Advertisement

Exogenous Medication or Substance-Induced Factors

  • Kubilay InciEmail author
  • Levent Mert Gunay
Chapter

Abstract

Half of all the primary causes of infertility are attributed to males. These causes vary by individual, and the exact etiology is difficult to determine in many infertile men. Spermatogenesis is a long and complex process controlled by gonadotropins [FSH (follicle-stimulating hormone) and LH (luteinizing hormone)], which stimulates Sertoli and Leydig cells. Some men seem to be genetically subfertile, while epigenetic causes play an important role in others. Men are exposed to environmental pollutants, toxic substances, and drugs that compromise fertility. Medications and other substances that provoke infertility may affect sperm development or the pituitary–hypothalamic axis. Unfortunately, most physicians do not inform patients about the potential for infertility associated with the drugs they prescribe. This chapter aims to highlight the adverse effect profile on fertility of frequently used drugs.

Keywords

Male infertility Effect of medications Factors affecting fertility Exogenous substances Environmental pollutants Toxic substances Drugs compromising fertility 

References

  1. 1.
    Wong WY, Zielhuis GA, Thomas CM, Merkus HM, Steegers-Theunissen RP. New evidence of the influence of exogenous and endogenous factors on sperm count in man. Eur J Obstet Gynecol Reprod Biol. 2003;110(1):49–54.PubMedCrossRefGoogle Scholar
  2. 2.
    Gupta A, Gupta S, Tiwary AK. Spermicidal efficacy of H2-receptor antagonists and potentiation with 2′, 4′-dichlorobenzamil hydrochloride: role of intrasperm Ca2+. Contraception. 2003;68(1):61–4.PubMedCrossRefGoogle Scholar
  3. 3.
    Van Thiel DH, Gavaler JS, Smith Jr WI, Paul G. Hypothalamic-pituitary-gonadal dysfunction in men using cimetidine. N Engl J Med. 1979;300(18):1012–5.PubMedCrossRefGoogle Scholar
  4. 4.
    Knigge U, Dejgaard A, Wollesen F, Ingerslev O, Bennett P, Christiansen PM. The acute and long term effect of the H2-receptor antagonists cimetidine and ranitidine on the pituitary-gonadal axis in men. Clin Endocrinol (Oxf). 1983;18(3):307–13.CrossRefGoogle Scholar
  5. 5.
    Nakagawa K, Obara T, Matsubara M, Kubo M. Relationship of changes in serum concentrations of prolactin and testosterone during dopaminergic modulation in males. Clin Endocrinol (Oxf). 1982;17(4):345–52.CrossRefGoogle Scholar
  6. 6.
    Falaschi P, Frajese G, Sciarra F, Rocco A, Conti C. Influence of hyperprolactinaemia due to metoclopramide on gonadal function in men. Clin Endocrinol (Oxf). 1978;8(5):427–33.CrossRefGoogle Scholar
  7. 7.
    Panidis D, Rousso D, Skiadopoulos S, Panidou E, Mamopoulos M. Evaluation of semen parameters in man with hyperprolactinemia induced by metoclopramide. Arch Androl. 1997;39(3):237–42.PubMedCrossRefGoogle Scholar
  8. 8.
    O’Morain C, Smethurst P, Dore CJ, Levi AJ. Reversible male infertility due to sulphasalazine: studies in man and rat. Gut. 1984;25(10):1078–84.PubMedCrossRefGoogle Scholar
  9. 9.
    Niederberger C. The adverse effect of sulfasalazine on spermatogenesis and male reproductive potential. J Androl. 2002;23(2):180.PubMedGoogle Scholar
  10. 10.
    De Turner E, Aparicio NJ, Turner D, Schwarzstein L. Effect of two phosphodiesterase inhibitors, cyclic adenosine 3′:5′-monophosphate, and a beta-blocking agent on human sperm motility. Fertil Steril. 1978;29(3):328–31.PubMedGoogle Scholar
  11. 11.
