Antioxidants in IMSI

  • Monica AntinoriEmail author


Sperm morphology as assessed according to strict criteria demonstrated to have an influence on rates of fertilization, pregnancy, implantation, embryo quality and blastocyst formation. ICSI visual assessment of sperm morphology, limited by its low magnification (200x-400x) and concomitant low resolution, overlooks minor morphologic defects potentially related to sperm functional impairment. With the development of a new method for a real-time, detailed morphological evaluation of motile spermatozoa under high magnification (6600x), called MSOME, the sperm’s nucleus turned out to be the most important parameter influencing ICSI outcome particularly in the form of large nuclear vacuoles that were proposed to reflect damages in the nuclear DNA content and organization.


Male infertility Sperm morphology DNA chain fragmentation Intracytoplasmic morphologically selected sperm injection IMSI Motile sperm organellar morphology examination Reactive oxygen species Oxidative stress 



The author gratefully acknowledge the help of Mrs Stella Antinori in the preparation of the manuscript.


  1. 1.
    Dumpy BC, Neal LM, Cooke ID. The clinical value of conventional semen analysis. Fertil Steril. 1989;51:324–9.Google Scholar
  2. 2.
    Aitkin RJ, Irvine DS, Wu FC. Prosecute analysis of spermoocyte fusion and reactive oxygen species generation as catena for the diagnosis of infertility. Am J Obstet Gynecol. 1991;164:542–51.Google Scholar
  3. 3.
    Vawda AI, Gunby J, Younglai EV. Semen parameters as predictors of in-vitro fertilization: the importance of strict criteria morphology. Hum Reprod. 1996;11:1445–50.PubMedCrossRefGoogle Scholar
  4. 4.
    Kruger TF, Menkveld R, Stander FSH, Lombard CJ, Van der Merwe JP, van Zyl JA, et al. Sperm morphologic features as a prognostic factor in vitro fertilization. Fertil Steril. 1986;46: 1118–23.PubMedGoogle Scholar
  5. 5.
    Grow DR, Oehninger S, Seltman HJ, Toner JP, Swanson RJ, Kruger TF, et al. Sperm morphology as diagnosed by strict criteria: probing the impact of teratozoospermia on fertilization rate and pregnancy outcome in a large in vitro fertilization population. Fertil Steril. 1994;62:559–67.PubMedGoogle Scholar
  6. 6.
    Burr RW, Siegberg R, Flaherty SP, Wang X-J, Matthews CD. The influence of sperm morphology and the number of motile sperm inseminated on the outcome of intrauterine insemination combined with mild ovarian stimulation. Fertil Steril. 1996;65:127–32.PubMedGoogle Scholar
  7. 7.
    Eggert-Kruse W, Schwartz H, Rohr G, Demirakca T, Tilgen W. Runnebaum sperm morphology assessment using strict criteria and male fertility under in-vivo conditions of conception. Hum Reprod. 1996;11:139–46.PubMedCrossRefGoogle Scholar
  8. 8.
    Oehninger S, Veeck L, Lanzendorf S, Maloney M, Toner J, Muasher S. Intracytoplasmic sperm injection: achievement of high pregnancy rates in couples with severe male factor infertility is dependent primarily upon female not male factors. Fertil Steril. 1995;64:977–81.PubMedGoogle Scholar
  9. 9.
    Kupker W, Schulze W, Diedrich K. Ultrastructure of gametes and intracytoplasmic sperm injection: the significance of sperm morphology. Hum Reprod. 1998;13 Suppl 1:99–106.PubMedCrossRefGoogle Scholar
  10. 10.
    Host E, Ernst E, Lindenberg S, Smidt-Jensen S. Morphology of spermatozoa used in IVF and ICSI from oligozoospermic men. Reprod Biomed Online. 2001;3:212–5.PubMedCrossRefGoogle Scholar
  11. 11.
    Celik-Ozenci C, Jakab A, Kovacs T, Catalanotti J, Demir R, Bray-Ward P, Ward D, Huszar G. Sperm selection for ICSI: shape properties do not predict the absence or presence of numerical chromosomal aberrations. Hum Reprod. 2004;19:2052–9.PubMedCrossRefGoogle Scholar
  12. 12.
