Sperm Processing and Selection

  • Sonja GrunewaldEmail author
  • Uwe Paasch


The application of assisted reproductive techniques (ART) has provided help to many men seeking to father a child, although the current success rates of these procedures remain suboptimal. Since raw semen cannot be used in most ART, a workup of the ejaculate is needed to extract those sperm that are capable to fertilize the egg. However, the seminal fluid has a high antioxidant capacity, and sperm processing and separation could profoundly increase oxidative stress. High levels of reactive oxygen species (ROS, e.g., superoxide, hydroxyl, hydrogen peroxide, nitric oxide, peroxynitrite) endanger sperm motility, viability, and function by interacting with membrane lipids, proteins, and nuclear and mitochondrial DNA. Normally, there exists a balance between free radical generating and scavenging systems. It is well known that high levels of ROS are generated by immature and abnormal spermatozoa, contaminating leukocytes and sperm processing, for example, excessive centrifugation and cryopreservation/thawing. Naturally, high antioxidant levels in seminal plasma are the major scavenging mechanism. This chapter gives an overview on sperm selection techniques and their impact on oxidative stress to the sperm.


Sperm processing Sperm selection Assisted reproductive techniques Reactive oxygen species Molecular glass wool Hyaluronic acid-mediated sperm selection Oxidative stress 



The authors are grateful to Prof. emeritus Hans-Juergen Glander for his support and encouragement.


  1. 1.
    Society for Assisted Reproductive Technology and American Society for Reproductive Medicine. Assisted reproductive technology in the United States: 2000 results generated from the American Society for Reproductive Medicine/Society for Assisted Reproductive Technology Registry. Fertil Steril. 2004;81:1207–20.CrossRefGoogle Scholar
  2. 2.
    Sikka SC. Relative impact of oxidative stress on male reproductive function. Curr Med Chem. 2001;8:851–62.PubMedGoogle Scholar
  3. 3.
    Ollero M, Gil-Guzman E, Lopez MC, Sharma RK, Agarwal A, Larson K, Evenson D, Thomas Jr AJ, Alvarez JG. Characterization of subsets of human spermatozoa at different stages of maturation: implications in the diagnosis and treatment of male infertility. Hum Reprod. 2001;16:1912–21.PubMedCrossRefGoogle Scholar
  4. 4.
    Mazzilli F, Rossi T, Sabatini L, Pulcinelli FM, Rapone S, Dondero F, Gazzaniga PP. Human sperm cryopreservation and reactive oxygen species (ROS) production. Acta Eur Fertil. 1995;26:145–8.PubMedGoogle Scholar
  5. 5.
    Ludwig M, Kummel C, Schroeder-Printzen I, Ringert RH, Weidner W. Evaluation of seminal plasma parameters in patients with chronic prostatitis or leukocytospermia. Andrologia. 1998;30 Suppl 1:41–7.PubMedGoogle Scholar
  6. 6.
    Iwasaki A, Gagnon C. Formation of reactive oxygen species in spermatozoa of infertile patients. Fertil Steril. 1992;57:409–16.PubMedGoogle Scholar
  7. 7.
    Aitken RJ, Buckingham DW, Brindle J, Gomez E, Baker HW, Irvine DS. Analysis of sperm movement in relation to the oxidative stress created by leukocytes in washed sperm preparations and seminal plasma. Hum Reprod. 1995;10:2061–71.PubMedGoogle Scholar
  8. 8.
    Aitken RJ, West K, Buckingham D. Leukocytic infiltration into the human ejaculate and its association with semen quality, oxidative stress, and sperm function. J Androl. 1994;15:343–52.PubMedGoogle Scholar
  9. 9.
    Twigg J, Irvine DS, Houston P, Fulton N, Michael L, Aitken RJ. Iatrogenic DNA damage induced in human spermatozoa during sperm preparation: protective significance of seminal plasma. Mol Hum Reprod. 1998;4:439–45.PubMedCrossRefGoogle Scholar
  10. 10.
    Donnelly ET, McClure N, Lewis SE. Antioxidant supplementation in vitro does not improve human sperm motility. Fertil Steril. 1999;72:484–95.PubMedCrossRefGoogle Scholar
  11. 11.
    Agarwal A, Saleh RA. Role of oxidants in male infertility: rationale, significance, and treatment. Urol Clin North Am. 2002;29:817–27.PubMedCrossRefGoogle Scholar
  12. 12.
