Oxidative Stress

  • Fanuel LampiaoEmail author
  • C. J. Opperman
  • Ashok Agarwal
  • Stefan S. du Plessis


The idea that free radicals are produced by spermatozoa was first proposed by Macleod in 1943. While evaluating the influence of oxygen tension on sperm cell motility, he observed that the addition of the catalase enzyme to sperm incubation medium significantly reduced their motility loss. Macleod concluded in this pioneering study that hydrogen peroxide (H2O2) must be produced by spermatozoa during oxygen metabolism, thereby setting the trend for future research along these lines. It was not until 1979 that Jones and colleagues resolved the underlying mechanism behind free radicals and their ability to reduce sperm motility. They reported a decrease in the flexibility of sperm membranes due to reactive oxygen species (ROS)-induced peroxidation. Nearly 70 years after the discovery of Macleod, interest is turning toward free radicals as the origin of male infertility with 1 in every 20 male individuals being infertile and accounting for half of all cases of couple infertility in the general population. It is no surprise that ROS-mediated sperm cell damage is accountable in up to 30–80% of these cases as the foremost contributing pathological factor of male infertility. A new diagnostic era is on the horizon, with over 30 advanced direct and indirect screening assays available to assess oxidative stress. Promising as it might seem, routine testing is still shortcoming due to cost contributing factors, complexity dilemmas, and the lack of a standardized routine. Nonetheless, management of oxidative stress-related male infertility is focused on the identification of underlying pathology prior to antioxidant treatment.


Antioxidant treatment Free radicals Oxidative stress Reactive oxygen species Sperm cell damage Male infertility Apoptosis 


  1. 1.
    Jones R, Mann T, Sherins R. Peroxidative breakdown of phospholipids in human spermatozoa, spermicidal properties of fatty acid peroxides, and protective action of seminal plasma. Fertil Steril. 1979;31(5):531–7.PubMedGoogle Scholar
  2. 2.
    McLachlan RI, de Kretser DM. Male infertility: the case for continued research. Med J Aust. 2001;174(3):116–7.PubMedGoogle Scholar
  3. 3.
    Tremellen K. Oxidative stress and male infertility—a clinical perspective. Hum Reprod Update. 2008;14(3):243–58.PubMedCrossRefGoogle Scholar
  4. 4.
    Agarwal A, Prabakaran S, Allamaneni S. What an andrologist/urologist should know about free radicals and why. Urology. 2006;67(1):2–8.PubMedCrossRefGoogle Scholar
  5. 5.
    Garrido N, Meseguer M, Simon C, Pellicer A, Remohi J. Pro-oxidative and anti-oxidative imbalance in human semen and its relation with male fertility. Asian J Androl. 2004;6(1):59–65.PubMedGoogle Scholar
  6. 6.
    Wang X, Sharma RK, Sikka SC, Thomas Jr AJ, Falcone T, Agarwal A. Oxidative stress is associated with increased apoptosis leading to spermatozoa DNA damage in patients with male factor infertility. Fertil Steril. 2003;80(3):531–5.PubMedCrossRefGoogle Scholar
  7. 7.
    de Lamirande E, Gagnon C. Human sperm hyperactivation and capacitation as parts of an oxidative process. Free Radic Biol Med. 1993;14(2):157–66.PubMedCrossRefGoogle Scholar
  8. 8.
    Zini A, de Lamirande E, Gagnon C. Reactive oxygen species in semen of infertile patients: levels of superoxide dismutase- and catalase-like activities in seminal plasma and spermatozoa. Int J Androl. 1993;16(3):183–8.PubMedCrossRefGoogle Scholar
  9. 9.
    Kobayashi T, Miyazaki T, Natori M, Nozawa S. Protective role of superoxide dismutase in human sperm motility: superoxide dismutase activity and lipid peroxide in human seminal plasma and spermatozoa. Hum Reprod. 1991;6(7):987–91.PubMedGoogle Scholar
  10. 10.
