Advertisement

Novel Approaches in the Management of Klinefelter Syndrome

  • Fnu DeepinderEmail author
Chapter

Abstract

Klinefelter syndrome is the most common form of hypogonadism in men and is the leading genetic cause of male infertility. It also represents the most prevalent chromosomal aneuploidy in human beings. It is characterized by the presence of an extra X chromosome in a phenotypic male. The most abundant karyotype is 47, XXY, although other patterns including mosaicism (47, XY/47, XXY) and higher grade chromosomal aneuploidies containing supranumerous X chromosomes (48, XXXY, 49, XXXXY) are not uncommon. The latter phenotypes are more severely affected in terms of physical and mental development than men with classic 47, XXY karyotypes. The genetic cause is either from meiotic nondisjunction leading to failure of separation of the chromosome pair during the first or second division of gametogenesis or from mitotic nondisjunction in the developing zygote. Increasing maternal age has been reported to raise the risk of Klinefelter syndrome. The estimated prevalence of Klinefelter syndrome in men is 1:500 or 0.1–0.2% of the general population. However, extremely large discrepancies have been reported between prenatal and postnatal prevalence suggesting high rates of under diagnosis. A large Danish national registry study observed only 25% of the expected patients diagnosed after birth, and less than 10% of the expected diagnoses were made before puberty. Some of the major reasons for this underdiagnosis are thought to be the variable phenotype of Klinefelter syndrome and low awareness of the disease among medical professionals. Recognition of clinical features is hence important for early detection of this syndrome.

Keywords

Klinefelter syndrome Chromosomal aneuploidy Hypogonadism 47, XXY karyotypes Osteoporosis Incomplete pubertal development Mosaicism Barr-body analysis 

