Advertisement

Fuel/Energy Sources of Spermatozoa

  • M. M. MisroEmail author
  • T. Ramya
Chapter

Abstract

While preparing for successful fertilization, spermatozoa spend a considerable amount of time maturing in the male and female reproductive tracts, which provide them the competency for fertilization. One of the most important changes attained by spermatozoa during epididymal transit is the development of forward progressive motility, which is primarily dependent on energy. The need for energy by spermatozoa comes to the center stage only when spermatozoa are either ejaculated or suspended in an artificial medium, which ultimately provide them the opportunity and the environment to move and become motile. Any transporting system can operate only when provided with an appropriate support of fuel machinery. Spermatozoa utilize energy on motility, which is primarily in the form of intracellular ATP generated by oxidation of substrates, fructose, glucose, sorbitol, lactate, or pyruvate. Spermatozoa motility is generated by the beating of the extremely long flagellum which is more than 90% of the total length of a mammalian sperm cell. Fuel is inevitable for this efficient flagellar movement leading to motility, one of the critical functional capabilities of all spermatozoa. Spermatozoa, either devoid/altered motion characteristics or depleted fuel resources or both, lose the ability to move forward and cannot fertilize the egg. It is thus important to know the energy status of spermatozoa in order to understand their mobility, survival, and the changes they undergo during their entire life cycle. Though spermatozoa of all species require energy for fuelling their movement, different species have adapted different mechanisms for obtaining this energy. The purpose of this chapter is to review our current understanding on substrates for energy production in spermatozoa, energy storage sites, and utilization with respect to the spermatozoon-specialized structure, the uptake of specific substrates, and their metabolic breakdown and the manipulation of energy resources in vitro sustaining spermatozoa motility.

Keywords

Glycolysis Oxidative phosphorylation ATP consumption by spermatozoa Spermatozoa energy production Spermatozoa metabolism Hyperactivated sperm motility Sperm–zona binding Acrosome reaction Capacitation Glucose transporters 

Notes

Acknowledgments

The authors are grateful to Ph.D. students Ankur, Himani, Rekha, Archana, and Shilpa for their valuable cooperation and support while preparing the manuscript.