    Vernet P, Aitken RJ, Drevet JR. Antioxidant strategies in the epididymis. Mol Cell Endocrinol. 2004;216(1–2):31–9.PubMedCrossRefGoogle Scholar
  11. 11.
    Williams AC, Ford WC. Functional significance of the pentose phosphate pathway and glutathione reductase in the antioxidant defenses of human sperm. Biol Reprod. 2004;71(4):1309–16.PubMedCrossRefGoogle Scholar
  12. 12.
    Twigg J, Fulton N, Gomez E, Irvine DS, Aitken RJ. Analysis of the impact of intracellular reactive oxygen species generation on the structural and functional integrity of human spermatozoa: lipid peroxidation, DNA fragmentation and effectiveness of antioxidants. Hum Reprod. 1998;13(6):1429–36.PubMedCrossRefGoogle Scholar
  13. 13.
    Saez F, Motta C, Boucher D, Grizard G. Antioxidant capacity of prostasomes in human semen. Mol Hum Reprod. 1998;4(7):667–72.PubMedCrossRefGoogle Scholar
  14. 14.
    Ochsendorf FR. Infections in the male genital tract and reactive oxygen species. Hum Reprod Update. 1999;5(5):399–420.PubMedCrossRefGoogle Scholar
  15. 15.
    Agarwal A, Gupta S, Sharma RK. Role of oxidative stress in female reproduction. Reprod Biol Endocrinol. 2005;3:28.PubMedCrossRefGoogle Scholar
  16. 16.
    Cheesman MJ, Baer BR, Zheng YM, Gillam EM, Rettie AE. Rabbit CYP4B1 engineered for high-level expression in Escherichia coli: ligand stabilization and processing of the N-terminus and heme prosthetic group. Arch Biochem Biophys. 2003;416(1):17–24.PubMedCrossRefGoogle Scholar
  17. 17.
    Agarwal A, Prabakaran SA. Mechanism, measurement, and prevention of oxidative stress in male reproductive physiology. Indian J Exp Biol. 2005;43(11):963–74.PubMedGoogle Scholar
  18. 18.
    Sharma RK, Pasqualotto AE, Nelson DR, Thomas Jr AJ, Agarwal A. Relationship between seminal white blood cell counts and oxidative stress in men treated at an infertility clinic. J Androl. 2001;22(4):575–83.PubMedGoogle Scholar
  19. 19.
    Rodin DM, Larone D, Goldstein M. Relationship between semen cultures, leukospermia, and semen analysis in men undergoing fertility evaluation. Fertil Steril. 2003;79 Suppl 3:1555–8.PubMedCrossRefGoogle Scholar
  20. 20.
    Martinez P, Proverbio F, Camejo MI. Sperm lipid peroxidation and pro-inflammatory cytokines. Asian J Androl. 2007;9(1):102–7.PubMedCrossRefGoogle Scholar
  21. 21.
    Nandipati KC, Pasqualotto FF, Thomas Jr AJ, Agarwal A. Relationship of interleukin-6 with semen characteristics and oxidative stress in vasectomy reversal patients. Andrologia. 2005;37(4):131–4.PubMedCrossRefGoogle Scholar
  22. 22.
    Koch OR, Pani G, Borrello S, et al. Oxidative stress and antioxidant defenses in ethanol-induced cell injury. Mol Aspects Med. 2004;25(1–2):191–8.PubMedCrossRefGoogle Scholar
  23. 23.
    Saleh RA, Agarwal A, Sharma RK, Nelson DR, Thomas Jr AJ. Effect of cigarette smoking on levels of seminal oxidative stress in infertile men: a prospective study. Fertil Steril. 2002;78(3):491–9.PubMedCrossRefGoogle Scholar
  24. 24.