References

  1. 1.
    Klinefelter HF, Reifenstein EC, Albright F. Syndrome characterized by gynecomastia, aspermatogenesis without Leydigism, increased, excretion of follicle stimulating hormone. J Clin Endocrinol Metab. 1942;2:615–27.CrossRefGoogle Scholar
  2. 2.
    Philip J, Lundsteen C, Owen D, Hirschhom K. The frequency of chromosome aberrations in tall men with special reference to 47, XYY and 47, XXY. Am J Hum Genet. 1976;28:404–11.PubMedGoogle Scholar
  3. 3.
    Perwein E. Incidence of Klinefelter’s syndrome. In: Bandmann HJ, Breit R, editors. Klinefeleter’s syndrome. Berlin: Springer; 1984. p. 8–11.CrossRefGoogle Scholar
  4. 4.
    Samango-Sprouse C. Mental development in polysomy X Klinefelter syndrome (47, XXY; 48, XXXY): effects of incomplete X inactivation. Semin Reprod Med. 2001;19:193–202.PubMedCrossRefGoogle Scholar
  5. 5.
    Hook EB. Rates of chromosome abnormalities at different maternal ages. Obstet Gynecol. 1981;58:282–5.PubMedGoogle Scholar
  6. 6.
    Bojesen A, Juul S, Hojbjerg Gravholt C. Prenatal and postnatal prevalence of Klinefelter syndrome: a national registry study. J Clin Endocrinol Metab. 2003;88:622–6.PubMedCrossRefGoogle Scholar
  7. 7.
    Robinson A, Lubs HA, Nielsen J, Sørensen K. Summary of clinical findings: profiles of children with 47, XXY, 47, XXX and 47, XYY karyotypes. Birth Defects Orig Artic Ser. 1979;15(1):261–6.PubMedGoogle Scholar
  8. 8.
    Bojesen A, Gravholt CH. Klinefelter syndrome in clinical practice. Nat Clin Pract Urol. 2007;4(4):192–204.PubMedCrossRefGoogle Scholar
  9. 9.
    Visootsak J, Aylstock M, Graham Jr JM. Klinefelter syndrome and its variants: an update and review for the primary pediatrician. Clin Pediatr (Phila). 2001;40(12):639–51.CrossRefGoogle Scholar
  10. 10.
    Aguirre D, Nieto K, Lazos M, Peña YR, Palma I, Kofman-Alfaro S, Queipo G. Extragonadal germ cell tumors are often associated with Klinefelter syndrome. Hum Pathol. 2006;37(4):477–80.PubMedCrossRefGoogle Scholar
  11. 11.
    Kamischke A, Baumgardt A, Horst J, Nieschlag E. Clinical and diagnostic features of patients with suspected Klinefelter syndrome. J Androl. 2003;24(1):41–8.PubMedGoogle Scholar
  12. 12.
    Lanfranco F, Kamischke A, Zitzmann M, Nieschlag E. Klinefelter’s syndrome. Lancet. 2004;364(9430):273–83.PubMedCrossRefGoogle Scholar
  13. 13.
    Paduch DA, Fine RG, Bolyakov A, Kiper J. New concepts in Klinefelter syndrome. Curr Opin Urol. 2008;18(6):621–7.PubMedCrossRefGoogle Scholar
  14. 14.
    Campbell WA, Price WH. Venous thromboembolic disease in Klinefelter’s syndrome. Clin Genet. 1981;19(4):275–80.PubMedCrossRefGoogle Scholar
  15. 15.
    Fricke GR, Mattern HJ, Schweikert HU, Schwanitz G. Klinefelter’s syndrome and mitral valve prolapse. An echocardiographic study in twenty-two patients. Biomed Pharmacother. 1984;38(2):88–97.PubMedGoogle Scholar
  16. 16.
    Myhre SA, Ruvalcaba RH, Johnson HR, Thuline HC, Kelley VC. The effects of testosterone treatment in Klinefelter’s syndrome. J Pediatr. 1970;76(2):267–76.PubMedCrossRefGoogle Scholar
  17. 17.
    Nielsen J, Pelsen B, Sørensen K. Follow-up of 30 Klinefelter males treated with testosterone. Clin Genet. 1988;33(4):262–9.PubMedCrossRefGoogle Scholar
  18. 18.
    Lin YM, Huang WJ, Lin JS, Kuo PL. Progressive depletion of germ cells in a man with nonmosaic Klinefelter’s syndrome: optimal time for sperm recovery. Urology. 2004;63(2):380–1.PubMedCrossRefGoogle Scholar
  19. 19.
    Wikström AM, Raivio T, Hadziselimovic F, Wikström S, Tuuri T, Dunkel L. Klinefelter syndrome in adolescence: onset of puberty is associated with accelerated germ cell depletion. J Clin Endocrinol Metab. 2004;89(5):2263–70.PubMedCrossRefGoogle Scholar
  20. 20.
    Schiff JD, Palermo GD, Veeck LL, Goldstein M, Rosenwaks Z, Schlegel PN. Success of testicular sperm extraction [corrected] and intracytoplasmic sperm injection in men with Klinefelter syndrome. J Clin Endocrinol Metab. 2005;90(11):6263–7.PubMedCrossRefGoogle Scholar
  21. 21.