References

  1. 1.
    Bohnensack R, Halangk W. Control of respiration and motility in ejaculated bull spermatozoa. Biochim Biophys Acta. 1986;850: 72–9.PubMedCrossRefGoogle Scholar
  2. 2.
    Mita M, Harumi T, Suzuki N, Ueta N. Localization and characterization of phosphatidylcholine in sea urchin spermatozoa. J Biochem. 1991;109:238–42.PubMedGoogle Scholar
  3. 3.
    Hofmann R, Lehmer A, Gurster E, Harturg R. Adenosine triphosphate and adenosine diphosphate in human semen: correlation with sperm count and motility. Urol Int. 1992;48:391–4.PubMedCrossRefGoogle Scholar
  4. 4.
    Hung PH, Miller MG, Meyers SA, VandeVoort CA. Sperm mitochondrial integrity is not required for hyperactivated motility, zona binding, or acrosome reaction in rhesus macaque. Biol Reprod. 2008;79:367–75.PubMedCrossRefGoogle Scholar
  5. 5.
    Ford WCL. Glycolysis and sperm motility: does a spoonful of sugar help the flagellum go around? Hum Reprod Update. 2006;12: 269–74.PubMedCrossRefGoogle Scholar
  6. 6.
    Fawcett DW. The mammalian spermatozoa. Dev Biol. 1975;44: 394–436.PubMedCrossRefGoogle Scholar
  7. 7.
    Burgos C, Maldnado C, Gerez de Burgos NM, Aoki A, Blanco A. Intracellular localization of the testicular and sperm specific lactate dehydrogenase isozyme C4 in mice. Biol Reprod. 1995;53:84–92.PubMedCrossRefGoogle Scholar
  8. 8.
    Travis AJ, Foster JA, Rosenbaum NA, Visconti PE, Gerton GL, Kopf GS, Moss SB. Targeting of a germ cell-specific type I hexokinase lacking a porin binding domain to the mitochondria as well as to the head and fibrous sheath of murine spermatozoa. Mol Biol Cell. 1998;9:263–76.PubMedGoogle Scholar
  9. 9.
    Turner RM. Tales from the tail: what do we really know about sperm motility? J Androl. 2003;24:790–803.PubMedGoogle Scholar
  10. 10.
    Storey BT, Kayne FJ. Energy metabolism of spermatozoa. V. The Embden-Myerhof pathway of glycolysis: activities of pathway enzymes in hypotonically treated rabbit epididymal spermatozoa. Fertil Steril. 1975;26:1257–65.PubMedGoogle Scholar
  11. 11.
    Mp B, Geelan A, Leitch V, Goldberg E. Cloning, sequencing and characterization of LDH-C4 from a fox testis cDNA library. Mol Reprod Dev. 1996;44:452–9.CrossRefGoogle Scholar
  12. 12.
    Westhoff D, Kamp G. Glyceraldehyde 3-phosphate dehydrogenase is bound to the fibrous sheath of mammalian spermatozoa. J Cell Sci. 1997;110:1821–9.PubMedGoogle Scholar
  13. 13.
    Mori C, Nakamura N, Welch JE, Gotoh H, Goulding EH, Fujioka M, Eddy EM. Mouse spermatogenic cell-specific type 1 hexokinase (mHk1-s) transcripts are expressed by alternative splicing from the mHk1 gene and the HK1-S protein is localized mainly in the sperm tail. Mol Reprod Dev. 1998;49:374–85.PubMedCrossRefGoogle Scholar
  14. 14.
    Bunch DO, Welch JE, Magyar PL, Eddy EM, O’Brien DA. Glyceradehyde 3-phosphate dehydrogenase-S protein distribution during mouse spermatogenesis. Biol Reprod. 1998;58:834–41.PubMedCrossRefGoogle Scholar
  15. 15.
    Hoshi K, Tsukikawa S, Sato A. Importance of Ca2+, K+ and glucose in the medium for sperm penetration through the human zona pellucida. Tohoku J Exp Med. 1991;165:99–104.PubMedCrossRefGoogle Scholar
  16. 16.
    Urner F, Sakkas D. Glucose participates in sperm-oocyte fusion in the mouse. Biol Reprod. 1996;55:917–22.PubMedCrossRefGoogle Scholar
  17. 17.
    Fraser LR, Quinn PJ. A glycolytic product is obligatory for initiation of sperm acrosome reaction and whiplash motility required for fertilization in the mouse. J Reprod Fertil. 1981;61:25–65.PubMedCrossRefGoogle Scholar
  18. 18.
    Cooper TG, Brooks DE. Entry of glycerol into the rat epididymis and its utilization by epididymal spermatozoa. J Reprod Fertil. 1981;61:163–9.PubMedCrossRefGoogle Scholar
  19. 19.
    Bone W, Jones NG, Kamp G, Yeung CH, Cooper TG. Effect of ornidazole on fertility of male rats: inhibition of a glycolysis-related motility pattern and zona binding required for fertilization in vitro. J Reprod Fertil. 2000;118:127–35.PubMedCrossRefGoogle Scholar
