Apoptosis and Male Infertility

  • S. Vaithinathan
  • Shereen Cynthia D’Cruz
  • P. P. MathurEmail author


The pathogenesis of male infertility can be reflected by defective spermatogenesis due to pituitary disorders, testicular cancer, germ cell aplasia, varicocele, and environmental factors or due to defective sperm transport resulting from congenital abnormalities, immunological or neurological factors. Recent findings show that male infertility could be increased incidence of genetic disorders and apoptosis. Of these, apoptosis has been identified as a major factor contributing to male infertility and has been studied extensively in recent years. Apoptosis, also known as programmed cell death (PCD), is required for normal spermatogenesis in mammals and is believed to ensure cellular homeostasis, and an adequate number of germ cells are eliminated via the process of apoptosis in order to maintain a precise germ cell population in compliance with the supportive capacity of the Sertoli cells. This chapter briefs both physiological and pathological events that can trigger apoptosis and their effects on the male reproductive system.


Apoptosis Male infertility Programmed cell death Sertoli cells Tumor necrosis factor Cytoplasmic pathway Extrinsic pathway Steroidogenesis Environmental contaminants 



P. P. Mathur acknowledges the receipt of financial support from the Department of Science and Technology, Government of India, under the projects (1) SP/SO/B-65/99, (2) DST-FIST-2009, and (3) Indian Council of Medical Research, New Delhi. Shereen Cynthia D’Cruz acknowledges the Indian Council of Medical Research, New Delhi, India, for Senior Research Fellowship. The authors also thank the staff of Bioinformatics Center, Pondicherry University, Pondicherry, for providing various facilities.


  1. 1.
    Nene UA, Coyaji K, Apte H. Infertility: a label of choice in the case of sexually dysfunctional couples. Patient Educ Couns. 2005;59(3):234–8.PubMedCrossRefGoogle Scholar
  2. 2.
    Sharlip ID, Jarow JP, Belker AM, et al. Best practice policies for male infertility. Fertil Steril. 2002;77(5):873–82.PubMedCrossRefGoogle Scholar
  3. 3.
    Larsen U. Sterility in sub-Saharan Africa. Popul Stud. 1994;48:459–74.CrossRefGoogle Scholar
  4. 4.
    Larsen U. Infertility in Central Africa. Trop Med Int Health. 2003;8:354–67.PubMedCrossRefGoogle Scholar
  5. 5.
    Iammarrone E, Balet R, Lower AM, Gillott C, Grudzinskas JG. Male infertility. Best Pract Res Clin Obstet Gynaecol. 2003;17(2):211–29.PubMedCrossRefGoogle Scholar
  6. 6.
    Saez JM, Avallet O, Lejeune H, Chatelain PG. Cell-cell communication in the testis. Horm Res. 1991;36(3–4):104–15.PubMedCrossRefGoogle Scholar
  7. 7.
    McLachlan RI, Wreford NG, Meachem SJ, De Kretser DM, Robertson DM. Effects of testosterone on spermatogenic cell populations in the adult rat. Biol Reprod. 1994;51(5):945–55.PubMedCrossRefGoogle Scholar
  8. 8.
    Zapata JM, Pawlowski K, Haas E, et al. A diverse family of proteins containing tumor necrosis factor receptor-associated factor domains. J Biol Chem. 2001;276(26):24242–52.PubMedCrossRefGoogle Scholar
  9. 9.
    Scorrano L, Korsmeyer SJ. Mechanisms of cytochrome c release by proapoptotic BCL-2 family members. Biochem Biophys Res Commun. 2003;304(3):437–44.PubMedCrossRefGoogle Scholar
  10. 10.
    Reed JC. Bcl-2 family proteins: regulators of apoptosis and chemoresistance in hematologic malignancies. Semin Hematol. 1997;34(4 Suppl 5):9–19.PubMedGoogle Scholar
  11. 11.
    Wajant H. The Fas signaling pathway: more than a paradigm. Science. 2002;296(5573):1635–6.PubMedCrossRefGoogle Scholar
  12. 12.