    White DR, Clarkson JS, Ratnasooriya WD, Aitken RJ. Complementary effects of propranolol and nonoxynol-9 upon human sperm motility. Contraception. 1995;52(4):241–7.PubMedCrossRefGoogle Scholar
  12. 12.
    Publicover S, Harper CV, Barratt C. [Ca2+]i signalling in sperm—making the most of what you’ve got. Nat Cell Biol. 2007;9(3):235–42.PubMedCrossRefGoogle Scholar
  13. 13.
    Kanwar U, Anand RJ, Sanyal SN. The effect of nifedipine, a calcium channel blocker, on human spermatozoal functions. Contraception. 1993;48(5):453–70.PubMedCrossRefGoogle Scholar
  14. 14.
    Kirkman-Brown JC, Barratt CL, Publicover SJ. Nifedipine reveals the existence of two discrete components of the progesterone-induced [Ca2+]i transient in human spermatozoa. Dev Biol. 2003;259(1):71–82.PubMedCrossRefGoogle Scholar
  15. 15.
    Goodwin LO, Leeds NB, Hurley I, Mandel FS, Pergolizzi RG, Benoff S. Isolation and characterization of the primary structure of testis-specific L-type calcium channel: implications for contraception. Mol Hum Reprod. 1997;3(3):255–68.PubMedCrossRefGoogle Scholar
  16. 16.
    Leung PS, Sernia C. The renin-angiotensin system and male reproduction: new functions for old hormones. J Mol Endocrinol. 2003;30(3):263–70.PubMedCrossRefGoogle Scholar
  17. 17.
    Kohn FM, Dammshauser I, Neukamm C, et al. Ultrastructural localization of angiotensin-converting enzyme in ejaculated human spermatozoa. Hum Reprod. 1998;13(3):604–10.PubMedCrossRefGoogle Scholar
  18. 18.
    Krege JH, John SW, Langenbach LL, et al. Male-female differences in fertility and blood pressure in ACE-deficient mice. Nature. 1995;375(6527):146–8.PubMedCrossRefGoogle Scholar
  19. 19.
    Kohn FM, Muller C, Drescher D, et al. Effect of angiotensin converting enzyme (ACE) and angiotensins on human sperm functions. Andrologia. 1998;30(4–5):207–15.PubMedGoogle Scholar
  20. 20.
    Loscher W, Luttgenau H, Schlegel W, Kruger S. Pharmacokinetics of non-steroidal anti-inflammatory drugs in male rabbits after acute and chronic administration and effect of chronic treatment on seminal prostaglandins, sperm quality and fertility. J Reprod Fertil. 1988;82(1):353–64.PubMedCrossRefGoogle Scholar
  21. 21.
    Loscher W, Blazaki D. Effect of non-steroidal anti-inflammatory drugs on fertility of male rats. J Reprod Fertil. 1986;76(1):65–73.PubMedCrossRefGoogle Scholar
  22. 22.
    Conte D, Romanelli F, Fillo S, et al. Aspirin inhibits androgen response to chorionic gonadotropin in humans. Am J Physiol. 1999;277(6 Pt 1):E1032–7.PubMedGoogle Scholar
  23. 23.
    Bauer J, Blumenthal S, Reuber M, Stoffel-Wagner B. Epilepsy syndrome, focus location, and treatment choice affect testicular function in men with epilepsy. Neurology. 2004;62(2):243–6.PubMedCrossRefGoogle Scholar
  24. 24.
    Mikkonen K, Tapanainen P, Pakarinen AJ, Paivansalo M, Isojarvi JI, Vainionpaa LK. Serum androgen levels and testicular structure during pubertal maturation in male subjects with epilepsy. Epilepsia. 2004;45(7):769–76.PubMedCrossRefGoogle Scholar
  25. 25.