    Sukcharoen N, Sithipravej T, Promviengchai S, Chinpilas V, Boonkasemsanti W. Sperm morphology evaluated by computer (IVOS) cannot predict the fertilization rate in vitro after intracytoplasmic sperm injection. Fertil Steril. 1998;69:564–8.PubMedCrossRefGoogle Scholar
  13. 13.
    Tasdemir I, Tasdemir M, Tavukcuog S, Kahraman S, Biberog K. Effect of abnormal sperm head morphology on the outcome of intracytoplasmic sperm injection in humans. Hum Reprod. 1997;12:1214–7.PubMedCrossRefGoogle Scholar
  14. 14.
    Liu J, Nagy Z, Joris H, Tournaye H, Devroey P, Van Steirteghem A. Successful fertilization and establishment of pregnancies after intracytoplasmic sperm injection in patients with globozoospermia. Hum Reprod. 1995;10:626–9.PubMedGoogle Scholar
  15. 15.
    Battaglia DE, Koehler JK, Klein NA, Tucker MJ. Failure of oocyte activation after intracytoplasmic sperm injection using round-headed sperm. Fertil Steril. 1997;68:118–22.PubMedCrossRefGoogle Scholar
  16. 16.
    Kahraman S, Akarsu C, Cengiz G, Dirican K, Sozen E, Can B, Guven C, Vanderzwalmen P. Fertility of ejaculated and testicular megalohead spermatozoa with intracytoplasmic sperm injection. Hum Reprod. 1999;14:726–30.PubMedCrossRefGoogle Scholar
  17. 17.
    De Vos A, Van De Velde H, Joris H, Verheyen G, Devroey P, Van Steirteghem A. Influence of individual sperm morphology on fertilisation, embryo morphology, and pregnancy outcome of intracytoplasmic sperm injection. Fertil Steril. 2003;79:42–8.PubMedCrossRefGoogle Scholar
  18. 18.
    Cohen J, Alikani M, Malter H, et al. Partial zona dissection or subzonal sperm insertion: microsurgical fertilization alternatives based on evaluation of sperm and embryo morphology. Fertil Steril. 1991;56:696–706.PubMedGoogle Scholar
  19. 19.
    Parinaud J, Mieusset R, Vieitez G, Labal B, Richoilley G. Influence of sperm parameters on embryo quality. Fertil Steril. 1993;60: 888–92.PubMedGoogle Scholar
  20. 20.
    Loutradi KE, Tarlatzis BC, Goulis DG, Zepiridis L, Pagou T, Chatziioannou E, et al. The effects of sperm quality on embryo development after intracytoplasmic sperm injection. J Assist Reprod Genet. 2006;23:69–74.PubMedCrossRefGoogle Scholar
  21. 21.
    Miller JE, Smith TT. The effect of intracytoplasmic sperm injection and semen parameters on blastocyst development in vitro. Hum Reprod. 2001;16:918–24.PubMedCrossRefGoogle Scholar
  22. 22.
    Huszar G, Vigue L. Incomplete development of human spermatozoa is associated with increased creatine phosphokinase concentration and abnormal head morphology. Mol Reprod Dev. 1993;34:292–8.PubMedCrossRefGoogle Scholar
  23. 23.
    Aitken J, Krausz C, Buckingham D. Relationships between biochemical markers for residual sperm cytoplasm, reactive oxygen species generation, and the presence of leukocytes and precursor germ cells in human sperm suspensions. Mol Reprod Dev. 1994;39:268–79.PubMedCrossRefGoogle Scholar
  24. 24.
    Bernardini L, Borini A, Preti S, Conte N, Flamigni C, Capitanio GL, Venturini PL. Study of aneuploidy in normal and abnormal germ cells from semen of fertile and infertile men. Hum Reprod. 1998;13:3406–13.PubMedCrossRefGoogle Scholar
  25. 25.
    Rubes J, Lowe X, Moore II D, Perreault S, Slott V, Evenson D, Selevan SG, Wyrobek AJ. Smoking cigarettes is associated with increased sperm disomy in teenage men. Fertil Steril. 1998;70:715–23.PubMedCrossRefGoogle Scholar
  26. 26.
    Twigg JP, Irvine DS, Aitken RJ. Oxidative damage to DNA in human spermatozoa does not preclude pronucleus formation at intracytoplasmic sperm injection. Hum Reprod. 1998;13:1864–71.PubMedCrossRefGoogle Scholar
  27. 27.