  20. 20.
    Williams AC, Ford WC. The role of glucose in supporting motility and capacitation in human spermatozoa. J Androl. 2001;22: 680–95.PubMedGoogle Scholar
  21. 21.
    Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P. Energy conversion: mitochondria and chloroplasts. In: Gibbs S, editor. The biology of the cell. 4th ed. New York: Garland Science; 2002. p. 769.Google Scholar
  22. 22.
    Ford WC, Harrison A. Futile substrate cycles in the glycolytic pathway of boar and rat spermatozoa and the effect of alpha-chlorohydrin. J Reprod Fertil. 1987;79(1):21–32.PubMedCrossRefGoogle Scholar
  23. 23.
    Miki K, Qu W, Goulding EH, Willis WD, Bunch DO, Strader LF, Perreault SD, Eddy EM, O’Brien DA. Glyceraldehyde 3 phosphate dehydrogenase-S, a sperm specific glycolytic enzyme, is required for sperm motility and male fertility. Proc Natl Acad Sci USA. 2004;101(47):16501–6.PubMedCrossRefGoogle Scholar
  24. 24.
    Krisfalusi m, Miki K, Magyar PL, O’Brien DA. Multiple glycolytic enzymes are tightly bound to the fibrous sheath of the mouse spermatozoa. Biol Reprod. 2006;75:270–8.PubMedCrossRefGoogle Scholar
  25. 25.
    Cardenas ML, Cornish-Bowden A, Ureta T. Evolution and regulatory role of the hexokinases. Biochim Biophys Acta. 1998;1401: 242–64.PubMedCrossRefGoogle Scholar
  26. 26.
    Rigau T, Rivera M, Palomo MJ, Fernandez-Novell JM, Mogas T, Ballester J, Pena A, Otaegui PJ, Guinovart JJ, Rodriguez-Gil JE. Differential effects of glucose and fructose on hexose metabolism in dog spermatozoa. Reproduction. 2002;123:579–91.PubMedCrossRefGoogle Scholar
  27. 27.
    Marin S, Chiang K, Bassilian S, Lee W-NP, Boros LG, Fernandez-Novell JM, Centelles JJ, Medrano A, Rodrıguez-Gil JE, Cascante M. Metabolic strategy of boar spermatozoa revealed by a metabolomic characterization. FEBS Lett. 2003;554:342–6.PubMedCrossRefGoogle Scholar
  28. 28.
    Medrano A, Pena A, Rigau T, Rodrıguez-Gil JE. Variations in the proportion of glycolytic/non-glycolytic energy substrates modulate sperm membrane integrity and function in diluted boar samples stored at 15–17°C. Reprod Domest Anim. 2005;40:448–53.PubMedCrossRefGoogle Scholar
  29. 29.
    Rodriguez-Gil JE. Mammalian sperm energy resources management and survival during conservation in refrigeration. Reprod Domest Anim. 2006;41:11–20.PubMedCrossRefGoogle Scholar
  30. 30.
    Kim YH, Haidl G, Schaefr M, Egner U, Mandal A, Herr JC. Compartmentalization of a unique ADP/ATP carrier protein SFEC (Sperm Flagellar Energy Carrier, AAC4) with glycolytic enzymes in the fibrous sheath of the human sperm flagellar principal piece. Dev Biol. 2007;302:463–76.PubMedCrossRefGoogle Scholar
  31. 31.
    Storey BT, Kayne FJ. Properties of pyruvate kinase and flagellar ATPase in rabbit spermatozoa: relation to metabolic strategy of the sperm cell. J Exp Zool. 1980;211:361–7.PubMedCrossRefGoogle Scholar
  32. 32.
    Mann T, Lutwak-Mann C. Male reproductive function and semen. Berlin: Springer; 1981. p. 196.CrossRefGoogle Scholar
  33. 33.
    Mann T. Studies on the metabolism of semen: 3. Fructose as a ­normal constituent of seminal plasma. Site of formation and function of fructose in semen. Biochem J. 1946;40:481–91.Google Scholar
  34. 34.
    Kobayashi T, Kaneko T, Iuchi Y, Matsuki S, Takahashi M, Sasagawa I, Nakada T, Fujii J. Localization and physiological implication of aldose reductase and sorbitol dehydrogenase in reproductive tracts and spermatozoa of male rats. J Androl. 2002;23:674–83.PubMedGoogle Scholar
  35. 35.
    King TE, Mann T. Sorbitol metabolism in spermatozoa. Proc R Soc Lond B Biol Sci. 1959;151:226–43.CrossRefGoogle Scholar
  36. 36.
    Stryer L. Biochemistry. 4th ed. New York, NY: Freeman; 1995.Google Scholar
  37. 37.
    Gibbons BH, Gibbons IR. Flagellar movement and adenosine triphosphatase activity in sea urchin sperm extracted with Triton X-100. J Biol Chem. 1972;54:75–97.Google Scholar