    Mostafa T, Tawadrous G, Roaia MM, Amer MK, Kader RA, Aziz A. Effect of smoking on seminal plasma ascorbic acid in infertile and fertile males. Andrologia. 2006;38(6):221–4.PubMedCrossRefGoogle Scholar
  25. 25.
    Song GJ, Norkus EP, Lewis V. Relationship between seminal ­ascorbic acid and sperm DNA integrity in infertile men. Int J Androl. 2006;29(6):569–75.PubMedCrossRefGoogle Scholar
  26. 26.
    Peake JM, Suzuki K, Coombes JS. The influence of antioxidant supplementation on markers of inflammation and the relationship to oxidative stress after exercise. J Nutr Biochem. 2007;18(6):357–71.PubMedCrossRefGoogle Scholar
  27. 27.
    Singer G, Granger DN. Inflammatory responses underlying the microvascular dysfunction associated with obesity and insulin resistance. Microcirculation. 2007;14(4–5):375–87.PubMedCrossRefGoogle Scholar
  28. 28.
    Perez-Crespo M, Pintado B, Gutierrez-Adan A. Scrotal heat stress effects on sperm viability, sperm DNA integrity, and the offspring sex ratio in mice. Mol Reprod Dev. 2008;75(1):40–7.PubMedCrossRefGoogle Scholar
  29. 29.
    Junqueira VB, Barros SB, Chan SS, et al. Aging and oxidative stress. Mol Aspects Med. 2004;25(1–2):5–16.PubMedCrossRefGoogle Scholar
  30. 30.
    Eskiocak S, Gozen AS, Taskiran A, Kilic AS, Eskiocak M, Gulen S. Effect of psychological stress on the L-arginine-nitric oxide pathway and semen quality. Braz J Med Biol Res. 2006;39(5):581–8.PubMedCrossRefGoogle Scholar
  31. 31.
    Hauser R, Meeker JD, Singh NP, et al. DNA damage in human sperm is related to urinary levels of phthalate monoester and oxidative metabolites. Hum Reprod. 2007;22(3):688–95.PubMedCrossRefGoogle Scholar
  32. 32.
    Meng Z, Bai W. Oxidation damage of sulfur dioxide on testicles of mice. Environ Res. 2004;96(3):298–304.PubMedCrossRefGoogle Scholar
  33. 33.
    Latchoumycandane C, Mathur PP. Induction of oxidative stress in the rat testis after short-term exposure to the organochlorine pesticide methoxychlor. Arch Toxicol. 2002;76(12):692–8.PubMedCrossRefGoogle Scholar
  34. 34.
    Latchoumycandane C, Chitra KC, Mathur PP. 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD) induces oxidative stress in the epididymis and epididymal sperm of adult rats. Arch Toxicol. 2003;77(5):280–4.PubMedGoogle Scholar
  35. 35.
    Alaghmand M, Blough NV. Source-dependent variation in hydroxyl radical production by airborne particulate matter. Environ Sci Technol. 2007;41(7):2364–70.PubMedCrossRefGoogle Scholar
  36. 36.
    Acharya UR, Acharya S, Mishra M. Lead acetate induced cytotoxicity in male germinal cells of Swiss mice. Ind Health. 2003;41(3):291–4.PubMedCrossRefGoogle Scholar
  37. 37.
    Schaeffer AJ. Epidemiology and demographics of prostatitis. Andrologia. 2003;35(5):252–7.PubMedCrossRefGoogle Scholar
  38. 38.
    Fraczek M, Sanocka D, Kamieniczna M, Kurpisz M. Proinflammatory cytokines as an intermediate factor enhancing lipid sperm membrane peroxidation in in vitro conditions. J Androl. 2008;29(1):85–92.PubMedCrossRefGoogle Scholar
  39. 39.
    Brackett NL, Ibrahim E, Grotas JA, Aballa TC, Lynne CM. Higher sperm DNA damage in semen from men with spinal cord injuries compared with controls. J Androl. 2008;29(1):93–9. discussion 100-101.PubMedCrossRefGoogle Scholar
  40. 40.