    Sakkas D, Mariethoz E, Manicardi G, Bizzaro D, Bianchi PG, Bianchi U. Origin of DNA damage in ejaculated human spermatozoa. Rev Reprod. 1999;4:31–7.PubMedCrossRefGoogle Scholar
  28. 28.
    Griffin DK, Hyland P, Tempest HG, Homa ST. Safety issues in assisted reproduction technology: should men undergoing ICSI be screened for chromosome abnormalities in their sperm? Hum Reprod. 2003;18:229–35.PubMedCrossRefGoogle Scholar
  29. 29.
    Carrell DT, Emery BR, Wilcox AL, Campbell B, Erickson L, Hatasaka HH, Jones KP, Peterson CM. Sperm chromosome aneuploidy as related to male factor infertility and some ultrastructure defects. Arch Androl. 2004;50:181–5.PubMedCrossRefGoogle Scholar
  30. 30.
    Rubio C, Simon C, Blanco V, Vidal F, Minguez Y, Egozcue J, et al. Implications of sperm chromosome abnormalities in recurrent miscarriage. J Assist Reprod Genet. 1999;16:253–8.PubMedCrossRefGoogle Scholar
  31. 31.
    Van Steirteghem A, Bonduelle M, Devroey P, Liebaers I. Follow up of children born after ICSI. Hum Reprod Update. 2002;8:111–6.PubMedCrossRefGoogle Scholar
  32. 32.
    Hansen M, Kurinczuk JJ, Bower C, Webb S. The risk of major birth defects after intracytoplasmic sperm injection and in vitro fertilization. N Engl J Med. 2002;346:725–30.PubMedCrossRefGoogle Scholar
  33. 33.
    Kuczynski W, Dhont M, Grygoruk C, Grochowski D, Wolczynski S, Szamatowicz M. The outcome of intracytoplasmic injection of fresh and cryopreserved ejaculated spermatozoa—a prospective randomized study. Hum Reprod. 2001;16:2109–13.PubMedCrossRefGoogle Scholar
  34. 34.
    Stolwijk AM, Wetzels AM, Braat DD. Cumulative probability of achieving an ongoing pregnancy after in-vitro fertilization and intracytoplasmic sperm injection according to a woman’s age, subfertility diagnosis and primary or secondary subfertility. Hum Reprod. 2000;15:203–9.PubMedCrossRefGoogle Scholar
  35. 35.
    Olivius K, Friden B, Lundin K, Bergh C. Cumulative probability of live birth after three in vitro fertilization/intracytoplasmic sperm injection cycles. Fertil Steril. 2002;77:505–10.PubMedCrossRefGoogle Scholar
  36. 36.
    European IVF-monitoring programme (EIM), for the European Society of Human Reproduction and Embryology (ESHRE) Assisted reproductive technology in Europe, Results generated from European registers by ESHRE. Human reproduction 2002;21:1680–97.PubMedGoogle Scholar
  37. 37.
    Van Steirteghem AC, Liu J, Joris H, Nagy Z, Janssenswillen C, Tournaye H, Derde MP, Van Assche E, Devroey P. Higher success rate by intracytoplasmic sperm injection than by subzonal insemination. Report of a second series of 300 consecutive treatment cycles. Hum Reprod. 1993;8:1055–60.PubMedGoogle Scholar
  38. 38.
    Harari O, Bourne H, McDonald M, Richings N, Speirs AL, Johnston WIH, Baker HWG. Intracytoplasmic sperm injection—a major advance in the management of severe male subfertility. Fertil Steril. 1995;64:360–8.PubMedGoogle Scholar
  39. 39.
    Glezerman M, Bartoov B. Semen analysis. In: Insler V, Lunenfeld B, editors. Infertility: male and female. Edinburgh: Churchill Livingstone; 1993. p. 285–315.Google Scholar
  40. 40.
    Piomboni P, Strehler E, Capitani S, Collodel G, De Santo M, Gambera L, Moretti E, Baccetti B, Sterzic K. Submicroscopic mathematical evaluation of spermatozoa in assisted reproduction, in vitro fertilization (notulae seminologicae 7). J Assist Reprod Genet. 1996;13:635–46.PubMedCrossRefGoogle Scholar
  41. 41.