    Isojarvi JI, Lofgren E, Juntunen KS, et al. Effect of epilepsy and antiepileptic drugs on male reproductive health. Neurology. 2004;62(2):247–53.PubMedCrossRefGoogle Scholar
  26. 26.
    Sonntag A, Rothe B, Guldner J, Yassouridis A, Holsboer F, Steiger A. Trimipramine and imipramine exert different effects on the sleep EEG and on nocturnal hormone secretion during treatment of major depression. Depression. 1996;4(1):1–13.PubMedCrossRefGoogle Scholar
  27. 27.
    Maier U, Koinig G. Andrological findings in young patients under long-term antidepressive therapy with clomipramine. Psychopharmacology (Berl). 1994;116(3):357–9.CrossRefGoogle Scholar
  28. 28.
    Levin RM, Amsterdam JD, Winokur A, Wein AJ. Effects of psychotropic drugs on human sperm motility. Fertil Steril. 1981;36(4):503–6.PubMedGoogle Scholar
  29. 29.
    Tanrikut C, Schlegel PN. Antidepressant-associated changes in semen parameters. Urology. 2007;69(1):185.e5–7.CrossRefGoogle Scholar
  30. 30.
    Hendrick V, Gitlin M, Altshuler L, Korenman S. Antidepressant medications, mood and male fertility. Psychoneuroendocrinology. 2000;25(1):37–51.PubMedCrossRefGoogle Scholar
  31. 31.
    Thakur SC, Thakur SS, Chaube SK, Singh SP. Subchronic supplementation of lithium carbonate induces reproductive system toxicity in male rat. Reprod Toxicol. 2003;17(6):683–90.PubMedCrossRefGoogle Scholar
  32. 32.
    Zarnescu O, Zamfirescu G. Effects of lithium carbonate on rat seminiferous tubules: an ultrastructural study. Int J Androl. 2006;29(6):576–82.PubMedCrossRefGoogle Scholar
  33. 33.
    Ragni G, De Lauretis L, Bestetti O, Sghedoni D, Gambaro V. Gonadal function in male heroin and methadone addicts. Int J Androl. 1988;11(2):93–100.PubMedCrossRefGoogle Scholar
  34. 34.
    Comitato R, Esposito T, Cerbo G, Angelini F, Varriale B, Cardone A. Impairment of spermatogenesis and enhancement of testicular germ cell apoptosis induced by exogenous all-trans-retinoic acid in adult lizard Podarcis sicula. J Exp Zool A Comp Exp Biol. 2006;305(3):288–98.PubMedGoogle Scholar
  35. 35.
    Parsch EM, Ruzicka T, Przybilla B, Schill WB. Andrological investigations in men treated with acitretin (Ro 10-1670). Andrologia. 1990;22(5):479–82.PubMedCrossRefGoogle Scholar
  36. 36.
    Coleman R, MacDonald D. Effects of isotretinoin on male reproductive system. Lancet. 1994;344(8916):198.PubMedCrossRefGoogle Scholar
  37. 37.
    Geiger JM, Walker M. Is there a reproductive safety risk in male patients treated with acitretin (neotigason/soriatane)? Dermatology. 2002;205(2):105–7.PubMedCrossRefGoogle Scholar
  38. 38.
    Adeeko AO, Dada OA. Chloroquine excretion in semen following antimalarial-drug administration. Andrologia. 1994;26(3):165–6.PubMedCrossRefGoogle Scholar
  39. 39.
    Grunewald S, Paasch U, Glander HJ. Systemic dermatological treatment with relevance for male fertility. J Dtsch Dermatol Ges. 2007;5(1):15–21 (A review of systemic therapies in current dermatologic practice that raises questions of temporary or permanent damage to sperm cells.).PubMedCrossRefGoogle Scholar
  40. 40.
    Hargreaves CA, Rogers S, Hills F, Rahman F, Howell RJ, Homa ST. Effects of co-trimoxazole, erythromycin, amoxycillin, tetracycline and chloroquine on sperm function in vitro. Hum Reprod. 1998;13(7):1878–86.PubMedCrossRefGoogle Scholar
  41. 41.