    Krause W, Bohring C, Gueth A, Horster S, Krisp A, Skrzypek J. Cellular and biochemical markers in semen indicating male accessory gland inflammation. Andrologia. 2003;35(5):279–82.PubMedGoogle Scholar
  41. 41.
    Umapathy E, Simbini T, Chipata T, Mbizvo M. Sperm characteristics and accessory sex gland functions in HIV-infected men. Arch Androl. 2001;46(2):153–8.PubMedCrossRefGoogle Scholar
  42. 42.
    Vicari E, Arcoria D, Di Mauro C, Noto R, Noto Z, La Vignera S. Sperm output in patients with primary infertility and hepatitis B or C virus; negative influence of HBV infection during concomitant varicocele. Minerva Med. 2006;97(1):65–77.PubMedGoogle Scholar
  43. 43.
    Srinivasan S, Jenita X, Kalaiselvi P, Muthu V, Chandrasekar D, Varalakshmi P. Salubrious effect of vitamin E supplementation on renal stone forming risk factors in urogenital tuberculosis patients. Ren Fail. 2004;26(2):135–40.PubMedCrossRefGoogle Scholar
  44. 44.
    Guha M, Kumar S, Choubey V, Maity P, Bandyopadhyay U. Apoptosis in liver during malaria: role of oxidative stress and implication of mitochondrial pathway. FASEB J. 2006;20(8):1224–6.PubMedCrossRefGoogle Scholar
  45. 45.
    Potts JM, Pasqualotto FF. Seminal oxidative stress in patients with chronic prostatitis. Andrologia. 2003;35(5):304–8.PubMedGoogle Scholar
  46. 46.
    Motrich RD, Maccioni M, Riera CM, Rivero VE. Autoimmune prostatitis: state of the art. Scand J Immunol. 2007;66(2–3):217–27.PubMedCrossRefGoogle Scholar
  47. 47.
    Motrich RD, Maccioni M, Molina R, et al. Presence of INF gamma-secreting lymphocytes specific to prostate antigens in a group of chronic prostatitis patients. Clin Immunol. 2005;116(2):149–57.PubMedCrossRefGoogle Scholar
  48. 48.
    Filippini A, Riccioli A, Padula F, et al. Control and impairment of immune privilege in the testis and in semen. Hum Reprod Update. 2001;7(5):444–9.PubMedCrossRefGoogle Scholar
  49. 49.
    Said TM, Agarwal A, Sharma RK, Thomas Jr AJ, Sikka SC. Impact of sperm morphology on DNA damage caused by oxidative stress induced by beta-nicotinamide adenine dinucleotide phosphate. Fertil Steril. 2005;83(1):95–103.PubMedCrossRefGoogle Scholar
  50. 50.
    Kumanov P, Nandipati K, Tomova A, Agarwal A. Inhibin B is a better marker of spermatogenesis than other hormones in the evaluation of male factor infertility. Fertil Steril. 2006;86(2):332–8.PubMedCrossRefGoogle Scholar
  51. 51.
    Watson PF. The causes of reduced fertility with cryopreserved semen. Anim Reprod Sci. 2000;60–61:481–92.PubMedCrossRefGoogle Scholar
  52. 52.
    Zini A, Garrels K, Phang D. Antioxidant activity in the semen of fertile and infertile men. Urology. 2000;55(6):922–6.PubMedCrossRefGoogle Scholar
  53. 53.
    Sanocka D, Miesel R, Jedrzejczak P, Chelmonska-Soyta AC, Kurpisz M. Effect of reactive oxygen species and the activity of antioxidant systems on human semen; association with male infertility. Int J Androl. 1997;20(5):255–64.PubMedCrossRefGoogle Scholar
  54. 54.