    Zamboni L. The ultrastructural pathology of the spermatozoan as a course of infertility: the role of electron microscopy in the evaluation of sperm quality. Fertil Steril. 1987;48:711–34.PubMedGoogle Scholar
  42. 42.
    Bartoov B, Eltes F, Reichart M, Langzam J, Lederman H, Zabludovsky N. Quantitative ultramorphological analysis of human sperm: fifteen years of experience in the diagnosis and management of male factor infertility. Arch Androl. 1999;43(1): 13–25.PubMedCrossRefGoogle Scholar
  43. 43.
    Bartoov B, Berkovitz A, Eltes F, Kogosowski A, Menezo Y, Barak Y. Real-time fine morphology of motile human sperm cells is associated with IVF-ICSI outcome. J Androl. 2002;23:1–8.PubMedGoogle Scholar
  44. 44.
    Berkovitz A, Eltes F, Yaari S, Katz N, Barr I, Fishman A, Bartoov B. The morphological normalcy of the sperm nucleus and pregnancy rate of intracytoplasmic injection with morphologically selected sperm. Hum Reprod. 2005;20:185–90.PubMedCrossRefGoogle Scholar
  45. 45.
    Agarwal A, Said TM. Role of sperm chromatin abnormalities and DNA damage in male infertility. Hum Reprod Update. 2003;9:331–45.PubMedCrossRefGoogle Scholar
  46. 46.
    Irvine DS, Twigg JP, Gordon EL, Fulton N, Milne PA, Aitken RJ. DNA integrity in human spermatozoa: relationships with semen quality. J Androl. 2000;21:33–44.PubMedGoogle Scholar
  47. 47.
    Seli E, Moffatt O, Kayisli UA, Nijs M, Ombelet W and Sakkas D. Apoptosis in testis of normal and azoospermic males: a Fas mediated phenomenon. Annual meeting of the society for gynecologic investigation, Los Angeles, CA, 2002.Google Scholar
  48. 48.
    Aitken RJ, De Iuliis GN. Origins and consequences of DNA damage in male germ cells. Reprod Biomed Online. 2007;14:727–33.PubMedCrossRefGoogle Scholar
  49. 49.
    Aitken RJ, De Iuliis GN, McLachlan RI. Biological and clinical significance of DNA damage in the male germ line. Int J Androl. 2008;32(1):46–56. ISSN 0105-6263.PubMedCrossRefGoogle Scholar
  50. 50.
    Sikka A, Rajasekaran M, Hellstrom W. Role of oxidative stress and antioxidants in male infertility. J Androl. 1995;16:464–8.PubMedGoogle Scholar
  51. 51.
    Evenson DP, Jost LK, Marshall D, Zinaman MJ, Clegg E, Purvis K, de Angelis P, Claussen OP. Utility of the sperm chromatin structure assay as a diagnostic and prognostic tool in the human fertility clinic. Hum Reprod. 1999;14:1039–49.PubMedCrossRefGoogle Scholar
  52. 52.
    Spano M, Bonde JP, Hjollund HI, Kolstad HA, Cordelli E, Leter G. Sperm chromatin damage impairs human fertility. The Danish First Pregnancy Planner Study Team. Fertil Steril. 2000;73:43–50.PubMedCrossRefGoogle Scholar
  53. 53.
    Morris ID, Ilott S, Dixon L, Brison DR. The spectrum of DNA damage in human sperm assessed by single cell gel electrophoresis (Comet assay) its relationship to fertilization and embryo development. Hum Reprod. 2002;17:990–8.PubMedCrossRefGoogle Scholar
  54. 54.
    Benchaib M, Braun V, Lornage J, Hadj S, Salle B, Lejeune H, Guerin JF. Sperm DNA fragmentation decreases the pregnancy rate in an assisted reproductive technique. Hum Reprod. 2003;18:1023–8.PubMedCrossRefGoogle Scholar
  55. 55.
    Larson-Cook KL, Brannian JD, Hansen KA, Kasperson KM, Aamold ET, Evenson DP. Relationship between the outcomes of assisted reproductive techniques and sperm DNA fragmentation as measured by the sperm chromatin structure assay. Fertil Steril. 2003;80:895–902.PubMedCrossRefGoogle Scholar
  56. 56.