  38. 38.
    Barron ESG, Goldinger JM. Effect of iodoacetate and malonate on respiration of sea-urchin sperm. Proc Soc Exp Biol N Y. 1941;48: 570.Google Scholar
  39. 39.
    Hayashi T. Dilution medium and survival of the spermatozoa of Arbacia punctulata. II. Effect of the medium on respiration. Biol Bull Woods Hole. 1946;90:177.CrossRefGoogle Scholar
  40. 40.
    Spikes JD. Metabolism of sea-urchin sperm. Am Nat. 1949;83: 285–301.CrossRefGoogle Scholar
  41. 41.
    Rothschild L, Cleland KW. The physiology of sea urchin spermatozoa. The nature and location of the endogenous substrate. J Exp Biol. 1952;29:66–71.Google Scholar
  42. 42.
    Tombes RM, Shapiro BM. Metabolite channeling: a phosphocreatine shuttle to mediate high energy phosphate transport between sperm mitochondrion and tail. Cell. 1985;41:325–34.PubMedCrossRefGoogle Scholar
  43. 43.
    Tombes RM, Brokaw CJ, Shapiro BM. Creatine kinase dependent energy transport in sea urchin spermatozoa: flagellar wave attention and theoretical analysis of P diffusion. Biophys J. 1987;4(1):66–71.Google Scholar
  44. 44.
    Mohri H. Endogenous substrates of respiration in sea urchin spermatozoa. J Fac Sci Univ Tokyo IV. 1957;8:51–63.Google Scholar
  45. 45.
    Mita M, Yasumasu I. Metabolism of lipid and carbohydrate in sea urchin spermatozoa. Gamete Res. 1983;7:133–44.CrossRefGoogle Scholar
  46. 46.
    Mita M, Ueta N. Energy metabolism of sea urchin spermatozoa, with phosphatidylcholine as the preferred substrate. Biochim Biophys Acta. 1988;959:361–9.PubMedCrossRefGoogle Scholar
  47. 47.
    Mita M, Ueta N. Phosphatidylcholine metabolism for energy production in sea urchin spermatozoa. Biochim Biophys Acta. 1990;1047:175–9.PubMedCrossRefGoogle Scholar
  48. 48.
    Mita M, Nakamura M. Ultrastructural study of an endogenous energy substrate in spermatozoa of the sea urchin Hemicentrotus pulcherrimus. Biol Bull. 1992;182:298–304.CrossRefGoogle Scholar
  49. 49.
    Mita M, Nakamura M. Phosphatidylcholine is an endogenous substrate for energy metabolism in spermatozoa of sea urchins of the order Echinoidea. Zool Sci. 1993;10:73–83.Google Scholar
  50. 50.
    Burg MB. Molecular basis of osmotic regulation. Am J Physiol. 1995;268:F983–96.PubMedGoogle Scholar
  51. 51.
    Hoshi A, Takahashi M, Fujii J, Myint T, Kaneto H, Suzuki K, Yamasaki Y, Kamada T, Taniguchi N. Glycation and inactivation of sorbitol dehydrogenase in normal and diabetic rats. Biochem J. 1996;318:119–23.PubMedGoogle Scholar
  52. 52.
    Cao W, Aghajanian HK, Haig-Ladewig LA, Gerton GL. Sorbitol can fuel mouse sperm motility and protein tyrosine phosphorylation via sorbitol dehydrogenase. Biol Reprod. 2009;80:124–33.PubMedCrossRefGoogle Scholar
  53. 53.
    O’Shea T, Wales RG. Metabolism of sorbitol and fructose by ram spermatozoa. J Reprod Fertil. 1965;10:353–8.PubMedCrossRefGoogle Scholar
  54. 54.
    Hartree EF, Mann T. Phospholipids in ram semen: metabolism of plasmalogen and fatty acids. Biochem J. 1961;80:464–75.PubMedGoogle Scholar
  55. 55.
    Jones AR, Gillan L. Metabolism of glycerol 3-phosphate by mature boar spermatozoa. J Reprod Fertil. 1996;106:321–7.PubMedCrossRefGoogle Scholar
  56. 56.
    Stevenson D, Jones AR. Inhibition of fructolysis in boar spermatozoa by the male antifertility agent (5)-α chlorohydrins. Aust J Biol Sci. 1982;35:595–605.PubMedGoogle Scholar
  57. 57.
    Jones AR, Chantrill LA, Cokinakis A. Metabolism of glycerol by mature boar spermatozoa. J Reprod Fertil. 1992;94:129–34.PubMedCrossRefGoogle Scholar
  58. 58.
    Jones AR, Porter LM. Inhibition of glycolysis in boar spermatozoa by α-chlorohydrin phosphate appears to be mediated by phosphatase activity. Reprod Fertil Dev. 1995;7(5):1089–94.PubMedCrossRefGoogle Scholar
  59. 59.
    Jones AR, Milmlow D. Endogenous energy production by mature boar spermatozoa. J Reprod Fertil. 1997;111:285–90.PubMedCrossRefGoogle Scholar