    Das UB, Mallick M, Debnath JM, Ghosh D. Protective effect of ascorbic acid on cyclophosphamide-induced testicular gametogenic and androgenic disorders in male rats. Asian J Androl. 2002;4(3):201–7.PubMedGoogle Scholar
  55. 55.
    Agarwal A, Said TM. Oxidative stress, DNA damage and apoptosis in male infertility: a clinical approach. BJU Int. 2005;95(4):503–7.PubMedCrossRefGoogle Scholar
  56. 56.
    Ishikawa T, Kondo Y, Yamaguchi K, Sakamoto Y, Fujisawa M. Effect of varicocelectomy on patients with unobstructive azoospermia and severe oligospermia. BJU Int. 2008;101(2):216–8.PubMedGoogle Scholar
  57. 57.
    Chen SS, Huang WJ, Chang LS, Wei YH. 8-hydroxy-2′-deoxyguanosine in leukocyte DNA of spermatic vein as a biomarker of oxidative stress in patients with varicocele. J Urol. 2004;172(4 Pt 1):1418–21.PubMedCrossRefGoogle Scholar
  58. 58.
    Smith R, Kaune H, Parodi D, et al. Extent of sperm DNA damage in spermatozoa from men examined for infertility. Relationship with oxidative stress. Rev Med Chil. 2007;135(3):279–86.PubMedGoogle Scholar
  59. 59.
    Filho DW, Torres MA, Bordin AL, Crezcynski-Pasa TB, Boveris A. Spermatic cord torsion, reactive oxygen and nitrogen species and ischemia-reperfusion injury. Mol Aspects Med. 2004;25(1–2):199–210.PubMedCrossRefGoogle Scholar
  60. 60.
    Oberg BP, McMenamin E, Lucas FL, et al. Increased prevalence of oxidant stress and inflammation in patients with moderate to severe chronic kidney disease. Kidney Int. 2004;65(3):1009–16.PubMedCrossRefGoogle Scholar
  61. 61.
    Moreno JM, Ruiz MC, Ruiz N, et al. Modulation factors of oxidative status in stable renal transplantation. Transplant Proc. 2005;37(3):1428–30.PubMedCrossRefGoogle Scholar
  62. 62.
    Danielski M, Ikizler TA, McMonagle E, et al. Linkage of hypoalbuminemia, inflammation, and oxidative stress in patients receiving maintenance hemodialysis therapy. Am J Kidney Dis. 2003;42(2):286–94.PubMedCrossRefGoogle Scholar
  63. 63.
    Carpino A, Tarantino P, Rago V, De Sanctis V, Siciliano L. Antioxidant capacity in seminal plasma of transfusion-dependent beta-thalassemic patients. Exp Clin Endocrinol Diabetes. 2004;112(3):131–4.PubMedCrossRefGoogle Scholar
  64. 64.
    Agbaje IM, Rogers DA, McVicar CM, et al. Insulin dependent diabetes mellitus: implications for male reproductive function. Hum Reprod. 2007;22(7):1871–7.PubMedCrossRefGoogle Scholar
  65. 65.
    Shrilatha B, Muralidhara. Early oxidative stress in testis and epididymal sperm in streptozotocin-induced diabetic mice: its progression and genotoxic consequences. Reprod Toxicol. 2007; 23(4):578–87.Google Scholar
  66. 66.
    Sonmez M, Yuce A, Turk G. The protective effects of melatonin and vitamin E on antioxidant enzyme activities and epididymal sperm characteristics of homocysteine treated male rats. Reprod Toxicol. 2007;23(2):226–31.PubMedCrossRefGoogle Scholar
  67. 67.
    Aitken RJ, Harkiss D, Knox W, Peterson M, Irvine DS. A novel signal transduction cascade in capacitating human spermatozoa characterized by a redox-regulated cAMP-mediated induction of tyrosine phosphorylation. J Cell Sci. 1998;111:645–56.PubMedGoogle Scholar
  68. 68.