    Loft S, Kold-Jensen T, Hjollund NH, Giwercman A, Gyllemborg J, Ernst E, Olsen J, Scheike T, Poulsen HE, Bonde JP. Oxidative DNA damage in human sperm influences time to pregnancy. Hum Reprod. 2003;18:1265–72.PubMedCrossRefGoogle Scholar
  57. 57.
    Bungum M, Humaidan P, Spano M, Jepson K, Bungum L, Giwercman A. The predictive value of sperm chromatin structure assay (SCSA) parameters for the outcome of intrauterine insemination, IVF and ICSI. Hum Reprod. 2004;19:1401–8.PubMedCrossRefGoogle Scholar
  58. 58.
    Gandini L, Lombardo F, Paoli D, Caruso F, Eleuteri P, Leter G, Ciriminna R, Culasso F, Dondero F, Lenzi A, et al. Full-term pregnancies achieved with ICSI despite high levels of sperm chromatin damage. Hum Reprod. 2004;19:1409–17.PubMedCrossRefGoogle Scholar
  59. 59.
    Seli E, Gardner DK, Schoolcraft WB, Moffatt O, Sakkas D. Extent of nuclear DNA damage in ejaculated spermatozoa impacts on blastocyst development after in vitro fertilization. Fertil Steril. 2004;82:378–83.PubMedCrossRefGoogle Scholar
  60. 60.
    Tesarik J, Greco E, Mendoza C. Late, but not early, paternal effect on human embryo development is related to sperm DNA fragmentation. Hum Reprod. 2004;19:611–5.PubMedCrossRefGoogle Scholar
  61. 61.
    Smith R, Kaune H, Parodi D, Madariaga M, Rios R, Morales I, Castro A. Increased sperm DNA damage in patients with varicocele: relationship with seminal oxidative stress. Hum Reprod. 2006;21(4):986–93.PubMedCrossRefGoogle Scholar
  62. 62.
    Borini A, Tarozzi N, Bizzaro D, Bonu MA, Fava L, Flamigni C, Coticchio G. Sperm DNA fragmentation: paternal effect on early post-implantation embryo development in ART. Hum Reprod. 2006;21:2876–81.PubMedCrossRefGoogle Scholar
  63. 63.
    Lin MH, Kuo-Kuang Lee R, Li SH, Lu CH, Sun FJ, Hwu YM. Sperm chromatin structure assay parameters are not related to fertilization rates, embryo quality, and pregnancy rates in in vitro fertilization and intracytoplasmic sperm injection, but might be related to spontaneous abortion rates. Fertil Steril. 2007;90:352–9.PubMedCrossRefGoogle Scholar
  64. 64.
    Zini A, Boman JM, Belzile E, Ciampi A. Sperm DNA damage is associated with an increased risk of pregnancy loss after IVF and ICSI: systematic review and metaanalysis. Hum Reprod. 2008;23:2663–8.PubMedCrossRefGoogle Scholar
  65. 65.
    Tesarik J. Paternal effects on cell division in the human preimplantation embryo. Reprod Biomed Online. 2005;10:370–5.PubMedCrossRefGoogle Scholar
  66. 66.
    Suleiman SA, Ali ME, Zaki ZM, el-Malik EM, Nasr MA. Lipid peroxidation and human sperm motility: protective role of vitamin E. J Androl. 1996;17:530–7.PubMedGoogle Scholar
  67. 67.
    Kodama H, Yamaguchi R, Fukuda J, Kasai H, Tanaka T. Increased oxidative deoxyribonucleic acid damage in the spermatozoa of infertile male patients. Fertil Steril. 1997;68:519–24.PubMedCrossRefGoogle Scholar
  68. 68.
    Geva E, Lessing JB, Lerner-Geva L, Amit A. Free radicals, antioxidants and human spermatozoa: clinical implications. Hum Reprod. 1998;13:1422–4.PubMedCrossRefGoogle Scholar
  69. 69.
    Comhaire FH, Christophe AB, Zalata AA, Dhooge WS, Mahmoud AM, Depuydt CE. The effects of combined conventional treatment, oral antioxidants and essential fatty acids on sperm biology in subfertile men. Prostaglandins Leukot Essent Fatty Acids. 2000;63:159–65.PubMedCrossRefGoogle Scholar
  70. 70.
