Sediments and Soils

  • Elizabeth J. Reitz
  • Myra Shackley
Part of the Manuals in Archaeological Method, Theory and Technique book series (MATT)


Sediments and soils record aspects of communities, drainage patterns, landscape histories, and site formation processes that place organisms, including humans, in their environmental and ecological contexts. Organisms, in turn, augment or facilitate interpretations of sediments and soils (compare Mudie et al. [2007] with Ryan et al. 2003). Today’s landscapes are not the landscapes of the past; they have changed in response to numerous, complex, abiotic and biotic forces. Documenting these changes and distinguishing between non-anthropogenic and anthropogenic causes and the consequences of such changes are among the primary goals of environmental archaeology. Recreating the sequence of changes in environments and ecosystems requires combining information about climates, weather patterns, sediments, and soils, as well as depositional and erosional processes that produced the sedimentary environment and information about the organisms associated with them (e.g., Langdon et al. 2010). This information places the site and its contents into temporal, spatial, and functional contexts that include landforms (features of the earth’s surface), habitats, and depositional setting, as well as past and present geomorphological processes (Table 5.1; Gladfelter 1977:522; Waters 1992:37). Regional stratigraphic studies and sedimentological analyses elaborate upon many of these processes.


Parent Material Soil Horizon Archaeological Site Clastic Sediment Organic Sediment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Aaby, B. (1986). Palaeoecological studies of mires. In B. E. Berglund (Ed.), Handbook of Holocene palaeoecology and palaeohydrology (pp. 145–164). Chichester, UK: Wiley.Google Scholar
  2. Allaby, A., & Allaby, M. (2003). Oxford dictionary of earth sciences. Oxford, UK: Oxford University Press.Google Scholar
  3. Atkinson, R. J. C. (1957). Worms and weathering. Antiquity, 31, 219–233.Google Scholar
  4. Avery, B. W. (1990). Soils of the British Isles. Wallingford, UK: CAB International.Google Scholar
  5. Barber, K., & Langdon, P. (2001). Peat stratigraphy and climate change. In D. R. Brothwell & A. M. Pollard (Eds.), Handbook of archaeological sciences (pp. 155–166). Chichester, UK: Wiley.Google Scholar
  6. Bettis, E. A., III, Muhs, D. R., Roberts, H. M., & Wintle, A. G. (2003). Last glacial loess in the conterminous USA. Quaternary Science Review, 22, 1907–1946.CrossRefGoogle Scholar
  7. Brown, A. G. (1997). Alluvial geoarchaeology: Floodplain archaeology and environmental change. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
  8. Canti, M. G. (1999). The production and preservation of faecal spherulites: Animals, environment and taphonomy. Journal of Archaeological Science, 26, 251–258.CrossRefGoogle Scholar
  9. Canti, M. G. (2003). Earthworm activity and archaeological stratigraphy: A review of products and processes. Journal of Archaeological Science, 30, 135–148.CrossRefGoogle Scholar
  10. Canuto, M. A., Charton, J. P., & Bell, E. E. (2010). Let no space go to waste: Comparing the uses of space between two Late Classic centers in the El Paraíso Valley, Copan, Honduras. Journal of Archaeological Science, 37, 30–41.CrossRefGoogle Scholar
  11. Clark, R. L. (1982). Point-count estimation of charcoal in pollen preparations and thin sections of sediments. Pollen et Spores, 24, 523–535.Google Scholar
  12. Compton, R. R. (1962). Manual of field geology. New York: Wiley.Google Scholar