    Ehrenwald E, Parks JE, Foote RH. Bovine oviductal fluid components and their potential role in sperm cholesterol efflux. Mol Reprod Dev. 1990;25:195–204.PubMedCrossRefGoogle Scholar
  69. 69.
    Andrews JC, Bavister BD. Capacitation of hamster spermatozoa with the divalent cation chelators D-penicillamine, L-histidine and L-cysteine in a protein free culture medium. Gamete Res. 1989;23:159–70.PubMedCrossRefGoogle Scholar
  70. 70.
    Russel JH, Hale AH, Inbar D, Fisen HN. Loss of reactivity of BAL B/c myeloma tumor with allogeneic and syngeneic cytotoxic T lymphocytes. Eur J Immunol. 1978;8:640–5.PubMedCrossRefGoogle Scholar
  71. 71.
    Yamaguchi R. Mammalian fertilization. In: Knobil E, Neill J, editors. Physiology of reproduction. New York: Raven; 1994. p. 189–317.Google Scholar
  72. 72.
    Kumar GP, Laloraya MM. Superoxide radical and superoxide dismutase activity changes in maturing mammalian spermatozoa. Andrologia. 1991;23:171–5.PubMedGoogle Scholar
  73. 73.
    Aitken RJ, Buckingham DW, Brindles J, Gomez E, Baker HW, Irvine DS. Analysis of sperm movement in relation to the oxidative stress created by leukocytes in washed sperm preparations and seminal plasma. Hum Reprod. 1995;10:2061–71.PubMedGoogle Scholar
  74. 74.
    Zhang H, Zheng RL. Promotion of human sperm capacitation by superoxide anion. Free Radic Res. 1996;24:261–7.PubMedCrossRefGoogle Scholar
  75. 75.
    Purohit SB, Laloraya M, Kumar GP. Acrosome reaction inducers impose alterations in repulsive strain and hydration barrier in human sperm membrane. Biochem Mol Bio Int. 1998;45:227–35.Google Scholar
  76. 76.
    de Lamirande E, Gagnon C. Impact of reactive oxygen species on spermatozoa: a balancing act between beneficial and detrimental effects. Hum Reprod. 1995;10:15–21.PubMedGoogle Scholar
  77. 77.
    Griveau JF, Renard P, Lannou D. An in vitro promoting role for hydrogen peroxide in human sperm capacitation. Int J Androl. 1994;17:300–7.PubMedCrossRefGoogle Scholar
  78. 78.
    Lewis SEM, Boyle PM, Mc Kinney KA. Total antioxidant capacity of seminal plasma is different in fertile and infertile men. Fertil Steril. 1996;64:863–9.Google Scholar
  79. 79.
    Herrero MB, Cebral E, Boquet M, Viggiano JM, Vitullo A, Ginenno MA. Effect of nitric oxide on mouse sperm hyperactivation. Acta Physiol Pharmacol Ther Latinoam. 1994;44:65–9.PubMedGoogle Scholar
  80. 80.
    Sengoku K, Tamate K, Yoshida T, Takaoka Y, Miyamoto T, Ishikawa M. Effects of low concentrations of nitric oxide on zona pellucida binding ability of human spermatozoa. Fertil Steril. 1998;69:522–7.PubMedCrossRefGoogle Scholar
  81. 81.
    Alvarez JG, Storey BT. Differential incorporation of fatty acids into and peroxidative loss of fatty acids from phospholipids of human spermatozoa. Mol Reprod Dev. 1995;42:334–46.PubMedCrossRefGoogle Scholar
  82. 82.
    Yeagle PL. Lipids and lipid-intermediate structures in the fusion of biological membranes. Curr Top Membr. 1994;4:197–214.CrossRefGoogle Scholar
  83. 83.
    Twigg J, Irvine DS, Aitken RJ. Oxidative damage to DNA in human spermatozoa does not prelude pronucleus formation at intracytoplasmic sperm injection. Hum Reprod. 1998;103:1864–71.CrossRefGoogle Scholar
  84. 84.