    Christiansen P, Skakkebaek NE. Pulsatile gonadotropin-releasing hormone treatment of men with idiopathic hypogonadotropic hypogonadism. Horm Res. 2002;57(1–2):32–6.PubMedCrossRefGoogle Scholar
  42. 42.
    Lunglmayr G, Girsch E, Meixner EM, Viehberger G, Bieglmayer C. Effects of long term GnRH analogue treatment on hormone levels and spermatogenesis in patients with carcinoma of the prostate. Urol Res. 1988;16(4):315–9.PubMedCrossRefGoogle Scholar
  43. 43.
    Bagatell CJ, Matsumoto AM, Christensen RB, Rivier JE, Bremner WJ. Comparison of a gonadotropin releasing-hormone antagonist plus testosterone (T) versus T alone as potential male contraceptive regimens. J Clin Endocrinol Metab. 1993;77(2):427–32.PubMedCrossRefGoogle Scholar
  44. 44.
    Shahidi M, Norman AR, Gadd J, Huddart RA, Horwich A, Dearnaley DP. Recovery of serum testosterone, LH and FSH levels following neoadjuvant hormone cytoreduction and radical radiotherapy in localized prostate cancer. Clin Oncol (R Coll Radiol). 2001;13(4):291–5.Google Scholar
  45. 45.
    Parkinson AB, Evans NA. Anabolic androgenic steroids: a survey of 500 users. Med Sci Sports Exerc. 2006;38(4):644–51.PubMedCrossRefGoogle Scholar
  46. 46.
    Knuth UA, Maniera H, Nieschlag E. Anabolic steroids and semen parameters in bodybuilders. Fertil Steril. 1989;52(6):1041–7.PubMedGoogle Scholar
  47. 47.
    Amory JK. Progress and prospects in male hormonal contraception. Curr Opin Endocrinol Diabetes Obes. 2008;15(3):255–60.PubMedCrossRefGoogle Scholar
  48. 48.
    Hair WM, Wu FC, Lincoln GA. An investigation of the effectiveness of testosterone implants in combination with the prolactin inhibitor quinagolide in the suppression of spermatogenesis in men. Hum Reprod. 2003;18(4):749–55.PubMedCrossRefGoogle Scholar
  49. 49.
    Anderson D, Schmid TE, Baumgartner A, Cemeli-Carratala E, Brinkworth MH, Wood JM. Oestrogenic compounds and oxidative stress (in human sperm and lymphocytes in the Comet assay). Mutat Res. 2003;544(2–3):173–8.PubMedGoogle Scholar
  50. 50.
    Meriggiola MC, Bremner WJ, Costantino A, et al. Twenty-one day administration of dienogest reversibly suppresses gonadotropins and testosterone in normal men. J Clin Endocrinol Metab. 2002;87(5):2107–13.PubMedCrossRefGoogle Scholar
  51. 51.
    Schover LR. Psychosocial aspects of infertility and decisions about reproduction in young cancer survivors: a review. Med Pediatr Oncol. 1999;33(1):53–9.PubMedCrossRefGoogle Scholar
  52. 52.
    Longhi A, Macchiagodena M, Vitali G, Bacci G. Fertility in male patients treated with neoadjuvant chemotherapy for osteosarcoma. J Pediatr Hematol Oncol. 2003;25(4):292–6.PubMedCrossRefGoogle Scholar
  53. 53.
    Nijman JM, Schraffordt Koops H, Kremer J, Sleijfer DT. Gonadal function after surgery and chemotherapy in men with stage II and III nonseminomatous testicular tumors. J Clin Oncol. 1987;5(4):651–6.PubMedGoogle Scholar
  54. 54.