    Keskes-Ammar L, Feki-Chakroun N, Rebai T, Sahnoun Z, Ghozzi H, Hammami S, Zghal K, Fki H, Damak J, Bahloul A. Sperm oxidative stress and the effect of an oral vitamin E and selenium supplement on semen quality in infertile men. Arch Androl. 2003;49:83–94.PubMedCrossRefGoogle Scholar
  71. 71.
    Greco E, Scarselli F, Iacobelli M, Rienzi L, Ubaldi F, Ferrero S, Franco G, Anniballo N, Mendoza C, Tesarik J. Efficient treatment of infertility due to sperm DNA damage by ICSI with testicular spermatozoa. Hum Reprod. 2005;20:226–30.PubMedCrossRefGoogle Scholar
  72. 72.
    Lopes S, Jurisicova A, Sun JG, Casper RF. Reactive oxygen species: potential cause for DNA fragmentation in human spermatozoa. Hum Reprod. 1998;13(4):896–900.PubMedCrossRefGoogle Scholar
  73. 73.
    Krausz C, Mills C, Rogers S, et al. Stimulation of oxidant generation by human sperm suspensions using phorbol esters and formyl peptides: relationships with motility and fertilization in vitro. Fertil Steril. 1994;62:599–605.PubMedGoogle Scholar
  74. 74.
    Lenzi A, Picardo M, Gandini L, et al. Glutathione treatment of dyspermia: effect on the lipoperoxidation process. Hum Reprod. 1994;9:2044–50.PubMedGoogle Scholar
  75. 75.
    Berkovitz A, Eltes F, Ellenbogen E, Peer S, Feldberg D, Bartoov B. Does the presence of nuclear vacuoles in human sperm selected for ICSI affect pregnancy outcome? Hum Reprod. 2006;21:1787–90.PubMedCrossRefGoogle Scholar
  76. 76.
    Bartoov B, Berkovitz A, Eltes F, Kogosovsky A, Yagoda A, Lederman H, Artzi S, Gross M, Barak Y. Pregnancy rates are higher with intracytoplasmic morphologically selected sperm injection than with conventional intracytoplasmic injection. Fertil Steril. 2003;80:1413–9.PubMedCrossRefGoogle Scholar
  77. 77.
    Palermo G, Joris H, Devroey P, Van Steirteghem A. Pregnancies after intracytoplasmic injection of single spermatozoon into an oocyte. Lancet. 1992;340:17.PubMedCrossRefGoogle Scholar
  78. 78.
    Bartoov B, Eltes F, Pansky M, Langzam J, Reichart M, Soffer Y. Improved diagnosis of male fertility potential via a combination of quantitative ultramorphology and routine semen analyses. Hum Reprod. 1994;9:2069–75.PubMedGoogle Scholar
  79. 79.
    Mundy AJ, Ryder TA, Edmonds DK. A quantitative study of sperm head ultrastructure in subfertile males with excess sperm precursors. Fertil Steril. 1994;61:751–4.PubMedGoogle Scholar
  80. 80.
    Berkovitz A, Eltes F, Lederman H, Peer S, Ellenbogen A, Feldberg B, Bartoov B. How to improve IVF–ICSI outcome by sperm selection. Reprod Biomed Online. 2006;12:634–8.PubMedCrossRefGoogle Scholar
  81. 81.
    Shapiro BS, Richter KS, Harris DC, Daneshmand ST. Dramatic declines in implantation and pregnancy rates in patients who undergo repeated cycles of in vitro fertilization with blastocyst transfer after one or more failed attempts. Fertil Steril. 2001;76:538–42.PubMedCrossRefGoogle Scholar
  82. 82.
    Silberstein T, Trimarchi JR, Gonzalez L, Keefe D, Blazar AS. Pregnancy outcome in in vitro fertilization decreases to a plateau with repeated cycles. Fertil Steril. 2005;84:1043–5.PubMedCrossRefGoogle Scholar
  83. 83.
    Antinori M, Licata E, Dani G, Cerusico C, Versaci C, D’Angelo D, Antinori S. Intracytoplasmic morphologically selected sperm injection :a prospective randomized trial. Reprod Biomed Online. 2008;16:835–41.PubMedCrossRefGoogle Scholar
  84. 84.
    Kruger TF, Acosta AA, Simmons KF, Swanson JR, Matta JF, Oehninger S. Predictive value of sperm morphology in in vitro fertilization. Fertil Steril. 1988;49:112–7.PubMedGoogle Scholar
  85. 85.