    Watanabe-Fukunaga R, Brannan CI, Copeland NG, Jenkins NA, Nagata S. Lymphoproliferation disorder in mice explained by defects in Fas antigen that mediates apoptosis. Nature. 1992;356(6367):314–7.PubMedCrossRefGoogle Scholar
  13. 13.
    Nagata S, Golstein P. The Fas death factor. Science. 1995;267(5203):1449–56.PubMedCrossRefGoogle Scholar
  14. 14.
    Suda T, Takahashi T, Golstein P, Nagata S. Molecular cloning and expression of the Fas ligand, a novel member of the tumor necrosis factor family. Cell. 1993;75(6):1169–78.PubMedCrossRefGoogle Scholar
  15. 15.
    Tanaka M, Itai T, Adachi M, Nagata S. Downregulation of Fas ligand by shedding. Nat Med. 1998;4(1):31–6.PubMedCrossRefGoogle Scholar
  16. 16.
    Sinha Hikim AP, Lue Y, Diaz-Romero M, et al. Deciphering the pathways of germ cell apoptosis in the testis. J Steroid Biochem Mol Biol. 2003;85(2-5):175–82.PubMedCrossRefGoogle Scholar
  17. 17.
    Philchenkov AA. Caspases as regulators of apoptosis and other cell functions. Biochemistry (Mosc). 2003;68(4):365–76.CrossRefGoogle Scholar
  18. 18.
    Pentikainen V, Erkkila K, Dunkel L. Fas regulates germ cell apoptosis in the human testis in vitro. Am J Physiol. 1999;276(2 Pt 1):E310–6.PubMedGoogle Scholar
  19. 19.
    Francavilla S, D’Abrizio P, Rucci N, et al. Fas and Fas ligand expression in fetal and adult human testis with normal or deranged spermatogenesis. J Clin Endocrinol Metab. 2000;85(8):2692–700.PubMedCrossRefGoogle Scholar
  20. 20.
    Thornberry NA, Lazebnik Y. Caspases: enemies within. Science. 1998;281(5381):1312–6.PubMedCrossRefGoogle Scholar
  21. 21.
    Nicholson DW. Caspase structure, proteolytic substrates, and function during apoptotic cell death. Cell Death Differ. 1999;6(11):1028–42.PubMedCrossRefGoogle Scholar
  22. 22.
    Cohen GM. Caspases: the executioners of apoptosis. Biochem J. 1997;326(Pt 1):1–16.PubMedGoogle Scholar
  23. 23.
    Earnshaw WC, Martins LM, Kaufmann SH. Mammalian caspases: structure, activation, substrates, and functions during apoptosis. Annu Rev Biochem. 1999;68:383–424.PubMedCrossRefGoogle Scholar
  24. 24.
    Hengartner MO. The biochemistry of apoptosis. Nature. 2000;407(6805):770–6.PubMedCrossRefGoogle Scholar
  25. 25.
    Budihardjo I, Oliver H, Lutter M, Luo X, Wang X. Biochemical pathways of caspase activation during apoptosis. Annu Rev Cell Dev Biol. 1999;15:269–90.PubMedCrossRefGoogle Scholar
  26. 26.
    Delfino F, Walker WH. Stage-specific nuclear expression of NF-kappaB in mammalian testis. Mol Endocrinol. 1998;12(11):1696–707.PubMedCrossRefGoogle Scholar
  27. 27.
    Karin M. How NF-kappaB is activated: the role of the IkappaB kinase (IKK) complex. Oncogene. 1999;18(49):6867–74.PubMedCrossRefGoogle Scholar
  28. 28.
    Huleihel M, Lunenfeld E. Regulation of spermatogenesis by paracrine/autocrine testicular factors. Asian J Androl. 2004;6(3):259–68.PubMedGoogle Scholar
  29. 29.
    Murugesan P, Balaganesh M, Balasubramanian K, Arunakaran J. Effects of polychlorinated biphenyl (Aroclor 1254) on steroidogenesis and antioxidant system in cultured adult rat Leydig cells. J Endocrinol. 2007;192(2):325.PubMedCrossRefGoogle Scholar
  30. 30.