    Nudell DM, Monoski MM, Lipshultz LI. Common medications and drugs: how they affect male fertility. Urol Clin North Am. 2002;29(4):965–73 (Review examining commonly encountered medications and drugs that affect male fertility.).PubMedCrossRefGoogle Scholar
  55. 55.
    Buchanan JD, Fairley KF, Barrie JU. Return of spermatogenesis after stopping cyclophosphamide therapy. Lancet. 1975;2(7926):156–7.PubMedCrossRefGoogle Scholar
  56. 56.
    Green DM, Kawashima T, Stovall M, et al. Fertility of male survivors of childhood cancer: a report from the Childhood Cancer Survivor Study. J Clin Oncol. 2010;28(2):332–9.PubMedCrossRefGoogle Scholar
  57. 57.
    Jequier AM. Male infertility: a guide for the clinician. Malden: Blackwell Science; 2000.CrossRefGoogle Scholar
  58. 58.
    Tucker MA, D’Angio GJ, Boice Jr JD, et al. Bone sarcomas linked to radiotherapy and chemotherapy in children. N Engl J Med. 1987;317(10):588–93.PubMedCrossRefGoogle Scholar
  59. 59.
    Callis L, Nieto J, Vila A, Rende J. Chlorambucil treatment in minimal lesion nephrotic syndrome: a reappraisal of its gonadal toxicity. J Pediatr. 1980;97(4):653–6.PubMedCrossRefGoogle Scholar
  60. 60.
    Marmor D, Grob-Menendez F, Duyck F, Delafontaine D. Very late return of spermatogenesis after chlorambucil therapy: case reports. Fertil Steril. 1992;58(4):845–6.PubMedGoogle Scholar
  61. 61.
    Thomson AB, Anderson RA, Irvine DS, Kelnar CJ, Sharpe RM, Wallace WH. Investigation of suppression of the hypothalamic-pituitary-gonadal axis to restore spermatogenesis in azoospermic men treated for childhood cancer. Hum Reprod. 2002;17(7):1715–23.PubMedCrossRefGoogle Scholar
  62. 62.
    Meistrich ML, Wilson G, Mathur K, et al. Rapid recovery of spermatogenesis after mitoxantrone, vincristine, vinblastine, and prednisone chemotherapy for Hodgkin’s disease. J Clin Oncol. 1997;15(12):3488–95.PubMedGoogle Scholar
  63. 63.
    Morris LF, Harrod MJ, Menter MA, Silverman AK. Methotrexate and reproduction in men: case report and recommendations. J Am Acad Dermatol. 1993;29(5 Pt 2):913–6.PubMedCrossRefGoogle Scholar
  64. 64.
    Sussman A, Leonard JM. Psoriasis, methotrexate, and oligospermia. Arch Dermatol. 1980;116(2):215–7.PubMedCrossRefGoogle Scholar
  65. 65.
    El-Beheiry A, El-Mansy E, Kamel N, Salama N. Methotrexate and fertility in men. Arch Androl. 1979;3(2):177–9.PubMedCrossRefGoogle Scholar
  66. 66.
    Boekelheide K. Mechanisms of toxic damage to spermatogenesis. J Natl Cancer Inst Monogr. 2005;34:6–8.PubMedCrossRefGoogle Scholar
  67. 67.
    Fossa SD, Ous S, Abyholm T, Norman N, Loeb M. Post-treatment fertility in patients with testicular cancer. II. Influence of cis-platin-based combination chemotherapy and of retroperitoneal surgery on hormone and sperm cell production. Br J Urol. 1985;57(2):210–4.PubMedCrossRefGoogle Scholar
  68. 68.
    Vawda AI. Effect of testosterone on cisplatin-induced testicular damage. Arch Androl. 1994;32(1):53–7.PubMedCrossRefGoogle Scholar
  69. 69.
    Puscheck E, Philip PA, Jeyendran RS. Male fertility preservation and cancer treatment. Cancer Treat Rev. 2004;30(2):173–80 (Review of available methods to maintain male fertility in patients undergoing chemotherapy or radiation therapy.).PubMedCrossRefGoogle Scholar
  70. 70.
