Advertisement

Antioxidants in ICSI

  • Nicolas GarridoEmail author
  • Sandra García-Herrero
  • Laura Romany
  • José Remohí
  • Antonio Pellicer
  • Marcos Meseguer
Chapter

Abstract

Male factor infertility can be caused by reasons, either related or not with total sperm production. Among causes of male infertility in cases of normal sperm count and motility, oxidative stress is one of the most relevant processes influencing fertility in vivo or in assisted reproduction treatments’ results. This chapter provides the most updated information regarding the oxidative stress situation in sperm and the relevance of antioxidants use in intracytoplasmic sperm injection results.

Keywords

Sperm Oxidative stress ICSI DNA oxidation DNA fragmentation Antioxidant Male factor infertility Intracytoplasmic sperm injection Free radicals 

Notes

Acknowledgments

The authors want to acknowledge all the staff of IVI Valencia, in both the IVF and Andrology laboratory for their support in the research projects during the recent years, especially for the lab technicians.

References

  1. 1.
    McLachlan RI, de Kretser DM. Male infertility: the case for continued research. Med J Aust. 2001;174(3):116–7.PubMedGoogle Scholar
  2. 2.
    Braundmeier AG, Miller DJ. The search is on: finding accurate molecular markers of male fertility. J Dairy Sci. 2001;84(9):1915–25.PubMedCrossRefGoogle Scholar
  3. 3.
    World Health Organization. WHO laboratory manual for the examination of human semen and sperm-cervical mucus interaction. 4th ed. Cambridge: Cambridge University Press; 1999.Google Scholar
  4. 4.
    Garrido N, Remohi J, Martinez-Conejero JA, Garcia-Herrero S, Pellicer A, Meseguer M. Contribution of sperm molecular features to embryo quality and assisted reproduction success. Reprod Biomed Online. 2008;17(6):855–65.PubMedCrossRefGoogle Scholar
  5. 5.
    Garrido N, Meseguer M, Simon C, Pellicer A, Remohi J. Pro-oxidative and anti-oxidative imbalance in human semen and its relation with male fertility. Asian J Androl. 2004;6(1):59–65.PubMedGoogle Scholar
  6. 6.
    Saleh RA, Agarwal A. Oxidative stress and male infertility: from research bench to clinical practice. J Androl. 2002;23(6):737–52.PubMedGoogle Scholar
  7. 7.
    Sharma RK, Pasqualotto AE, Nelson DR, Thomas Jr AJ, Agarwal A. Relationship between seminal white blood cell counts and oxidative stress in men treated at an infertility clinic. J Androl. 2001;22(4):575–83.PubMedGoogle Scholar
  8. 8.
    Sharma RK, Pasqualotto FF, Nelson DR, Thomas Jr AJ, Agarwal A. The reactive oxygen species-total antioxidant capacity score is a new measure of oxidative stress to predict male infertility. Hum Reprod. 1999;14(11):2801–7.PubMedCrossRefGoogle Scholar
  9. 9.
    Saleh RA, Agarwal A, Kandirali E, et al. Leukocytospermia is associated with increased reactive oxygen species production by human spermatozoa. Fertil Steril. 2002;78(6):1215–24.PubMedCrossRefGoogle Scholar
  10. 10.
    Agarwal A, Gupta S, Sikka S. The role of free radicals and antioxidants in reproduction. Curr Opin Obstet Gynecol. 2006;18(3):325–32.PubMedCrossRefGoogle Scholar
  11. 11.
    Padron OF, Brackett NL, Sharma RK, Lynne CM, Thomas Jr AJ, Agarwal A. Seminal reactive oxygen species and sperm motility and morphology in men with spinal cord injury. Fertil Steril. 1997;67(6):1115–20.PubMedCrossRefGoogle Scholar
  12. 12.
    Sikka SC. Role of oxidative stress and antioxidants in andrology and assisted reproductive technology. J Androl. 2004;25(1):5–18.PubMedGoogle Scholar