  13. Davidson, D. A., Dercon, G., Stewart, M., & Watson, F. (2006). The legacy of past urban waste disposal on local soils. Journal of Archaeological Science, 33, 778–783.CrossRefGoogle Scholar
  14. Evans, J. G. (1978). An introduction to environmental archaeology. Ithaca, NY: Cornell University Press.Google Scholar
  15. Faegri, K., Kaland, P. E., & Krzywinski, K. (1989). Textbook of pollen analysis (4th ed.). Chichester, UK: Wiley.Google Scholar
  16. Farrand, W. R. (1975). Sediment analysis of a prehistoric rock shelter: The Abri Pataud. Quaternary Research, 5, 1–26.CrossRefGoogle Scholar
  17. French, C. (2003). Geoarchaeology in action: Studies in soil micromorphology and landscape evolution. London: Routledge.Google Scholar
  18. Gardner, R. A. M. (1977). Evidence concerning the existence of loess deposits at Tell Fara, Northern Negev, Israel. Journal of Archaeological Science, 4, 377–386.CrossRefGoogle Scholar
  19. Garrison, E. G. (2003). Techniques in archaeological geology. Berlin: Springer.Google Scholar
  20. Gladfelter, B. G. (1977). Geoarchaeology: The geomorphologist and archaeology. American Antiquity, 42, 519–538.CrossRefGoogle Scholar
  21. Goldberg, P., & Macphail, R. I. (2006). Practical and theoretical geoarchaeology. Oxford, UK: Blackwell.Google Scholar
  22. Herz, N., & Garrison, E. G. (1998). Geological methods in archaeology. Oxford, UK: Oxford University Press.Google Scholar
  23. Hodgson, J. M. (1997). Soil survey field handbook. Technical monograph 5. Silsoe, UK: Soil Survey and Land Research Centre.Google Scholar
  24. Holliday, V. T. (Ed.). (1992). Soils in archaeology, landscape evolution and human occupation. Washington, DC: Smithsonian Institution Press.Google Scholar
  25. Holliday, V. T. (2004). Soils in archaeological research. Oxford, UK: Oxford University Press.Google Scholar
  26. Holliday, V. T., & Gartner, W. G. (2007). Methods of soil P analysis in archaeology. Journal of Archaeological Science, 34, 301–333.CrossRefGoogle Scholar
  27. Holliday, V. T., & Goldberg, P. (1992). Glossary of selected soil science terms. In V. T. Holliday (Ed.), Soils in archaeology, landscape evolution and human occupation (pp. 247–254). Washington, DC: Smithsonian Institution Press.Google Scholar
  28. Krumbein, W. C. (1934). Size frequency distribution of sediments. Journal of Sedimentary Petrology, 4, 65–77.Google Scholar
  29. Langdon, P. G., Leng, M. J., Holmes, N., & Caseldine, C. J. (2010). Lacustrine evidence of early-Holocene environmental change in northern Iceland: A multiproxy paleoecological and stable isotope study. The Holocene, 20, 205–214.CrossRefGoogle Scholar
  30. Limbrey, S. (1975). Soil science and archaeology. London: Academic.Google Scholar
  31. Mudie, P. J., Marret, F., Aksu, A. E., Hiscott, R. N., & Gillespie, H. (2007). Palynological evidence for climatic change, anthropogenic activity and outflow of Black Sea water during the late Pleistocene and Holocene: Centennial- to decadal-scale records from the Black and Marmara Seas. Quaternary International, 167–168, 73–90.CrossRefGoogle Scholar
  32. O’Connor, T., & Evans, J. (2005). Environmental archaeology: Principles and methods (2nd ed.). Stroud, UK: Sutton Publishing.Google Scholar
  33. Odum, E. P., & Barrett, G. W. (2005). Fundamentals of ecology (5th ed.). Belmont, CA: Thomson Brooks/Cole.Google Scholar
  34. Orton, C. (2000). Sampling in archaeology. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
  35. Pearsall, D. M. (2000). Paleoethnobotany: A handbook of procedures (2nd ed.). San Diego, CA: Academic.Google Scholar
  36. Powers, M. C. (1953). A new roundness scale for sedimentary particles. Journal of Sedimentary Petrology, 23, 117–119.Google Scholar
  37. Rapp, G., & Hill, C. L. (1998). Geoarchaeology. New Haven: Yale University Press.Google Scholar