    Tempest HG, Ko E, Chan P, Robaire B, Rademaker A, Martin RH. Sperm aneuploidy frequencies analysed before and after chemotherapy in testicular cancer and Hodgkin’s lymphoma patients. Hum Reprod. 2008;23(2):251–8.PubMedCrossRefGoogle Scholar
  71. 71.
    O’Flaherty C, Hales BF, Chan P, Robaire B. Impact of chemotherapeutics and advanced testicular cancer or Hodgkin lymphoma on sperm deoxyribonucleic acid integrity. Fertil Steril. 2010;94(4):1374–9.PubMedCrossRefGoogle Scholar
  72. 72.
    Fritsche L, Budde K, Dragun D, Einecke G, Diekmann F, Neumayer HH. Testosterone concentrations and sirolimus in male renal transplant patients. Am J Transplant. 2004;4(1):130–1.PubMedCrossRefGoogle Scholar
  73. 73.
    Kaczmarek I, Groetzner J, Adamidis I, et al. Sirolimus impairs gonadal function in heart transplant recipients. Am J Transplant. 2004;4(7):1084–8.PubMedCrossRefGoogle Scholar
  74. 74.
    Zuber J, Anglicheau D, Elie C, et al. Sirolimus may reduce fertility in male renal transplant recipients. Am J Transplant. 2008;8(7):1471–9.PubMedCrossRefGoogle Scholar
  75. 75.
    Seethalakshmi L, Flores C, Carboni AA, Bala R, Diamond DA, Menon M. Cyclosporine: its effects on testicular function and fertility in the prepubertal rat. J Androl. 1990;11(1):17–24.PubMedGoogle Scholar
  76. 76.
    Iwasaki M, Fuse H, Katayama T. Histological and endocrinological investigations of cyclosporine effects on the rat testis. Andrologia. 1995;27(3):185–9.PubMedCrossRefGoogle Scholar
  77. 77.
    Hisatomi A, Fujihira S, Fujimoto Y, Fujii T, Mine Y, Ohara K. Effect of Prograf (FK506) on spermatogenesis in rats. Toxicology. 1996;109(2–3):75–83.PubMedCrossRefGoogle Scholar
  78. 78.
    Schlegel PN, Chang TS, Marshall FF. Antibiotics: potential hazards to male fertility. Fertil Steril. 1991;55(2):235–42.PubMedGoogle Scholar
  79. 79.
    Farombi EO, Ugwuezunmba MC, Ezenwadu TT, Oyeyemi MO, Ekor M. Tetracycline-induced reproductive toxicity in male rats: effects of vitamin C and N-acetylcysteine. Exp Toxicol Pathol. 2008;60(1):77–85.PubMedCrossRefGoogle Scholar
  80. 80.
    Narayana K. An aminoglycoside antibiotic gentamycin induces oxidative stress, reduces antioxidant reserve and impairs spermatogenesis in rats. J Toxicol Sci. 2008;33(1):85–96.PubMedCrossRefGoogle Scholar
  81. 81.
    Queiroz-Telles F, Purim KS, Boguszewski CL, Afonso FC, Graf H. Adrenal response to corticotrophin and testosterone during long-term therapy with itraconazole in patients with chromoblastomycosis. J Antimicrob Chemother. 1997;40(6):899–902.PubMedCrossRefGoogle Scholar
  82. 82.
    Touchette MA, Chandrasekar PH, Milad MA, Edwards DJ. Contrasting effects of fluconazole and ketoconazole on phenytoin and testosterone disposition in man. Br J Clin Pharmacol. 1992;34(1):75–8.PubMedCrossRefGoogle Scholar
  83. 83.
    Nashan D, Knuth UA, Weidinger G, Nieschlag E. The antimycotic drug terbinafine in contrast to ketoconazole lacks acute effects on the pituitary-testicular function of healthy men: a placebo-controlled double-blind trial. Acta Endocrinol (Copenh). 1989;120(5):677–81.Google Scholar
  84. 84.