  60. 60.
    Jones AR, Chantrill LA. Oxidative metabolic activity of boar spermatozoa: a system for assessing anti-glycolytic activity of potential inhibitors in vitro. Reprod Fertil Dev. 1989;1:357–67.PubMedCrossRefGoogle Scholar
  61. 61.
    Rigau T, Farre M, Ballester J, Mogas T, Pena A, Rodriguez-Gil JE. Effects of glucose and fructose on motility patterns of dog spermatozoa from fresh ejaculates. Theriogenology. 2001;56:801–15.PubMedCrossRefGoogle Scholar
  62. 62.
    Roldan ERS. Signal transduction during mammalian sperm acrosomal exocytosis. In: Lauria A, Gandolfi F, Enne G, Gianaroli L, editors. Gametes: development and function. Serno Symposia: Rome; 1998. p. 219–28.Google Scholar
  63. 63.
    Bellester J, Fernandez-Novell JM, Rutlant J, García-Rocha M, Jesús Palomo M, Mogas T, Peña A, Rigau T, Guinovart JJ, Rodríguez-Gil JE. Evidence for a functional glycogen metabolism in mature mammalian spermatozoa. Mol Reprod Dev. 2000;56:207–19.CrossRefGoogle Scholar
  64. 64.
    Palomo MJ, FernAndez-Novell JM, Pena A, Guinovart JJ, Rigau T, Rodriguez-Gil JE. Glucose- and fructose-induced dog-sperm glycogen synthesis shows specific changes in the location of the sperm glycogen deposition. Mol Reprod Dev. 2003;64:349–59.PubMedCrossRefGoogle Scholar
  65. 65.
    Albarracin JL, Fernandez-Novell JM, Ballester J, Rauch MC, Quintero-Moreno A, Pena A, Mogas T, Rigau T, Yanez A, Guinovart JJ, et al. Gluconeogenesis-linked glycogen metabolism is important in the achievement of ‘In vitro’ capacitation of dog sperm in a medium without glucose. Biol Reprod. 2004;71:1437–45.PubMedCrossRefGoogle Scholar
  66. 66.
    Mueckler M. Facilitative glucose transporters. Eur J Biochem. 1990;219:713–25.CrossRefGoogle Scholar
  67. 67.
    Bavister BD. The effects of variations in culture conditions on the motility of hamster spermatozoa. J Reprod Fertil. 1974;38: 41–440.CrossRefGoogle Scholar
  68. 68.
    Bavister BD, Yanagimachi R. The effects of sperm extracts and energy sources on the motility and acrosome reaction of hamster spermatozoa in vitro. Biol Reprod. 1977;16:228–37.PubMedCrossRefGoogle Scholar
  69. 69.
    Dravland E, Meizel S. Stimulation of hamster sperm capacitation and acrosome reaction in vitro by glucose and lactate and inhibition by the glycolytic inhibitor α-chlorohydrin. Gamete Res. 1981;4:515–23.CrossRefGoogle Scholar
  70. 70.
    Minelli MM, Castellini C, Latfaioli P, Mezzasoma I, Ronquisti G. Rabbit spermatozoa: a model system for studying ATP homeostasis and motility. J Androl. 1999;20:259–66.PubMedGoogle Scholar
  71. 71.
    Storey BT. Mammalian sperm metabolism: oxygen and sugar, friend and foe. Int J Dev Biol. 2008;52:427–37.PubMedCrossRefGoogle Scholar
  72. 72.
    Austin CR. Sperm maturation in the male and female genital tracts. In: Metz CB, Monroy A, editors. Biology of fertilization, vol. 2. New York: Academic; 1985. p. 121–55.Google Scholar
  73. 73.
    Cummins JM, Woodall PF. On mammalian sperm dimensions. J Reprod Fertil. 1985;75:153–75.PubMedCrossRefGoogle Scholar
  74. 74.
    Mukai C, Okuno M. Glycolysis plays a major role for adenosine triphosphate supplementation in mouse sperm flagellar movement. Biol Reprod. 2004;71:540–7.PubMedCrossRefGoogle Scholar
  75. 75.
    Carey JE, Olds-Clarke P, Storey BT. Oxidative metabolism of spermatozoa from inbred and random bred mice. J Exp Zool. 1981;216:285–92.PubMedCrossRefGoogle Scholar
  76. 76.
    Yeung CH, Majumder GC, Rolf C, Behre HM, Cooper TG. The role of phosphocreatine kinase in the motility of human spermatozoa supported by different metabolic substrates. Mol Hum Reprod. 1996;2:591–6.PubMedCrossRefGoogle Scholar
  77. 77.
    Rogers BJ, Perreault SD. Importance of glycolysable substrates for in vitro capacitation of human spermatozoa. Biol Reprod. 1990;43:1064–9.PubMedCrossRefGoogle Scholar
  78. 78.