    Martin RH, Rademaker A. The relationship between sperm chromosomal abnormalities and sperm morphology in humans. Mutat Res. 1988;207:159–64.PubMedCrossRefGoogle Scholar
  86. 86.
    Rosenbusch B, Strehler E, Sterzik K. Cytogenetics of human spermatozoa: correlations with sperm morphology and age of fertile men. Fertil Steril. 1992;58:1071–2.PubMedGoogle Scholar
  87. 87.
    Sailer BL, Jost LK, Evenson DP. Bull sperm head morphometry related to abnormal chromatin structure and fertility. Cytometry. 1996;24:167–73.PubMedCrossRefGoogle Scholar
  88. 88.
    Virro MR, Larson-Cook KL, Evenson DP. Sperm chromatin structure assay (SCSA) parameters are related to fertilization, blastocyst development, and ongoing pregnancy in in vitro fertilization and intracytoplasmic sperm injection cycles. Fertil Steril. 2004;81:1289–95.PubMedCrossRefGoogle Scholar
  89. 89.
    Vicari E, de Palma A, Burrello N, Longo G, Grazioso C, Barone N, Zahi M, D’Agata Check JH, Graziano V, Cohen R, et al. Effect of an abnormal sperm chromatin structural assay (SCSA) on pregnancy outcome following (IVF) with ICSI in previous IVF failures. Arch Androl. 2005;51:121–4.CrossRefGoogle Scholar
  90. 90.
    Nagy ZP, Liu J, Joris H, et al. The result of intracytoplasmic sperm injection is not related to any of the three basic sperm parameters. Hum Reprod. 1995;10:1123–9.PubMedGoogle Scholar
  91. 91.
    McKenzie LJ, Kovanci E, Amato P, et al. Pregnancy outcome of in vitro fertilization/intracytoplasmic sperm injection with profound teratospermia. Fertil Steril. 2004;82:847–9.PubMedCrossRefGoogle Scholar
  92. 92.
    Bonduelle M, Aytoz A, Van Assche E, et al. Incidence of chromosomal aberrations in children born after assisted reproduction through intracytoplasmic sperm injection. Hum Reprod. 1998;13: 781–2.PubMedCrossRefGoogle Scholar
  93. 93.
    Lee JD, Kamiguchi Y, Yanagimachi R. Analysis of chromosome constitution of human spermatozoa with normal and aberrant head morphologies after injection into mouse oocytes. Hum Reprod. 1996;11:1942–6.PubMedCrossRefGoogle Scholar
  94. 94.
    Hazout A, Dumont-Hassan M, Junca AM, Bacrie PC, Tesarik J. High-magnifi cation ICSI overcomes paternal effect resistant to conventional ICSI. Reprod Biomed Online. 2006;12:19–25.PubMedCrossRefGoogle Scholar
  95. 95.
    Franco Jr JG, Baruffi RL, Mauri AL, et al. Significance of large nuclear vacuoles in human spermatozoa: implications for ICSI. Reprod Biomed Online. 2008;17:42–5.PubMedCrossRefGoogle Scholar
  96. 96.
    Garolla A, Fortini D, Menegazzo M, et al. High-power microscopy for selecting spermatozoa for ICSI by physiological status. Reprod Biomed Online. 2008;17:610–6.PubMedCrossRefGoogle Scholar
  97. 97.
    Hoffman R, Gross L. Reflected light differential-interference microscopy: principles, use and image interpretation. J Microsc. 1970;91:149–72.PubMedCrossRefGoogle Scholar
  98. 98.
    Hoffman R, Gross L. Demodulation contrast microscope. Nature. 1975;254:586–8.PubMedCrossRefGoogle Scholar
  99. 99.
    Padawer J. The Nomarski interference-contrast microscope. An experimental basis for image interpretation. J R Microsc Soc. 1968;88:305–49.PubMedCrossRefGoogle Scholar
  100. 100.
    Kacem O, Sifer C, Barraud-Lange V, Ducot B, De Ziegler D, Poirot C, Wolf JP. Sperm nuclear vacuoles, assessed by motile sperm organellar morphological examination, are mostly of acrosomal origin. Reprod Biomed Online. 2010;20:132–7.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of InfertilityRAPRUI Day SurgeryRomeItaly

Personalised recommendations