    Lewis SE, Boyle PM, McKinney KA, Young IS, Thompson W. Total antioxidant capacity of seminal plasma is different in fertile and infertile men. Fertil Steril. 1995;64:868–70.PubMedGoogle Scholar
  13. 13.
    Potts RJ, Notarianni LJ, Jefferies TM. Seminal plasma reduces exogenous oxidative damage to human sperm, determined by the measurement of DNA strand breaks and lipid peroxidation. Mutat Res. 2000;447:249–56.PubMedCrossRefGoogle Scholar
  14. 14.
    Zini A, de Lamirande E, Gagnon C. Reactive oxygen species in semen of infertile patients: levels of superoxide dismutase- and catalase-like activities in seminal plasma and spermatozoa. Int J Androl. 1993;16:183–8.PubMedCrossRefGoogle Scholar
  15. 15.
    Alvarez JG, Storey BT. Role of glutathione peroxidase in protecting mammalian spermatozoa from loss of motility caused by spontaneous lipid peroxidation. Gamete Res. 1989;23:77–90.PubMedCrossRefGoogle Scholar
  16. 16.
    Saleh RA, Agarwal A. Oxidative stress and male infertility: from research bench to clinical practice. J Androl. 2002;23:737–52.PubMedGoogle Scholar
  17. 17.
    Twigg J, Fulton N, Gomez E, Irvine DS, Aitken RJ. Analysis of the impact of intracellular reactive oxygen species generation on the structural and functional integrity of human spermatozoa: lipid peroxidation, DNA fragmentation and effectiveness of antioxidants. Hum Reprod. 1998;13:1429–36.PubMedCrossRefGoogle Scholar
  18. 18.
    Lopes S, Jurisicova A, Sun JG, Casper RF. Reactive oxygen species: potential cause for DNA fragmentation in human spermatozoa. Hum Reprod. 1998;13:896–900.PubMedCrossRefGoogle Scholar
  19. 19.
    Hughes CM, Lewis SE, McKelvey-Martin VJ, Thompson W. The effects of antioxidant supplementation during Percoll preparation on human sperm DNA integrity. Hum Reprod. 1998;13:1240–7.PubMedCrossRefGoogle Scholar
  20. 20.
    Geva E, Lessing JB, Lerner GL, Amit A. Free radicals, antioxidants and human spermatozoa: clinical implications. Hum Reprod. 1998;13:1422–4.PubMedCrossRefGoogle Scholar
  21. 21.
    Sierens J, Hartley JA, Campbell MJ, Leathem AJ, Woodside JV. In vitro isoflavone supplementation reduces hydrogen peroxide-induced DNA damage in sperm. Teratog Carcinog Mutagen. 2002;22:227–34.PubMedCrossRefGoogle Scholar
  22. 22.
    Armstrong JS, Rajasekaran M, Hellstrom WJ, Sikka SC. Antioxidant potential of human serum albumin: role in the recovery of high quality human spermatozoa for assisted reproductive technology. J Androl. 1998;19:412–9.PubMedGoogle Scholar
  23. 23.
    Edwards RG, Bavister BD, Steptoe PC. Early stages of fertilization in vitro of human oocytes matured in vitro. Nature. 1969;221:632–5.PubMedCrossRefGoogle Scholar
  24. 24.
    Srisombut C, Morshedi M, Lin MH, Nassar A, Oehninger S. Comparison of various methods of processing human cryopreserved-thawed semen samples. Hum Reprod. 1998;13:2151–7.PubMedCrossRefGoogle Scholar
  25. 25.
    Glander HJ. Effektivität der Methoden für die Spermienkollektion, -separation und -konzentrierung. Hautnah Derm. 1993;9:52–60.Google Scholar
  26. 26.
    Bolton VN, Braude PR. Preparation of human spermatozoa for in vitro fertilization by isopycnic centrifugation on self-generating density gradients. Arch Androl. 1984;13:167–76.PubMedCrossRefGoogle Scholar
  27. 27.
    Pousette A, Akerlof E, Rosenborg L, Fredricsson B. Increase in progressive motility and improved morphology of human spermatozoa following their migration through Percoll gradients. Int J Androl. 1986;9:1–13.PubMedCrossRefGoogle Scholar
  28. 28.
    Berger T, Marrs RP, Moyer DL. Comparison of techniques for selection of motile spermatozoa. Fertil Steril. 1985;43:268–73.PubMedGoogle Scholar
  29. 29.