    Lomage J, Guerin JF, Czyba JC. Glycolytic activity of human spermatozoa in normospermic men and in men with abnormal spermograms. Arch Androl. 1986;16:81–8.CrossRefGoogle Scholar
  79. 79.
    Frenette G, Thabet M, Sullivan R. Polyol pathway in human epididymis and semen. J Androl. 2006;27:233–9.PubMedCrossRefGoogle Scholar
  80. 80.
    Peterson RN, Freund M. Metabolism of human spermatozoa. In: Hafez ESE, editor. Human semen and fertility regulation in men. St Louis: Mosby; 1975. p. 176–86.Google Scholar
  81. 81.
    Nascimento JM, Shi LJ, Tam J, Chandsawangbhuwana C, Durrant B, Botvinick EL, Berns MW. Comparison of glycolysis and oxidative phosphorylation as energy source for mammalian sperm motility, using the combination of fluorescence imaging, laser tweezers and real time automated tracking and trapping. J Cell Physiol. 2008;217:745–51.PubMedCrossRefGoogle Scholar
  82. 82.
    Xuan W, Lamhonwah AM, Librach C, Jarvi K, Tein I. Characterization of organic cation/carnitine transporter family in human sperm. Biochem Biophys Res Commun. 2003;306: 121–8.PubMedCrossRefGoogle Scholar
  83. 83.
    Garolla A, Maiorino M, Roverato A, Roveri A, Ursini F, Foresta C. Oral carnitine supplementation increases sperm motility in asthenozoospermic men with normal sperm phospholipid hydroperoxide glutathione peroxidase levels. Fertil Steril. 2005;83:355–61.PubMedCrossRefGoogle Scholar
  84. 84.
    Angulo C, Rauch MC, Droppelmann A, Reyes AM, Slebe JC, Delgado-Lopez F, Guaiquil VH, Vera JC, Concha II. Hexose transporter expression and function in mammalian spermatozoa: cellular localization and transport of hexoses and vitamin C. J Cell Biochem. 1998;71:189–203.PubMedCrossRefGoogle Scholar
  85. 85.
    Schurmann A, Axer H, Scheepers A, Doege H, Joost H-G. The glucose transport facilitator GLUT8 is predominantly associated with the acrosomal region of mature spermatozoa. Cell Tissue Res. 2002;307(2):237–42.PubMedCrossRefGoogle Scholar
  86. 86.
    Burant CF, Takeda J, Laroche EB, Bell GI, Davidson NO. Fructose transporter in human spermatozoa and small intestine is GLUT5. J Biol Chem. 1992;267:14523–6.PubMedGoogle Scholar
  87. 87.
    Wothe DD, Charbonneau H, Shapiro BM. The phosphocreatine shuttle of sea urchin sperm: flagellar creatine kinase resulted from a gene triplication. Proc Natl Acad Sci. 1990;87:5203–7.PubMedCrossRefGoogle Scholar
  88. 88.
    Smith MB, Babcock DF, Lardy HA. A P-31 NMR study of the epididymis and epididymal sperm of the bull and hamster. Biol Reprod. 1985;33:1029–40.PubMedCrossRefGoogle Scholar
  89. 89.
    Robitaille PML, Robitaille PA, Martin PA, Brown GG. P-31 nuclear magnetic resonance studies of spermatozoa from the boar, ram, goat and bull. Comp Biochem Physiol B. 1987;87:285–96.PubMedCrossRefGoogle Scholar
  90. 90.
    Steeghs K, Oerlemans F, Weeringa B. Mice deficient of ubiquitous mitochondrial creatine-kinase are viable and fertile. Biochim Biophys Acta. 1995;1230:130–8.PubMedCrossRefGoogle Scholar
  91. 91.
    Huszar G, Vigue L. Incomplete development of human spermatozoa is associated with increased creatine phosphokinase concentration and abnormal head morphology. Mol Reprod Dev. 1993;34: 292–8.PubMedCrossRefGoogle Scholar
  92. 92.
    Froman DP, Feltmann AJ. New approach to sperm preservation based upon bioenergetic theory. J Anim Sci. 2010;88:1314–20.PubMedCrossRefGoogle Scholar
  93. 93.
    Cerolini S, Pizzi F, Gliozzi T, Maldjian A, Zaniboni L, Parodi L. Lipid manipulation of chicken semen by dietary means and its relation to fertility: a review. Worlds Poult Sci J. 2003;59: 65–75.CrossRefGoogle Scholar
  94. 94.
    Amory JK. Inhibiting sperm motility for male contraception: will the sperm tail be its “Achilles Heel”? Mol Interv. 2007;7: 68–70.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Reproductive BiomedicineNational Institute of Health and Family WelfareNew DelhiIndia

Personalised recommendations