    Yang JM, Arnush M, Chen QY, et al. Cadmium-induced damage to primary cultures of rat Leydig cells. Reprod Toxicol. 2003;17(5):553–60.PubMedCrossRefGoogle Scholar
  31. 31.
    Gao HB, Tong MH, Hu YQ, et al. Mechanisms of glucocorticoid-induced Leydig cell apoptosis. Mol Cell Endocrinol. 2003;199(1–2):153–63.PubMedCrossRefGoogle Scholar
  32. 32.
    Print CG, Loveland KL. Germ cell suicide: new insights into apoptosis during spermatogenesis. Bioessays. 2000;22(5):423.PubMedCrossRefGoogle Scholar
  33. 33.
    Allan DJ, Harmon BV, Roberts SA. Spermatogonial apoptosis has three morphologically recognizable phases and shows no circadian rhythm during normal spermatogenesis in the rat. Cell Prolif. 1992;25(3):241–50.PubMedCrossRefGoogle Scholar
  34. 34.
    Lin WW, Lamb DJ, Wheeler TM, Lipshultz LI, Kim ED. In situ end-labeling of human testicular tissue demonstrates increased apoptosis in conditions of abnormal spermatogenesis. Fertil Steril. 1997;68(6):1065–9.PubMedCrossRefGoogle Scholar
  35. 35.
    Blanchard TL, Johnson L. Increased germ cell degeneration and reduced germ cell:Sertoli cell ratio in stallions with low sperm production. Theriogenology. 1997;47(3):665–77.PubMedCrossRefGoogle Scholar
  36. 36.
    Tebourbi O, Rhouma KB, Sakly M. DDT induces apoptosis in rat thymocytes. Bull Environ Contam Toxicol. 1998;61(2):216–23.PubMedCrossRefGoogle Scholar
  37. 37.
    Perez-Maldonado IN, Diaz-Barriga F, de la Fuente H, et al. DDT induces apoptosis in human mononuclear cells in vitro and is associated with increased apoptosis in exposed children. Environ Res. 2004;94(1):38–46.PubMedCrossRefGoogle Scholar
  38. 38.
    Song Y, Liang X, Hu Y, et al. p, p′-DDE induces mitochondria-mediated apoptosis of cultured rat Sertoli cells. Toxicology. 2008;253(1–3):53–61.PubMedCrossRefGoogle Scholar
  39. 39.
    Shi Y, Song Y, Wang Y, et al. p, p′-DDE induces apoptosis of rat Sertoli cells via a FasL-dependent pathway. J Biomed Biotechnol. 2009;2009:181282.PubMedCrossRefGoogle Scholar
  40. 40.
    Ichimura T, Kawamura M, Mitani A. Co-localized expression of FasL, Fas, Caspase-3 and apoptotic DNA fragmentation in mouse testis after oral exposure to di(2-ethylhexyl)phthalate. Toxicology. 2003;194(1–2):35–42.PubMedCrossRefGoogle Scholar
  41. 41.
    Giammona CJ, Sawhney P, Chandrasekaran Y, Richburg JH. Death receptor response in rodent testis after mono-(2-ethylhexyl) phthalate exposure. Toxicol Appl Pharmacol. 2002;185(2):119–27.PubMedCrossRefGoogle Scholar
  42. 42.
    Shi Y, Song Y, Wang Y, et al. Beta-benzene hexachloride induces apoptosis of rat sertoli cells through generation of reactive oxygen species and activation of JNKs and FasL. Environ Toxicol. 2011;26(2):124–35. doi: 10.1002/tox.20536.PubMedCrossRefGoogle Scholar
  43. 43.
    Vaithinathan S, Saradha B, Mathur PP. Methoxychlor induces apoptosis via mitochondria- and FasL-mediated pathways in adult rat testis. Chem Biol Interact. 2010;185(2):110–8.PubMedCrossRefGoogle Scholar
  44. 44.