  13. 13.
    Shekarriz M, DeWire DM, Thomas Jr AJ, Agarwal A. A method of human semen centrifugation to minimize the iatrogenic sperm injuries caused by reactive oxygen species. Eur Urol. 1995; 28(1):31–5.PubMedGoogle Scholar
  14. 14.
    Shekarriz M, Thomas Jr AJ, Agarwal A. Incidence and level of seminal reactive oxygen species in normal men. Urology. 1995; 45(1):103–7.PubMedCrossRefGoogle Scholar
  15. 15.
    Griveau JF, Le Lannou D. Influence of oxygen tension on reactive oxygen species production and human sperm function. Int J Androl. 1997;20(4):195–200.PubMedCrossRefGoogle Scholar
  16. 16.
    Whittington K, Ford WC. The effect of incubation periods under 95% oxygen on the stimulated acrosome reaction and motility of human spermatozoa. Mol Hum Reprod. 1998;4(11):1053–7.PubMedCrossRefGoogle Scholar
  17. 17.
    Watson PF. The causes of reduced fertility with cryopreserved semen. Anim Reprod Sci. 2000;60–61:481–92.PubMedCrossRefGoogle Scholar
  18. 18.
    Rossi T, Mazzilli F, Delfino M, Dondero F. Improved human sperm recovery using superoxide dismutase and catalase supplementation in semen cryopreservation procedure. Cell Tissue Bank. 2001;2(1):9–13.PubMedCrossRefGoogle Scholar
  19. 19.
    Donnelly ET, McClure N, Lewis SE. The effect of ascorbate and alpha-tocopherol supplementation in vitro on DNA integrity and hydrogen peroxide-induced DNA damage in human spermatozoa. Mutagenesis. 1999;14(5):505–12.PubMedCrossRefGoogle Scholar
  20. 20.
    Yenilmez E, Yildirmis S, Yulug E, et al. Ham’s F-10 medium and Ham’s F-10 medium plus vitamin E have protective effect against oxidative stress in human semen. Urology. 2006;67(2):384–7.PubMedCrossRefGoogle Scholar
  21. 21.
    Zheng RL, Zhang H. Effects of ferulic acid on fertile and asthenozoospermic infertile human sperm motility, viability, lipid peroxidation, and cyclic nucleotides. Free Radic Biol Med. 1997; 22(4):581–6.PubMedCrossRefGoogle Scholar
  22. 22.
    Gomez E, Aitken J. Impact of in vitro fertilization culture media on peroxidative damage to human spermatozoa. Fertil Steril. 1996; 65(4):880–2.PubMedGoogle Scholar
  23. 23.
    Donnelly ET, McClure N, Lewis SE. Glutathione and hypotaurine in vitro: effects on human sperm motility, DNA integrity and production of reactive oxygen species. Mutagenesis. 2000; 15(1):61–8.PubMedCrossRefGoogle Scholar
  24. 24.
    Twigg J, Fulton N, Gomez E, Irvine DS, Aitken RJ. Analysis of the impact of intracellular reactive oxygen species generation on the structural and functional integrity of human spermatozoa: lipid peroxidation, DNA fragmentation and effectiveness of antioxidants. Hum Reprod. 1998;13(6):1429–36.PubMedCrossRefGoogle Scholar
  25. 25.
    Oeda T, Henkel R, Ohmori H, Schill WB. Scavenging effect of N-acetyl-L-cysteine against reactive oxygen species in human semen: a possible therapeutic modality for male factor infertility? Andrologia. 1997;29(3):125–31.PubMedCrossRefGoogle Scholar
  26. 26.
    Martinez-Soto JC, de DiosHourcade J, Gutierrez-Adan A, Landeras JL, Gadea J. Effect of genistein supplementation of thawing medium on characteristics of frozen human spermatozoa. Asian J Androl. 2010;12(3):431–41.PubMedCrossRefGoogle Scholar
  27. 27.
    Saleh RA, Agarwal A, Sharma RK, Nelson DR, Thomas Jr AJ. Effect of cigarette smoking on levels of seminal oxidative stress in infertile men: a prospective study. Fertil Steril. 2002;78(3):491–9.PubMedCrossRefGoogle Scholar
  28. 28.