  38. Ryan, W. B. F., Major, C. O., Lericolais, G., & Goldstein, S. L. (2003). Catastrophic flooding of the Black Sea. Annual Review of Earth and Planetary Sciences, 31, 525–554.CrossRefGoogle Scholar
  39. Scudder, S. J. (2001). Evidence of sea level rise at the Early Ostionan Coralie site (GT-3), c. AD 700, Grand Turk, Turks and Caicos Islands. Journal of Archaeological Science, 28, 1221–1233.CrossRefGoogle Scholar
  40. Shackley, M. (1981). Environmental archaeology (1st ed.). London: George Allen & Unwin.Google Scholar
  41. Shackley, M. L. (1975). Archaeological sediments: A survey of analytical methods. London: Butterworth.Google Scholar
  42. Shahack-Gross, R. (2011). Herbivorous livestock dung: Formation, taphonomy, methods for identification, and archaeological significance. Journal of Archaeological Science, 38, 206–218.CrossRefGoogle Scholar
  43. Shahack-Gross, R., & Finkelstein, I. (2008). Subsistence practices in an arid environment: A geoarchaeological investigation in an Iron Age site, The Negev Highlands, Israel. Journal of Archaeological Science, 35, 965–982.CrossRefGoogle Scholar
  44. Soil Survey Staff. (1999). Soil taxonomy. In Agriculture handbook 436 (2nd ed.). Washington, DC: US Department of Agriculture.Google Scholar
  45. Stein, J. K. (1992). Organic matter in archaeological contexts. In V. T. Holliday (Ed.), Soils in archaeology: Landscape evolution and human occupation (pp. 193–216). Washington, DC: Smithsonian Institution Press.Google Scholar
  46. Tolonen, K. (1986). Charred particle analysis. In B. E. Berglund (Ed.), Handbook of Holocene palaeoecology and palaeohydrology (pp. 485–496). Chichester, UK: Wiley.Google Scholar
  47. Traverse, A. (2008). Paleopalynology (2nd ed.). Dordrecht, The Netherlands: Springer.Google Scholar
  48. Udden, J. A. (1914). Mechanical composition of clastic sediments. Geological Society of American Bulletin, 25, 655–744.Google Scholar
  49. van Meerbeeck, C. J., Renssen, H., & Roche, D. M. (2009). How did Marine Isotope Stage 3 and Last Glacial Maximum climates differ?-Perspectives from equilibrium simulations. Climate of the Past, 5, 33–51.CrossRefGoogle Scholar
  50. Waters, M. R. (1992). Principles of geoarchaeology: A North American perspective. Tucson: University of Arizona Press.Google Scholar
  51. Weiner, S. (2010). Microarchaeology: Beyond the visible archaeological record. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
  52. Wentworth, C. K. (1922). A scale of grade and class terms for clastic sediments. Journal of Geology, 30, 377–392.CrossRefGoogle Scholar
  53. Wilding, L. P., Smeck, N. E., & Hall, G. F. (1983). Glossary of horizon designations. In L. P. Wilding, N. E. Smeck, & G. F. Halls (Eds.), Pedogenesis and soil taxonomy, part 2, the soil orders (Developments in soil science 11B, pp. 383–387). Amsterdam: Elsevier.Google Scholar
  54. Wilkinson, K., & Stevens, C. (2003). Environmental archaeology: Approaches, techniques, and applications. Stroud, UK: Tempus.Google Scholar
  55. Wilkinson, T. J. (2005). Soil erosion and valley fills in the Yemen Highlands and southern Turkey: Integrating settlement, geoarchaeology, and climate change. Geoarchaeology: An International Journal, 20, 169–192.CrossRefGoogle Scholar
  56. Zingg, T. (1935). Beitrage zur schatteranalyse. Schweizerische Mineralogische und Petrographische Mitteilungen, 15, 39–140.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Elizabeth J. Reitz
    • 1
  • Myra Shackley
    • 2
  1. 1.Georgia Museum of Natural HistoryUniversity of GeorgiaAthensUSA
  2. 2.Nottingham Business SchoolNottingham Trent UniversityNottinghamUK

Personalised recommendations