    Mortimer D, Mortimer ST. Methods of sperm preparation for assisted reproduction. Ann Acad Med Singapore. 1992;21:517–24.PubMedGoogle Scholar
  30. 30.
    Gorus FK, Pipeleers DG. A rapid method for the fractionation of human spermatozoa according to their progressive motility. Fertil Steril. 1981;35:662–5.PubMedGoogle Scholar
  31. 31.
    Bongso A, Ng SC, Mok H, Lim MN, Teo HL, Wong PC, Ratnam S. Improved sperm concentration, motility, and fertilization rates following Ficoll treatment of sperm in a human in vitro fertilization program. Fertil Steril. 1989;51:850–4.PubMedGoogle Scholar
  32. 32.
    Harrison RA. A highly efficient method for washing mammalian spermatozoa. J Reprod Fertil. 1976;48:347–53.PubMedCrossRefGoogle Scholar
  33. 33.
    Gellert-Mortimer ST, Clarke GN, Baker HW, Hyne RV, Johnston WI. Evaluation of Nycodenz and Percoll density gradients for the selection of motile human spermatozoa. Fertil Steril. 1988;49:335–41.PubMedGoogle Scholar
  34. 34.
    Glander HJ, Schaller J, Ladusch M. [A simple method for separating fresh and cryopreserved human sperm using dextran-visotrast density gradient centrifugation] Eine einfache Methode zur Separierung von frischen und kryokonservierten Humanspermien mittels einer Dextran-Visotrast- Dichtegradientenzentrifugation. Zentralbl Gynakol. 1990;112:91–7.PubMedGoogle Scholar
  35. 35.
    Aitken RJ, Clarkson JS. Significance of reactive oxygen species and antioxidants in defining the efficacy of sperm preparation techniques. J Androl. 1988;9:367–76.PubMedGoogle Scholar
  36. 36.
    Pharmacia Biotech I. Important notice: Percoll® NOT to be used in Assisted Reproduction Technologies in Humans. 1996.Google Scholar
  37. 37.
    Makkar G, Ng HY, Yeung SB, Ho PC. Comparison of two colloidal silica-based sperm separation media with a non-silica-based medium. Fertil Steril. 1999;72:796–802.PubMedCrossRefGoogle Scholar
  38. 38.
    Sills ES, Wittkowski KM, Tucker MJ, Perloe M, Kaplan CR, Palermo GD. Comparison of centrifugation- and noncentrifugation-based techniques for recovery of motile human sperm in assisted reproduction. Arch Androl. 2002;48:141–5.PubMedCrossRefGoogle Scholar
  39. 39.
    Chen MJ, Bongso A. Comparative evaluation of two density gradient preparations for sperm separation for medically assisted conception. Hum Reprod. 1999;14:759–64.PubMedCrossRefGoogle Scholar
  40. 40.
    Claassens OE, Menkveld R, Harrison KL. Evaluation of three substitutes for Percoll in sperm isolation by density gradient centrifugation. Hum Reprod. 1998;13:3139–43.PubMedCrossRefGoogle Scholar
  41. 41.
    Soderlund B, Lundin K. The use of silane-coated silica particles for density gradient centrifugation in in-vitro fertilization. Hum Reprod. 2000;15:857–60.PubMedCrossRefGoogle Scholar
  42. 42.
    McCann CT, Chantler E. Properties of sperm separated using Percoll and IxaPrep density gradients. A comparison made using CASA, longevity, morphology and the acrosome reaction. Int J Androl. 2000;23:205–9.PubMedCrossRefGoogle Scholar
  43. 43.
    Wu TP, Huang BM, Tsai HC, Lui MC, Liu MY. Effects of nitric oxide on human spermatozoa activity, fertilization and mouse embryonic development. Arch Androl. 2004;50:173–9.PubMedCrossRefGoogle Scholar
  44. 44.
    Barroso G, Taylor S, Morshedi M, Manzur F, Gavino F, Oehninger S. Mitochondrial membrane potential integrity and plasma membrane translocation of phosphatidylserine as early apoptotic markers: a comparison of two different sperm subpopulations. Fertil Steril. 2006;85:149–54.PubMedCrossRefGoogle Scholar
  45. 45.