    Fraga CG, Motchnik PA, Wyrobek AJ, Rempel DM, Ames BN. Smoking and low antioxidant levels increase oxidative damage to sperm DNA. Mutat Res. 1996;351(2):199–203.PubMedCrossRefGoogle Scholar
  29. 29.
    Mostafa T, Tawadrous G, Roaia MM, Amer MK, Kader RA, Aziz A. Effect of smoking on seminal plasma ascorbic acid in infertile and fertile males. Andrologia. 2006;38(6):221–4.PubMedCrossRefGoogle Scholar
  30. 30.
    Viloria T, Meseguer M, Martinez-Conejero JA. et al. Fertil Steril: Cigarette smoking affects specific sperm oxidative defense but does not cause oxidative DNA damage in infertile men; 2009.Google Scholar
  31. 31.
    Viloria T, Garrido N, Fernandez JL, Remohi J, Pellicer A, Meseguer M. Sperm selection by swim-up in terms of deoxyribonucleic acid fragmentation as measured by the sperm chromatin dispersion test is altered in heavy smokers. Fertil Steril. 2007;88(2):523–5.PubMedCrossRefGoogle Scholar
  32. 32.
    Eskenazi B, Kidd SA, Marks AR, Sloter E, Block G, Wyrobek AJ. Antioxidant intake is associated with semen quality in healthy men. Hum Reprod. 2005;20(4):1006–12.PubMedCrossRefGoogle Scholar
  33. 33.
    Therond P, Auger J, Legrand A, Jouannet P. Alpha-tocopherol in human spermatozoa and seminal plasma: relationships with motility, antioxidant enzymes and leukocytes. Mol Hum Reprod. 1996;2(10):739–44.PubMedCrossRefGoogle Scholar
  34. 34.
    Silver EW, Eskenazi B, Evenson DP, Block G, Young S, Wyrobek AJ. Effect of antioxidant intake on sperm chromatin stability in healthy nonsmoking men. J Androl. 2005;26(4):550–6.PubMedCrossRefGoogle Scholar
  35. 35.
    Song GJ, Norkus EP, Lewis V. Relationship between seminal ascorbic acid and sperm DNA integrity in infertile men. Int J Androl. 2006;29(6):569–75.PubMedCrossRefGoogle Scholar
  36. 36.
    Wu D, Cederbaum AI. Alcohol, oxidative stress, and free radical damage. Alcohol Res Health. 2003;27(4):277–84.PubMedGoogle Scholar
  37. 37.
    Koch OR, Pani G, Borrello S, et al. Oxidative stress and antioxidant defenses in ethanol-induced cell injury. Mol Aspects Med. 2004;25(1–2):191–8.PubMedCrossRefGoogle Scholar
  38. 38.
    Maneesh M, Dutta S, Chakrabarti A, Vasudevan DM. Alcohol abuse-duration dependent decrease in plasma testosterone and antioxidants in males. Indian J Physiol Pharmacol. 2006;50(3):291–6.PubMedGoogle Scholar
  39. 39.
    Peake JM, Suzuki K, Coombes JS. The influence of antioxidant supplementation on markers of inflammation and the relationship to oxidative stress after exercise. J Nutr Biochem. 2007; 18(6):357–71.PubMedCrossRefGoogle Scholar
  40. 40.
    Singer G, Granger DN. Inflammatory responses underlying the microvascular dysfunction associated with obesity and insulin resistance. Microcirculation. 2007;14(4–5):375–87.PubMedCrossRefGoogle Scholar
  41. 41.
    Perez-Crespo M, Pintado B, Gutierrez-Adan A. Scrotal heat stress effects on sperm viability, sperm DNA integrity, and the offspring sex ratio in mice. Mol Reprod Dev. 2008;75(1):40–7.PubMedCrossRefGoogle Scholar
  42. 42.
    Agarwal DK, Maronpot RR, Lamb IV JC, Kluwe WM. Adverse effects of butyl benzyl phthalate on the reproductive and hematopoietic systems of male rats. Toxicology. 1985;35(3):189–206.PubMedCrossRefGoogle Scholar
  43. 43.
    Srivastava SP, Srivastava S, Saxena DK, Chandra SV, Seth PK. Testicular effects of di-n-butyl phthalate (DBP): biochemical and histopathological alterations. Arch Toxicol. 1990;64(2):148–52.PubMedCrossRefGoogle Scholar
  44. 44.
    Lee E, Ahn MY, Kim HJ, et al. Effect of di(n-butyl) phthalate on testicular oxidative damage and antioxidant enzymes in hyperthyroid rats. Environ Toxicol. 2007;22(3):245–55.PubMedCrossRefGoogle Scholar
