H4K20 trimethylation occurs in preneoplasia and influences prognosis of non-small cell lung cancer. Clin Cancer Res 14, 7237–7245.Google Scholar
  98. Vire, E., Brenner, C., Deplus, R., Blanchon, L., Fraga, M., Didelot, C., Morey, L., Van Eynde, A., Bernard, D., Vanderwinden, J. M., Bollen, M., Esteller, M., Di Croce, L., de Launoit, Y. & Fuks, F. (2006). The Polycomb group protein EZH2 directly controls DNA methylation. Nature 439, 871–874.Google Scholar
  99. Virmani, A. K., Rathi, A., Zochbauer-Muller, S., Sacchi, N., Fukuyama, Y., Bryant, D., Maitra, A., Heda, S., Fong, K. M., Thunnissen, F., Minna, J. D. & Gazdar, A. F. (2000). Promoter methylation and silencing of the retinoic acid receptor-beta gene in lung carcinomas. J Natl Cancer Inst 92, 1303–1307.Google Scholar
  100. Watanabe, K., Emoto, N., Hamano, E., Sunohara, M., Kawakami, M., Kage, H., Kitano, K., Nakajima, J., Goto, A., Fukayama, M., Nagase, T., Yatomi, Y., Ohishi, N. & Takai, D. (2011). Genome structure-based screening identified epigenetically silenced microRNA associated with invasiveness in non-small-cell lung cancer. Int J Cancer, 10.Google Scholar
  101. Weber, M., Davies, J. J., Wittig, D., Oakeley, E. J., Haase, M., Lam, W. L. & Schubeler, D. (2005). Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nat Genet 37, 853–862.Google Scholar
  102. Weiss, G. J., Bemis, L. T., Nakajima, E., Sugita, M., Birks, D. K., Robinson, W. A., Varella-Garcia, M., Bunn, P. A., Jr., Haney, J., Helfrich, B. A., Kato, H., Hirsch, F. R. & Franklin, W. A. (2008). EGFR regulation by microRNA in lung cancer: correlation with clinical response and survival to gefitinib and EGFR expression in cell lines. Ann Oncol 19, 1053–1059.Google Scholar
  103. Widschwendter, M., Fiegl, H., Egle, D., Mueller-Holzner, E., Spizzo, G., Marth, C., Weisenberger, D. J., Campan, M., Young, J., Jacobs, I. & Laird, P. W. (2007). Epigenetic stem cell signature in cancer. Nat Genet 39, 157–158.Google Scholar
  104. Wossidlo, M., Nakamura, T., Lepikhov, K., Marques, C. J., Zakhartchenko, V., Boiani, M., Arand, J., Nakano, T., Reik, W. & Walter, J. (2011). 5-Hydroxymethylcytosine in the mammalian zygote is linked with epigenetic reprogramming. Nat Commun 2, 241.Google Scholar
  105. Wu, X., Rauch, T. A., Zhong, X., Bennett, W. P., Latif, F., Krex, D. & Pfeifer, G. P. (2010). CpG island hypermethylation in human astrocytomas. Cancer Res 70, 2718–2727.Google Scholar
  106. Wyatt, G. R. (1950). Occurrence of 5-methylcytosine in nucleic acids. Nature 166, 237–238.Google Scholar
  107. Yagi, K., Akagi, K., Hayashi, H., Nagae, G., Tsuji, S., Isagawa, T., Midorikawa, Y., Nishimura, Y., Sakamoto, H., Seto, Y., Aburatani, H. & Kaneda, A. (2010). Three DNA methylation epigenotypes in human colorectal cancer. Clin Cancer Res 16, 21–33.Google Scholar
  108. Yang, S. R., Valvo, S., Yao, H., Kode, A., Rajendrasozhan, S., Edirisinghe, I., Caito, S., Adenuga, D., Henry, R., Fromm, G., Maggirwar, S., Li, J. D., Bulger, M. & Rahman, I. (2008). IKK alpha causes chromatin modification on pro-inflammatory genes by cigarette smoke in mouse lung. Am J Respir Cell Mol Biol 38, 689–698.Google Scholar
  109. Yanagawa, N., Tamura, G., Oizumi, H., Kanauchi, N., Endoh, M., Sadahiro, M. & Motoyama, T. (2007). Promoter hypermethylation of RASSF1A and RUNX3 genes as an independent prognostic prediction marker in surgically resected non-small cell lung cancers. Lung Cancer 58, 131–138.Google Scholar
  110. Zhang, J. G., Guo, J. F., Liu, D. L., Liu, Q. & Wang, J. J. (2011). MicroRNA-101 exerts tumor-suppressive functions in non-small cell lung cancer through directly targeting enhancer of zeste homolog 2. J Thorac Oncol 6, 671–678.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Section of Molecular Medicine, Department of Orthopedic SurgeryRush University Medical CenterChicagoUSA

Personalised recommendations