    Anway MD, Cupp AS, Uzumcu M, Skinner MK. Epigenetic transgenerational actions of endocrine disruptors and male fertility. Science. 2005;308(5727):1466–9.PubMedCrossRefGoogle Scholar
  45. 45.
    Cupp AS, Uzumcu M, Suzuki H, et al. Effect of transient embryonic in vivo exposure to the endocrine disruptor methoxychlor on embryonic and postnatal testis development. J Androl. 2003;24(5):736–45.PubMedGoogle Scholar
  46. 46.
    Li YJ, Song TB, Cai YY, et al. Bisphenol A exposure induces apoptosis and upregulation of Fas/FasL and caspase-3 expression in the testes of mice. Toxicol Sci. 2009;108(2):427–36.PubMedCrossRefGoogle Scholar
  47. 47.
    Saradha B, Vaithinathan S, Mathur PP. Lindane induces testicular apoptosis in adult Wistar rats through the involvement of Fas-FasL and mitochondria-dependent pathways. Toxicology. 2009;255(3):131–9.PubMedCrossRefGoogle Scholar
  48. 48.
    Lee J, Richburg JH, Shipp EB, Meistrich ML, Boekelheide K. The Fas system, a regulator of testicular germ cell apoptosis, is differentially up-regulated in Sertoli cell versus germ cell injury of the testis. Endocrinology. 1999;140(2):852–8.PubMedCrossRefGoogle Scholar
  49. 49.
    Peltola V, Huhtaniemi I, Ahotupa M. Antioxidant enzyme activity in the maturing rat testis. J Androl. 1992;13(5):450–5.PubMedGoogle Scholar
  50. 50.
    Abdollahi M, Ranjbar A, Shadnia S, Nikfar S, Rezaie A. Pesticides and oxidative stress: a review. Med Sci Monit. 2004;10(6):RA141–7.PubMedGoogle Scholar
  51. 51.
    Saradha B, Mathur PP. Effect of environmental contaminants on male reproduction. Environ Toxicol Pharmacol. 2006;21(1):34.PubMedCrossRefGoogle Scholar
  52. 52.
    Samanta L, Roy A, Chainy GB. Changes in rat testicular antioxidant defence profile as a function of age and its impairment by hexachlorocyclohexane during critical stages of maturation. Andrologia. 1999;31(2):83–90.PubMedGoogle Scholar
  53. 53.
    Doreswamy K, Shrilatha B, Rajeshkumar T, Muralidhara. Nickel-induced oxidative stress in testis of mice: evidence of DNA damage and genotoxic effects. J Androl. 2004;25(6):996–1003.Google Scholar
  54. 54.
    Sujatha R, Chitra KC, Latchoumycandane C, Mathur PP. Effect of lindane on testicular antioxidant system and steroidogenic enzymes in adult rats. Asian J Androl. 2001;3(2):135–8.PubMedGoogle Scholar
  55. 55.
    Saradha B, Vaithinathan S, Mathur PP. Lindane alters the levels of HSP70 and clusterin in adult rat testis. Toxicology. 2008;243(1–2):116–23.PubMedCrossRefGoogle Scholar
  56. 56.
    Kasahara E, Sato EF, Miyoshi M, et al. Role of oxidative stress in germ cell apoptosis induced by di(2-ethylhexyl)phthalate. Biochem J. 2002;365(Pt 3):849–56.PubMedGoogle Scholar
  57. 57.
    Li D, Yin D, Han X. Methyl tert-butyl ether (MTBE)-induced cytotoxicity and oxidative stress in isolated rat spermatogenic cells. J Appl Toxicol. 2007;27(1):10–7.PubMedCrossRefGoogle Scholar
  58. 58.
    Tay TW, Andriana BB, Ishii M, et al. Phagocytosis plays an important role in clearing dead cells caused by mono(2-ethylhexyl) phthalate administration. Tissue Cell. 2007;39(4):241–6.PubMedCrossRefGoogle Scholar
  59. 59.
    Gong Y, Han XD. Nonylphenol-induced oxidative stress and cytotoxicity in testicular Sertoli cells. Reprod Toxicol. 2006;22(4):623–30.PubMedCrossRefGoogle Scholar
  60. 60.