  45. 45.
    Chitra KC, Sujatha R, Latchoumycandane C, Mathur PP. Effect of lindane on antioxidant enzymes in epididymis and epididymal sperm of adult rats. Asian J Androl. 2001;3(3):205–8.PubMedGoogle Scholar
  46. 46.
    Latchoumycandane C, Chitra KC, Mathur PP. 2,3,7,8-Tetrachlorodibenzo- p-dioxin (TCDD) induces oxidative stress in the epididymis and epididymal sperm of adult rats. Arch Toxicol. 2003;77(5):280–4.PubMedGoogle Scholar
  47. 47.
    Latchoumycandane C, Mathur PP. Induction of oxidative stress in the rat testis after short-term exposure to the organochlorine pesticide methoxychlor. Arch Toxicol. 2002;76(12):692–8.PubMedCrossRefGoogle Scholar
  48. 48.
    Meng Z, Bai W. Oxidation damage of sulfur dioxide on testicles of mice. Environ Res. 2004;96(3):298–304.PubMedCrossRefGoogle Scholar
  49. 49.
    Gonzalez-Flecha B. Oxidant mechanisms in response to ambient air particles. Mol Aspects Med. 2004;25(1–2):169–82.PubMedCrossRefGoogle Scholar
  50. 50.
    Hsu PC, Guo YL. Antioxidant nutrients and lead toxicity. Toxicology. 2002;180(1):33–44.PubMedCrossRefGoogle Scholar
  51. 51.
    Acharya UR, Acharya S, Mishra M. Lead acetate induced cytotoxicity in male germinal cells of Swiss mice. Ind Health. 2003;41(3):291–4.PubMedCrossRefGoogle Scholar
  52. 52.
    Xu DX, Shen HM, Zhu QX, et al. The associations among semen quality, oxidative DNA damage in human spermatozoa and concentrations of cadmium, lead and selenium in seminal plasma. Mutat Res. 2003;534(1–2):155–63.PubMedGoogle Scholar
  53. 53.
    Garrido N, Meseguer M, Simon C, Pellicer A, Remohi J. Pro-oxidative and anti-oxidative imbalance in human semen and its relation with male fertility. Asian J Androl. 2004;6(1):59–65.PubMedGoogle Scholar
  54. 54.
    Kobayashi T, Miyazaki T, Natori M, Nozawa S. Protective role of superoxide dismutase in human sperm motility: superoxide dismutase activity and lipid peroxide in human seminal plasma and spermatozoa. Hum Reprod. 1991;6(7):987–91.PubMedGoogle Scholar
  55. 55.
    Hsieh YY, Sun YL, Chang CC, Lee YS, Tsai HD, Lin CS. Superoxide dismutase activities of spermatozoa and seminal plasma are not correlated with male infertility. J Clin Lab Anal. 2002;16(3):127–31.PubMedCrossRefGoogle Scholar
  56. 56.
    Miesel R, Jedrzejczak P, Sanocka D, Kurpisz MK. Severe antioxidase deficiency in human semen samples with pathological spermiogram parameters. Andrologia. 1997;29(2):77–83.PubMedCrossRefGoogle Scholar
  57. 57.
    Jeulin C, Soufir JC, Weber P, Laval-Martin D, Calvayrac R. Catalase activity in human spermatozoa and seminal plasma. Gamete Res. 1989;24(2):185–96.PubMedCrossRefGoogle Scholar
  58. 58.
    Meseguer M, Martinez-Conejero JA, Muriel L, Pellicer A, Remohi J, Garrido N. The human sperm glutathione system: a key role in male fertility and successful cryopreservation. Drug Metab Lett. 2007;1(2):121–6.PubMedCrossRefGoogle Scholar
  59. 59.
    Meseguer M, Garrido N, Simon C, Pellicer A, Remohi J. Concentration of glutathione and expression of glutathione peroxidases 1 and 4 in fresh sperm provide a forecast of the outcome of cryopreservation of human spermatozoa. J Androl. 2004;25(5):773–80.PubMedGoogle Scholar
  60. 60.
    Garrido N, Meseguer M, Alvarez J, Simon C, Pellicer A, Remohi J. Relationship among standard semen parameters, glutathione peroxidase/glutathione reductase activity, and mRNA expression and reduced glutathione content in ejaculated spermatozoa from fertile and infertile men. Fertil Steril. 2004;82 Suppl 3:1059–66.PubMedCrossRefGoogle Scholar