    Larson KL, Brannian JD, Timm BK, Jost LK, Evenson DP. Density gradient centrifugation and glass wool filtration of semen remove spermatozoa with damaged chromatin structure. Hum Reprod. 1999;14:2015–9.PubMedCrossRefGoogle Scholar
  46. 46.
    Said TM, Grunewald S, Paasch U, Glander HJ, Baumann T, Kriegel C, Li L, Agarwal A. Advantage of combining magnetic cell separation with sperm preparation techniques. Reprod Biomed Online. 2005;10:740–6.PubMedCrossRefGoogle Scholar
  47. 47.
    Paulson JD, Polakoski KL. A glass wool column procedure for removing extraneous material from the human ejaculate. Fertil Steril. 1977;28:178–81.PubMedGoogle Scholar
  48. 48.
    Paulson JD, Polakoski KL, Leto S. Further characterization of glass wool column filtration of human semen. Fertil Steril. 1979;32:125–6.PubMedGoogle Scholar
  49. 49.
    Sanchez R, Concha M, Ichikawa T, Henkel R, Schill WB. Glass wool filtration reduces reactive oxygen species by elimination of leukocytes in oligozoospermic patients with leukocytospermia. J Assist Reprod Genet. 1996;13:489–94.PubMedCrossRefGoogle Scholar
  50. 50.
    Ford WC, McLaughlin EA, Prior SM, Rees JM, Wardle PG, Hull MG. The yield, motility and performance in the hamster egg test of human spermatozoa prepared from cryopreserved semen by four different methods. Hum Reprod. 1992;7:654–9.PubMedGoogle Scholar
  51. 51.
    Sherman JK, Paulson JD, Liu KC. Effect of glass wool filtration on ultrastructure of human spermatozoa. Fertil Steril. 1981;36:643–7.PubMedGoogle Scholar
  52. 52.
    Henkel RR, Franken DR, Lombard CJ, Schill WB. Selective capacity of glass-wool filtration for the separation of human spermatozoa with condensed chromatin: a possible therapeutic modality for male-factor cases? J Assist Reprod Genet. 1994;11:395–400.PubMedCrossRefGoogle Scholar
  53. 53.
    Henkel R, Schill WB. Sperm separation in patients with urogenital infections. Andrologia. 1998;30 Suppl 1:91–7.PubMedGoogle Scholar
  54. 54.
    Kim SH, Yu DH, Kim YJ. Apoptosis-like change, ROS, and DNA status in cryopreserved canine sperm recovered by glass wool filtration and Percoll gradient centrifugation techniques. Anim Reprod Sci. 2010;119:106–14.PubMedCrossRefGoogle Scholar
  55. 55.
    Grunewald S, Miska W, Miska G, Rasch M, Reinhardt M, Glander HJ, Paasch U. Molecular glass wool filtration as a new tool for sperm preparation. Hum Reprod. 2007;22:1405–12.PubMedCrossRefGoogle Scholar
  56. 56.
    Johnson DE, Confino E, Jeyendran RS. Glass wool column filtration versus mini-Percoll gradient for processing poor quality semen samples. Fertil Steril. 1996;66:459–62.PubMedGoogle Scholar
  57. 57.
    Van den Bergh M, Revelard P, Bertrand E, Biramane J, Vanin AS, Englert Y. Glass wool column filtration, an advantageous way of preparing semen samples for intracytoplasmic sperm injection: an auto-controlled randomized study. Hum Reprod. 1997;12:509–13.PubMedCrossRefGoogle Scholar
  58. 58.
    Rhemrev J, Jeyendran RS, Vermeiden JP, Zaneveld LJ. Human sperm selection by glass wool filtration and two-layer, discontinuous Percoll gradient centrifugation. Fertil Steril. 1989;51:685–90.PubMedGoogle Scholar
  59. 59.
    Dominguez LA, Burgos MH, Fornes MW. Morphometrical comparison of human spermatozoa obtained from semen and swim-up methodology. Andrologia. 1999;31:23–6.PubMedGoogle Scholar
  60. 60.
    Babbo CJ, Hecht BR, Jeyendran RS. Increased recovery of swim-up spermatozoa by application of “antigravitational” centrifugation. Fertil Steril. 1999;72:556–8.PubMedCrossRefGoogle Scholar
  61. 61.
    Younglai EV, Holt D, Brown P, Jurisicova A, Casper RF. Sperm swim-up techniques and DNA fragmentation. Hum Reprod. 2001;16:1950–3.PubMedCrossRefGoogle Scholar
  62. 62.