    Friedler S, Raziel A, Strassburger D, Schachter M, Bern O, Ron-El R. Outcome of ICSI using fresh and cryopreserved-thawed testicular spermatozoa in patients with non-mosaic Klinefelter’s syndrome. Hum Reprod. 2001;16(12):2616–20.PubMedCrossRefGoogle Scholar
  22. 22.
    Madgar I, Dor J, Weissenberg R, Raviv G, Menashe Y, Levron J. Prognostic value of the clinical and laboratory evaluation in patients with nonmosaic Klinefelter syndrome who are receiving assisted reproductive therapy. Fertil Steril. 2002;77(6):1167–9.PubMedCrossRefGoogle Scholar
  23. 23.
    Ramasamy R, Ricci JA, Palermo GD, Gosden LV, Rosenwaks Z, Schlegel PN. Successful fertility treatment for Klinefelter’s syndrome. J Urol. 2009;182(3):1108–13.PubMedCrossRefGoogle Scholar
  24. 24.
    Raman JD, Schlegel PN. Aromatase inhibitors for male infertility. J Urol. 2002;167(2 Pt 1):624–9.PubMedGoogle Scholar
  25. 25.
    Staessen C, Tournaye H, Van Assche E, Michiels A, Van Landuyt L, Devroey P, Liebaers I, Van Steirteghem A. PGD in 47, XXY Klinefelter’s syndrome patients. Hum Reprod Update. 2003;9(4):319–30.PubMedCrossRefGoogle Scholar
  26. 26.
    Hennebicq S, Pelletier R, Bergues U, Rousseaux S. Risk of trisomy 21 in offspring of patients with Klinefelter’s syndrome. Lancet. 2001;357(9274):2104–5.PubMedCrossRefGoogle Scholar
  27. 27.
    Morel F, Bernicot I, Herry A, Le Bris MJ, Amice V, De Braekeleer M. An increased incidence of autosomal aneuploidies in spermatozoa from a patient with Klinefelter’s syndrome. Fertil Steril. 2003;79 Suppl 3:1644–6.PubMedCrossRefGoogle Scholar
  28. 28.
    Levron J, Aviram-Goldring A, Madgar I, Raviv G, Barkai G, Dor J. Sperm chromosome analysis and outcome of IVF in patients with non-mosaic Klinefelter’s syndrome. Fertil Steril. 2000;74(5):925–9.PubMedCrossRefGoogle Scholar
  29. 29.
    Izadyar F, Matthijs-Rijsenbilt JJ, den Ouden K, Creemers LB, Woelders H, de Rooij DG. Development of a cryopreservation protocol for type A spermatogonia. J Androl. 2002;23(4):537–45.PubMedGoogle Scholar
  30. 30.
    Orwig KE, Schlatt S. Cryopreservation and transplantation of spermatogonia and testicular tissue for preservation of male fertility. J Natl Cancer Inst Monogr. 2005;34:51–6.PubMedCrossRefGoogle Scholar
  31. 31.
    Nagano M, Patrizio P, Brinster RL. Long-term survival of human spermatogonial stem cells in mouse testes. Fertil Steril. 2002;78(6): 1225–33.PubMedCrossRefGoogle Scholar
  32. 32.
    Sofikitis N. Transplantation of human spermatogonia into the seminiferous tubules (STs) of animal testicles results in the completion of the human meiosis and the generation of human motile spermatozoa. Fertil Steril. 1999;72 suppl 1:S83–4.Google Scholar
  33. 33.
    Patience C, Takeuchi Y, Weiss RA. Infection of human cells by an endogenous retrovirus of pigs. Nat Med. 1997;3(3):282–6.PubMedCrossRefGoogle Scholar
  34. 34.
    Brinster RL, Zimmermann JW. Spermatogenesis following male germ-cell transplantation. Proc Natl Acad Sci USA. 1994;91(24): 11298–302.PubMedCrossRefGoogle Scholar
  35. 35.
    Ogawa T. Spermatogonial transplantation technique in spermatogenesis research. Int J Androl. 2000;23 Suppl 2:57–9.PubMedCrossRefGoogle Scholar
  36. 36.
    Honaramooz A, Snedaker A, Boiani M, Scholer H, Dobrinski I, Schlatt S. Sperm from neonatal mammalian testes grafted in mice. Nature. 2002;418(6899):778–81.PubMedCrossRefGoogle Scholar
  37. 37.
    Schlatt S, Kim SS, Gosden R. Spermatogenesis and steroidogenesis in mouse, hamster and monkey testicular tissue after cryopreservation and heterotopic grafting to castrated hosts. Reproduction. 2002;124(3):339–46.PubMedCrossRefGoogle Scholar
  38. 38.
    Oatley JM, de Avila DM, Reeves JJ, McLean DJ. Spermatogenesis and germ cell transgene expression in xenografted bovine testicular tissue. Biol Reprod. 2004;71(2):494–501.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Endocrinology, Diabetes and MetabolismCedars Sinai Medical CenterLos AngelesUSA

Personalised recommendations