  61. 61.
    Alvarez JG, Storey BT. Taurine, hypotaurine, epinephrine and albumin inhibit lipid peroxidation in rabbit spermatozoa and protect against loss of motility. Biol Reprod. 1983;29(3):548–55.PubMedCrossRefGoogle Scholar
  62. 62.
    Holmes RP, Goodman HO, Shihabi ZK, Jarow JP. The taurine and hypotaurine content of human semen. J Androl. 1992;13(3):289–92.PubMedGoogle Scholar
  63. 63.
    Meseguer M, Martinez-Conejero JA, O’Connor JE, Pellicer A, Remohi J, Garrido N. The significance of sperm DNA oxidation in embryo development and reproductive outcome in an oocyte donation program: a new model to study a male infertility prognostic factor. Fertil Steril. 2008;89(5):1191–9.PubMedCrossRefGoogle Scholar
  64. 64.
    Aguilar C, Meseguer M, Garcia-Herrero S, Gil-Salom M, O’Connor JE, Garrido N. Relevance of testicular sperm DNA oxidation for the outcome of ovum donation cycles. Fertil Steril. 2010;94:979–88.PubMedCrossRefGoogle Scholar
  65. 65.
    Muriel L, Goyanes V, Segrelles E, Gosalvez J, Alvarez JG, Fernandez JL. Increased aneuploidy rate in sperm with fragmented DNA as determined by the sperm chromatin dispersion (SCD) test and fish analysis. J Androl. 2007;28:38–49.PubMedCrossRefGoogle Scholar
  66. 66.
    Muriel L, Garrido N, Fernandez JL, et al. Value of the sperm deoxyribonucleic acid fragmentation level, as measured by the sperm chromatin dispersion test, in the outcome of in vitro fertilization and intracytoplasmic sperm injection. Fertil Steril. 2006;85(2):371–83.PubMedCrossRefGoogle Scholar
  67. 67.
    Meseguer M, Santiso R, Garrido N, Gil-Salom M, Remohi J, Fernandez JL. Sperm DNA fragmentation levels in testicular sperm samples from azoospermic males as assessed by the sperm chromatin dispersion (SCD) test. Fertil Steril. 2009;92(5):1638–45.PubMedCrossRefGoogle Scholar
  68. 68.
    Meseguer M, Santiso R, Garrido N, Fernandez JL. The effect of cancer on sperm DNA fragmentation as measured by the sperm chromatin dispersion test. Fertil Steril. 2008;90(1):225–7.PubMedCrossRefGoogle Scholar
  69. 69.
    Sakkas D, Mariethoz E, Manicardi G, Bizzaro D, Bianchi PG, Bianchi U. Origin of DNA damage in ejaculated human spermatozoa. Rev Reprod. 1999;4(1):31–7.PubMedCrossRefGoogle Scholar
  70. 70.
    Sakkas D, Mariethoz E, St John JC. Abnormal sperm parameters in humans are indicative of an abortive apoptotic mechanism linked to the Fas-mediated pathway. Exp Cell Res. 1999;251(2):350–5.PubMedCrossRefGoogle Scholar
  71. 71.
    Sinha Hikim AP, Swerdloff RS. Hormonal and genetic control of germ cell apoptosis in the testis. Rev Reprod. 1999;4(1):38–47.PubMedCrossRefGoogle Scholar
  72. 72.
    Shen HM, Dai J, Chia SE, Lim A, Ong CN. Detection of apoptotic alterations in sperm in subfertile patients and their correlations with sperm quality. Hum Reprod. 2002;17(5):1266–73.PubMedCrossRefGoogle Scholar
  73. 73.
    Krammer PH, Dhein J, Walczak H, et al. The role of APO-1-mediated apoptosis in the immune system. Immunol Rev. 1994;142:175–91.PubMedCrossRefGoogle Scholar
  74. 74.
    Cande C, Cecconi F, Dessen P, Kroemer G. Apoptosis-inducing factor (AIF): key to the conserved caspase-independent pathways of cell death? J Cell Sci. 2002;115(Pt 24):4727–34.PubMedCrossRefGoogle Scholar
  75. 75.
    Paasch U, Sharma RK, Gupta AK, et al. Cryopreservation and thawing is associated with varying extent of activation of apoptotic machinery in subsets of ejaculated human spermatozoa. Biol Reprod. 2004;71(6):1828–37.PubMedCrossRefGoogle Scholar