    Scott Jr RT, Oehninger SC, Menkveld R, Veeck LL, Acosta AA. Critical assessment of sperm morphology before and after double wash swim-up preparation for in vitro fertilization. Arch Androl. 1989;23:125–9.PubMedCrossRefGoogle Scholar
  63. 63.
    Grunewald S, Reinhardt M, Blumenauer V, Hmeidan AF, Glander HJ, Paasch U. Effects of post-density gradient swim-up on apoptosis signalling in human spermatozoa. Andrologia. 2010;42:127–31.PubMedCrossRefGoogle Scholar
  64. 64.
    Daya S, Gwatkin RB. Improvement in semen quality using glass bead column. Arch Androl. 1987;18:241–4.PubMedCrossRefGoogle Scholar
  65. 65.
    Drobnis EZ, Zhong CQ, Overstreet JW. Separation of cryopreserved human semen using Sephadex columns, washing, or Percoll gradients. J Androl. 1991;12:201–8.PubMedGoogle Scholar
  66. 66.
    Yavetz H, Hauser R, Homonnai ZT, Paz GF, Lessing JB, Amit A, Yogev I. Separation of sperm cells by sedimentation technique is not suitable for in vitro fertilization purposes. Andrologia. 1996;28:3–6.PubMedCrossRefGoogle Scholar
  67. 67.
    Chijioke PC, Crocker PR, Gilliam M, Owens MD, Pearson RM. Importance of filter structure for the trans-membrane migration studies of sperm motility. Hum Reprod. 1988;3:241–4.PubMedGoogle Scholar
  68. 68.
    Agarwal A, Manglona A, Loughlin KR. Improvement in semen quality and sperm fertilizing ability after filtration through the L4 membrane: comparison of results with swim up technique. J Urol. 1992;147:1539–41.PubMedGoogle Scholar
  69. 69.
    Bartoov B, Berkovitz A, Eltes F, Kogosowski A, Menezo Y, Barak Y. Real-time fine morphology of motile human sperm cells is associated with IVF-ICSI outcome. J Androl. 2002;23:1–8.PubMedGoogle Scholar
  70. 70.
    Ainsworth C, Nixon B, Aitken RJ. Development of a novel electrophoretic system for the isolation of human spermatozoa. Hum Reprod. 2005;20:2261–70.PubMedCrossRefGoogle Scholar
  71. 71.
    Huszar G, Ozkavukcu S, Jakab A, Celik-Ozenci C, Sati GL, Cayli S. Hyaluronic acid binding ability of human sperm reflects cellular maturity and fertilizing potential: selection of sperm for intracytoplasmic sperm injection. Curr Opin Obstet Gynecol. 2006;18:260–7.PubMedCrossRefGoogle Scholar
  72. 72.
    Grunewald S, Paasch U, Glander HJ. Enrichment of non-apoptotic human spermatozoa after cryopreservation by immunomagnetic cell sorting. Cell Tissue Bank. 2001;2:127–33.PubMedCrossRefGoogle Scholar
  73. 73.
    Paasch U, Grunewald S, Fitzl G, Glander HJ. Deterioration of plasma membrane is associated with activation of caspases in human spermatozoa. J Androl. 2003;24:246–52.PubMedGoogle Scholar
  74. 74.
    Mashiach R, Fisch B, Eltes F, Tadir Y, Ovadia J, Bartoov B. The relationship between sperm ultrastructural features and fertilizing capacity in vitro. Fertil Steril. 1992;57:1052–7.PubMedGoogle Scholar
  75. 75.
    Bartoov B, Berkovitz A, Eltes F, Kogosovsky A, Yagoda A, Lederman H, Artzi S, Gross M, Barak Y. Pregnancy rates are higher with intracytoplasmic morphologically selected sperm injection than with conventional intracytoplasmic injection. Fertil Steril. 2003;80:1413–9.PubMedCrossRefGoogle Scholar
  76. 76.
    Franco Jr JG, Baruffi RL, Mauri AL, Petersen CG, Oliveira JB, Vagini LD. Significance of large nuclear vacuoles in human spermatozoa: implications for ICSI. Reprod Biomed Online. 2008;17:42–5.Google Scholar
  77. 77.
    Ainsworth C, Nixon B, Jansen RP, Aitken RJ. First recorded pregnancy and normal birth after ICSI using electrophoretically isolated spermatozoa. Hum Reprod. 2007;22:197–200.PubMedCrossRefGoogle Scholar
  78. 78.