    Qian J, Bian Q, Cui L, et al. Octylphenol induces apoptosis in cultured rat Sertoli cells. Toxicol Lett. 2006;166(2):178–86.PubMedCrossRefGoogle Scholar
  61. 61.
    Sen Gupta R, Sen Gupta E, Dhakal BK, Thakur AR, Ahnn J. Vitamin C and vitamin E protect the rat testes from cadmium-induced reactive oxygen species. Mol Cells. 2004;17(1):132–9.PubMedGoogle Scholar
  62. 62.
    Zamzami N, Marchetti P, Castedo M, et al. Sequential reduction of mitochondrial transmembrane potential and generation of reactive oxygen species in early programmed cell death. J Exp Med. 1995;182(2):367–77.PubMedCrossRefGoogle Scholar
  63. 63.
    Bortner CD, Oldenburg NB, Cidlowski JA. The role of DNA fragmentation in apoptosis. Trends Cell Biol. 1995;5(1):21–6.PubMedCrossRefGoogle Scholar
  64. 64.
    Kohler C, Hakansson A, Svanborg C, Orrenius S, Zhivotovsky B. Protease activation in apoptosis induced by MAL. Exp Cell Res. 1999;249(2):260–8.PubMedCrossRefGoogle Scholar
  65. 65.
    Green DR, Reed JC. Mitochondria and apoptosis. Science. 1998;281(5381):1309–12.PubMedCrossRefGoogle Scholar
  66. 66.
    Tripathi P, Hildeman D. Sensitization of T cells to apoptosis—a role for ROS? Apoptosis. 2004;9(5):515–23.PubMedCrossRefGoogle Scholar
  67. 67.
    Krammer PH. CD95(APO-1/Fas)-mediated apoptosis: live and let die. Adv Immunol. 1999;71:163–210.PubMedCrossRefGoogle Scholar
  68. 68.
    Scaffidi C, Fulda S, Srinivasan A, et al. Two CD95 (APO-1/Fas) signaling pathways. EMBO J. 1998;17(6):1675–87.PubMedCrossRefGoogle Scholar
  69. 69.
    Sanchez-Gomez MV, Alberdi E, Ibarretxe G, Torre I, Matute C. Caspase-dependent and caspase-independent oligodendrocyte death mediated by AMPA and kainate receptors. J Neurosci. 2003;23(29):9519–28.PubMedGoogle Scholar
  70. 70.
    Henkler F, Behrle E, Dennehy KM, et al. The extracellular domains of FasL and Fas are sufficient for the formation of supramolecular FasL-Fas clusters of high stability. J Cell Biol. 2005;168(7):1087–98.PubMedCrossRefGoogle Scholar
  71. 71.
    Riedl SJ, Shi Y. Molecular mechanisms of caspase regulation during apoptosis. Nat Rev Mol Cell Biol. 2004;5(11):897–907.PubMedCrossRefGoogle Scholar
  72. 72.
    Um HD, Orenstein JM, Wahl SM. Fas mediates apoptosis in human monocytes by a reactive oxygen intermediate dependent pathway. J Immunol. 1996;156(9):3469.PubMedGoogle Scholar
  73. 73.
    Chiba T, Takahashi S, Sato N, Ishii S, Kikuchi K. Fas-mediated apoptosis is modulated by intracellular glutathione in human T cells. Eur J Immunol. 1996;26(5):1164.PubMedCrossRefGoogle Scholar
  74. 74.
    Chainy GB, Samantaray S, Samanta L. Testosterone-induced changes in testicular antioxidant system. Andrologia. 1997;29(6):343–9.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • S. Vaithinathan
    • 1
  • Shereen Cynthia D’Cruz
    • 1
  • P. P. Mathur
    • 2
    Email author
  1. 1.Department of Biochemistry and Molecular BiologyPondicherry UniversityKalapetIndia
  2. 2.Department of Biochemistry & Molecular Biology and Center for Bioinformatics, School of Life SciencesPondicherry UniversityKalapetIndia

Personalised recommendations