  76. 76.
    Paasch U, Agarwal A, Gupta AK, et al. Apoptosis signal transduction and the maturity status of human spermatozoa. Ann N Y Acad Sci. 2003;1010:486–8.PubMedCrossRefGoogle Scholar
  77. 77.
    Paasch U, Grunewald S, Agarwal A, Glandera HJ. Activation pattern of caspases in human spermatozoa. Fertil Steril. 2004;81 Suppl 1:802–9.PubMedCrossRefGoogle Scholar
  78. 78.
    Agarwal A, Said TM. Role of sperm chromatin abnormalities and DNA damage in male infertility. Hum Reprod Update. 2003;9(4):331–45.PubMedCrossRefGoogle Scholar
  79. 79.
    Comhaire FH, El Garem Y, Mahmoud A, Eertmans F, Schoonjans F. Combined conventional/antioxidant “Astaxanthin” treatment for male infertility: a double blind, randomized trial. Asian J Androl. 2005;7(3):257–62.PubMedCrossRefGoogle Scholar
  80. 80.
    Vicari E, La Vignera S, Calogero AE. Antioxidant treatment with carnitines is effective in infertile patients with prostatovesiculoepididymitis and elevated seminal leukocyte concentrations after treatment with nonsteroidal anti-inflammatory compounds. Fertil Steril. 2002;78(6):1203–8.PubMedCrossRefGoogle Scholar
  81. 81.
    Comhaire FH, Christophe AB, Zalata AA, Dhooge WS, Mahmoud AM, Depuydt CE. The effects of combined conventional treatment, oral antioxidants and essential fatty acids on sperm biology in subfertile men. Prostaglandins Leukot Essent Fatty Acids. 2000;63(3): 159–65.PubMedCrossRefGoogle Scholar
  82. 82.
    Suleiman SA, Ali ME, Zaki ZM, el-Malik EM, Nasr MA. Lipid peroxidation and human sperm motility: protective role of vitamin E. J Androl. 1996;17(5):530–7.PubMedGoogle Scholar
  83. 83.
    Kessopoulou E, Powers HJ, Sharma KK, et al. A double-blind randomized placebo cross-over controlled trial using the antioxidant vitamin E to treat reactive oxygen species associated male infertility. Fertil Steril. 1995;64(4):825–31.PubMedGoogle Scholar
  84. 84.
    Keskes-Ammar L, Feki-Chakroun N, Rebai T, et al. Sperm oxidative stress and the effect of an oral vitamin E and selenium supplement on semen quality in infertile men. Arch Androl. 2003;49(2):83–94.PubMedCrossRefGoogle Scholar
  85. 85.
    Greco E, Iacobelli M, Rienzi L, Ubaldi F, Ferrero S, Tesarik J. Reduction of the incidence of sperm DNA fragmentation by oral antioxidant treatment. J Androl. 2005;26(3):349–53.PubMedCrossRefGoogle Scholar
  86. 86.
    Greco E, Romano S, Iacobelli M, et al. ICSI in cases of sperm DNA damage: beneficial effect of oral antioxidant treatment. Hum Reprod. 2005;20(9):2590–4.PubMedCrossRefGoogle Scholar
  87. 87.
    Tremellen K, Miari G, Froiland D, Thompson J. A randomised control trial examining the effect of an antioxidant (Menevit) on pregnancy outcome during IVF-ICSI treatment. Aust N Z J Obstet Gynaecol. 2007;47(3):216–21.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Nicolas Garrido
    • 1
    Email author
  • Sandra García-Herrero
    • 2
  • Laura Romany
    • 3
  • José Remohí
    • 4
    • 5
  • Antonio Pellicer
    • 4
    • 5
  • Marcos Meseguer
    • 3
  1. 1.Andrology Laboratory and Sperm BankInstituto Universitario IVI ValenciaValenciaSpain
  2. 2.IVIOMICSValenciaSpain
  3. 3.Clinical Embryology LaboratoryInstituto Universitario IVI ValenciaValenciaSpain
  4. 4.Department of Gynecology and Obstetrics, School of MedicineUniversidad de ValenciaValenciaSpain
  5. 5.Assisted Reproduction UnitInstituto Universitario IVI Valencia, Universidad de ValenciaValenciaSpain

Personalised recommendations