    Huszar G, Ozenci CC, Cayli S, Zavaczki Z, Hansch E, Vigue L. Hyaluronic acid binding by human sperm indicates cellular maturity, viability, and unreacted acrosomal status. Fertil Steril. 2003;79 Suppl 3:1616–24.PubMedCrossRefGoogle Scholar
  79. 79.
    Sikka SC, Rajasekaran M, Hellstrom WJ. Role of oxidative stress and antioxidants in male infertility. J Androl. 1995;16:464–8.PubMedGoogle Scholar
  80. 80.
    Barroso G, Morshedi M, Oehninger S. Analysis of DNA fragmentation, plasma membrane translocation of phosphatidylserine and oxidative stress in human spermatozoa. Hum Reprod. 2000;15:1338–44.PubMedCrossRefGoogle Scholar
  81. 81.
    Moustafa MH, Sharma RK, Thornton J, Mascha E, Abdel-Hafez MA, Thomas Jr AJ, Agarwal A. Relationship between ROS production, apoptosis and DNA denaturation in spermatozoa from patients examined for infertility. Hum Reprod. 2004;19:129–38.PubMedCrossRefGoogle Scholar
  82. 82.
    Wang X, Sharma RK, Sikka SC, Thomas Jr AJ, Falcone T, Agarwal A. Oxidative stress is associated with increased apoptosis leading to spermatozoa DNA damage in patients with male factor infertility. Fertil Steril. 2003;80:531–5.PubMedCrossRefGoogle Scholar
  83. 83.
    Aitken RJ, De Iuliis GN. On the possible origins of DNA damage in human spermatozoa. Mol Hum Reprod. 2010;16:3–13.PubMedCrossRefGoogle Scholar
  84. 84.
    Vermes I, Haanen C, Steffens-Nakken H, Reutelingsperger CP. A novel assay for apoptosis: flow cytometric detection of phosphatidylserine expression of early apoptotic cells using fluorescein labelled Annexin V. J Immunol Methods. 1995;184:39–51.PubMedCrossRefGoogle Scholar
  85. 85.
    Glander HJ, Schaller J. Binding of annexin V to plasma membranes of human spermatozoa: a rapid assay for detection of membrane changes after cryostorage. Mol Hum Reprod. 1999;5:109–15.PubMedCrossRefGoogle Scholar
  86. 86.
    Paasch U, Grunewald S, Agarwal A, Glandera HJ. Activation pattern of caspases in human spermatozoa. Fertil Steril. 2004;81 Suppl 1:802–9.PubMedCrossRefGoogle Scholar
  87. 87.
    Said TM, Paasch U, Grunewald S, Baumann T, Li L, Glander HJ, Agarwal A. Advantage of combining magnetic cell separation with sperm preparation techniques. Reprod Biomed Online. 2005;10:740–6.PubMedCrossRefGoogle Scholar
  88. 88.
    Said TM, Agarwal A, Grunewald S, Rasch M, Baumann T, Kriegel C, Li L, Glander HJ, Thomas Jr AJ, Paasch U. Selection of nonapoptotic spermatozoa as a new tool for enhancing assisted reproduction outcomes: an in vitro model. Biol Reprod. 2006;74:530–7.PubMedCrossRefGoogle Scholar
  89. 89.
    Grunewald S, Reinhardt M, Blumenauer V, Said TM, Agarwal A, Abu HF, Glander HJ, Paasch U. Increased sperm chromatin decondensation in selected nonapoptotic spermatozoa of patients with male infertility. Fertil Steril. 2009;92:572–7.PubMedCrossRefGoogle Scholar
  90. 90.
    Dirican EK, Ozgun OD, Akarsu S, Akin KO, Ercan O, Ugurlu M, Camsari C, Kanyilmaz O, Kaya A, Unsal A. Clinical outcome of magnetic activated cell sorting of non-apoptotic spermatozoa before density gradient centrifugation for assisted reproduction. J Assist Reprod Genet. 2008;25:375–81.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Dermatology, Venerology and Allergology, European Training Center of AndrologyUniversity of LeipzigLeipzigGermany
  2. 2.Division of Dermatopathology, Division of Aesthetics and Laserdermatology, Department of Dermatology, Venerology and Allergology, European Training Center of AndrologyUniversity of LeipzigLeipzigGermany

Personalised recommendations