    El-Beheiry AH, Kamel MN, Gad A. Niridazole and fertility in bilharzial men. Arch Androl. 1982;8(4):297–300.PubMedCrossRefGoogle Scholar
  85. 85.
    Pages N, Sauviat MP, Bouvet S, Goudey-Perriere F. Reproductive toxicity of lindane. J Soc Biol. 2002;196(4):325–38.PubMedGoogle Scholar
  86. 86.
    Haimov-Kochman R, Ben-Chetrit E. The effect of colchicine treatment on sperm production and function: a review. Hum Reprod. 1998;13(2):360–2.PubMedCrossRefGoogle Scholar
  87. 87.
    Van Thiel DH, Gavaler JS, Cobb CF, Santucci L, Graham TO. Ethanol, a Leydig cell toxin: evidence obtained in vivo and in vitro. Pharmacol Biochem Behav. 1983;18 Suppl 1:317–23.PubMedCrossRefGoogle Scholar
  88. 88.
    Muthusami KR, Chinnaswamy P. Effect of chronic alcoholism on male fertility hormones and semen quality. Fertil Steril. 2005;84(4):919–24.PubMedCrossRefGoogle Scholar
  89. 89.
    Shelby M, Portier C, Goldman L, et al. NTP-CERHR expert panel report on the reproductive and developmental toxicity of methanol. Reprod Toxicol. 2004;18(3):303–90.PubMedCrossRefGoogle Scholar
  90. 90.
    Vine MF, Margolin BH, Morrison HI, Hulka BS. Cigarette smoking and sperm density: a meta-analysis. Fertil Steril. 1994;61(1):35–43.PubMedGoogle Scholar
  91. 91.
    Zenzes MT, Bielecki R, Reed TE. Detection of benzo(a)pyrene diol epoxide-DNA adducts in sperm of men exposed to cigarette smoke. Fertil Steril. 1999;72(2):330–5.PubMedCrossRefGoogle Scholar
  92. 92.
    Kunzle R, Mueller MD, Hanggi W, Birkhauser MH, Drescher H, Bersinger NA. Semen quality of male smokers and nonsmokers in infertile couples. Fertil Steril. 2003;79(2):287–91.PubMedCrossRefGoogle Scholar
  93. 93.
    Arabi M, Moshtaghi H. Influence of cigarette smoking on spermatozoa via seminal plasma. Andrologia. 2005;37(4):119–24.PubMedCrossRefGoogle Scholar
  94. 94.
    Rodriguez-Rigau LJ, Smith KD, Steinberger E. Cigarette smoking and semen quality. Fertil Steril. 1982;38(1):115–6.PubMedGoogle Scholar
  95. 95.
    Practice Committee of American Society for Reproductive Medicine in collaboration with Society for Reproductive Endocrinology and Infertility. Optimizing natural fertility. Fertil Steril. 2008;90 Suppl 5:S1–6.Google Scholar
  96. 96.
    Bracken MB, Eskenazi B, Sachse K, McSharry JE, Hellenbrand K, Leo-Summers L. Association of cocaine use with sperm concentration, motility, and morphology. Fertil Steril. 1990;53(2):315–22.PubMedGoogle Scholar
  97. 97.
    George VK, Li H, Teloken C, Grignon DJ, Lawrence WD, Dhabuwala CB. Effects of long-term cocaine exposure on spermatogenesis and fertility in peripubertal male rats. J Urol. 1996;155(1):327–31.PubMedCrossRefGoogle Scholar
  98. 98.
    Rossato M, Pagano C, Vettor R. The cannabinoid system and male reproductive functions. J Neuroendocrinol. 2008;20 Suppl 1:90–3.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of UrologyHacettepe University School of MedicineAnkaraTurkey

Personalised recommendations