    Duru NK, Morshedi M, Oehninger S. Effects of hydrogen peroxide on DNA and plasma membrane integrity of human spermatozoa. Fertil Steril. 2000;74:1200–7.CrossRefGoogle Scholar
  85. 85.
    Vaux DL, Flavell RA. Apoptosis genes and autoimmunity. Curr Opin Immunol. 2000;12:719–24.PubMedCrossRefGoogle Scholar
  86. 86.
    Vaux DL, Korsmeyer SJ. Cell death in development. Cell. 1999;96:245–54.PubMedCrossRefGoogle Scholar
  87. 87.
    Sakkas D, Mariethoz E, Manicardi G, Bizzaro D, Bianchi P, Bianchi U. Origin of DNA damage in ejaculated human spermatozoa. Rev Reprod. 1999;4:31–7.PubMedCrossRefGoogle Scholar
  88. 88.
    Lee J, Richburg JH, Younkin SC, Boekelbeide K. The Fas system is a key regulator of germ cell apoptosis in the testis. Endocrinology. 1997;138:2081–8.PubMedCrossRefGoogle Scholar
  89. 89.
    Sinha HAP, Swerdloff RS. Hormonal and genetic control of germ cell apoptosis in the testis. Rev Reprod. 1999;4:38–47.CrossRefGoogle Scholar
  90. 90.
    Agarwal A, Saleh R, Bedaiwy MA. Role of reactive oxygen species in the pathophysiology of human reproduction. Fertil Steril. 2003;79:829–43.PubMedCrossRefGoogle Scholar
  91. 91.
    Halliwell B. How to characterize a biological antioxidant. Free Radic Res Commun. 1990;9:1–32.PubMedCrossRefGoogle Scholar
  92. 92.
    Aitken RJ, Fisher H. Reactive oxygen species generation and human spermatozoa: the balance of benefit and risk. Bioassays. 1994;16:259–67.CrossRefGoogle Scholar
  93. 93.
    Sanocka D, Kurpisz M. Reactive oxygen species and sperm cells. Reprod Biol Endocrinol. 2004;2:12.PubMedCrossRefGoogle Scholar
  94. 94.
    Henkel RR, Schill B. Sperm preparation for ART. Reprod Biol Endocrinol. 2003;1:108.PubMedCrossRefGoogle Scholar
  95. 95.
    Agarwal A, Nallella KP, Allamaneni SS, Said TM. Role of antioxidants in treatment of male infertility: an overview of the literature. Reprod Biomed Online. 2004;8:616–27.PubMedCrossRefGoogle Scholar
  96. 96.
    Comhaire FH, Christophe AB, Zalata AA, Dhooge WS, Mahmoud AM, Depuydt CE. The effects of combined conventional treatment, oral antioxidants and essential fatty acids on sperm biology in subfertile men. Prostaglandins Leukot Essent Fatty Acids. 2000;63:159–65.PubMedCrossRefGoogle Scholar
  97. 97.
    Gupta NP, Kumar R. Lycopene therapy in idiopathic male infertility—a preliminary report. Int Urol Nephrol. 2002;34:369–72.PubMedCrossRefGoogle Scholar
  98. 98.
    Di Mascio P, Kaiser S, Sies H. Lycopene as the most efficient biological carotenoid singlet oxygen quencher. Arch Biochem Biophys. 1989;274:532–8.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Fanuel Lampiao
    • 1
    Email author
  • C. J. Opperman
    • 1
  • Ashok Agarwal
    • 2
  • Stefan S. du Plessis
    • 1
  1. 1.Department of Medical Physiology, Faculty of Health SciencesStellenbosch UniversityTygerbergSouth Africa
  2. 2.Center for Reproductive MedicineGlickman Urological and Kidney Institute, Cleveland Clinic FoundationClevelandUSA

Personalised recommendations