Skip to main content

The Bone–Cartilage Interface

  • Chapter
  • First Online:
Book cover Structural Interfaces and Attachments in Biology

Abstract

Bone–cartilage interfaces in the body anchor together stiff bone and compliant cartilage in a thin region that progressively calcifies with aging. This bone–cartilage, or osteochondral, interface is of critical importance in articular joints and the spine due to the significant occurrence and health detriments of osteoarthritis and intervertebral disc degeneration. This chapter begins with a description of the morphological foundations of the bone–cartilage interface. We then consider how the composition and microstructural organization within osteochondral tissues influence the mechanics of the larger joint structure. The mechanical properties of tissues in the bonecartilage interface are then discussed in relation to the functional requirements of the tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Broom ND, Poole CA (1982) A functional-morphological study of the tidemark region of articular cartilage maintained in a non-viable physiological condition. J Anat 135(pt 1):65–82

    Google Scholar 

  2. Symmons D, Turner G, Webb R, Asten P, Barrett E, Lunt M, Scott D, Silman A (2002) The prevalence of rheumatoid arthritis in the United Kingdom: new estimates for a new century. Rheumatology 41(7):793–800

    Article  Google Scholar 

  3. Lawrence RC, Felson DT, Helmick CG, Arnold LM, Choi H, Deyo RA, Gabriel S, Hirsch R, Hochberg MC, Hunder GG, Jordan JM, Katz JN, Kremers HM, Wolfe F (2008) Estimates of the prevalence of arthritis and other rheumatic conditions in the United States. Part II. Arthritis Rheum 58(1):26–35

    Article  Google Scholar 

  4. Dang L, Liu Z (2010) A review of current treatment for lumbar disc herniation in children and adolescents. Eur Spine J 19(2):205–214

    Article  Google Scholar 

  5. Yang PJ, Temenoff JS (2009) Engineering orthopedic tissue interfaces. Tissue Eng Part B Rev 15(2):127–141

    Article  Google Scholar 

  6. Park P, Garton HJ, Gala VC, Hoff JT, McGillicuddy JE (2004) Adjacent segment disease after lumbar or lumbosacral fusion: review of the literature. Spine 29(17):1938–1944

    Article  Google Scholar 

  7. Malchau H, Herberts P, Ahnfelt L (1993) Prognosis of total hip replacement in Sweden. Follow-up of 92,675 operations performed 1978–1990. Acta Orthop Scand 64(5):497–506

    Article  Google Scholar 

  8. Grayson WL, Chao PH, Marolt D, Kaplan DL, Vunjak-Novakovic G (2008) Engineering custom-designed osteochondral tissue grafts. Trends Biotechnol 26(4):181–189

    Article  Google Scholar 

  9. Hung CT, Lima EG, Mauck RL, Takai E, LeRoux MA, Lu HH, Stark RG, Guo XE, Ateshian GA (2003) Anatomically shaped osteochondral constructs for articular cartilage repair. J Biomech 36(12):1853–1864

    Article  Google Scholar 

  10. Jiang J, Nicoll SB, Lu HH (2005) Co-culture of osteoblasts and chondrocytes modulates cellular differentiation in vitro. Biochem Biophys Res Commun 338(2):762–770

    Article  Google Scholar 

  11. Jiang J, Tang A, Ateshian GA, Guo XE, Hung CT, Lu HH (2010) Bioactive stratified polymer ceramic-hydrogel scaffold for integrative osteochondral repair. Ann Biomed Eng 38(6):2183–2196

    Article  Google Scholar 

  12. Murray RC, Blunden TS, Branch MV, Tranquille CA, Dyson SJ, Parkin TD, Goodship AE (2009) Evaluation of age-related changes in the structure of the equine tarsometatarsal osteochondral unit. Am J Vet Res 70(1):30–36

    Article  Google Scholar 

  13. Schaefer D, Martin I, Jundt G, Seidel J, Heberer M, Grodzinsky A, Bergin I, Vunjak-Novakovic G, Freed LE (2002) Tissue-engineered composites for the repair of large osteochondral defects. Arthritis Rheum 46(9):2524–2534

    Article  Google Scholar 

  14. Shao XX, Hutmacher DW, Ho ST, Goh JC, Lee EH (2006) Evaluation of a hybrid scaffold/cell construct in repair of high-load-bearing osteochondral defects in rabbits. Biomaterials 27(7):1071–1080

    Article  Google Scholar 

  15. Kreklau B, Sittinger M, Mensing MB, Voigt C, Berger G, Burmester GR, Rahmanzadeh R, Gross U (1999) Tissue engineering of biphasic joint cartilage transplants. Biomaterials 20(18):1743–1749

    Article  Google Scholar 

  16. Moffat KL, Wang IN, Rodeo SA, Lu HH (2009) Orthopedic interface tissue engineering for the biological fixation of soft tissue grafts. Clin Sports Med 28(1):157–176

    Article  Google Scholar 

  17. Spalazzi JP, Dagher E, Doty SB, Guo XE, Rodeo SA, Lu HH (2006) In vivo evaluation of a tri-phasic composite scaffold for anterior cruciate ligament-to-bone integration. Conf Proc IEEE Eng Med Biol Soc 1:525–528

    Google Scholar 

  18. Harley BA, Lynn AK, Wissner-Gross Z, Bonfield W, Yannas IV, Gibson LJ (2010) Design of a multiphase osteochondral scaffold III: fabrication of layered scaffolds with continuous interfaces. J Biomed Mater Res A 92(3):1078–1093

    Google Scholar 

  19. Li X, Xie J, Lipner J, Yuan X, Thomopoulos S, Xia Y (2009) Nanofiber scaffolds with gradations in mineral content for mimicking the tendon-to-bone insertion site. Nano Lett 9(7):2763–2768

    Article  Google Scholar 

  20. Ferguson VL, Bushby AJ, Boyde A (2003) Nanomechanical properties and mineral concentration in articular calcified cartilage and subchondral bone. J Anat 203(2):191–202

    Article  Google Scholar 

  21. Ferguson VL, Bushby AJ, Firth EC, Howell PG, Boyde A (2008) Exercise does not affect stiffness and mineralisation of third metacarpal condylar subarticular calcified tissues in 2 year old thoroughbred racehorses. Eur Cell Mater 16:40–46; discussion 46

    Google Scholar 

  22. Campbell SE, Ferguson VL, Hurley DC (2011) Linking nano- and micromechanical measurements of the bone-cartilage interface. In: Materials Research Society Fall Meeting, Boston, MA, Nov 2011

    Google Scholar 

  23. Pak R, Campbell SE, Paietta RC, Ferguson VL (2011) Distribution of nanomechanical properties and mineralization of the osteochondral interface in the femoral head. In: American Society of Mechanical Engineering Summer Bioengineering Conference, Farmington, PA, June 2011

    Google Scholar 

  24. Wu ZG, Liu YH (2010) Singular stress field near interface edge in orthotropic/isotropic bi-materials. Int J Solids Struct 47(17):2328–2335

    Article  MATH  Google Scholar 

  25. Goglio L, Rossetto M (2010) Stress intensity factor in bonded joints: influence of the geometry. Int J Adhes Adhes 30(5):313–321

    Article  Google Scholar 

  26. Williams ML (1952) Stress singularities resulting from various boundary conditions in angular corners of plates in extension. J Appl Mech-T Asme 19(4):526–528

    Google Scholar 

  27. Shin KC, Kim WS, Lee JJ (2007) Application of stress intensity to design of anisotropic/isotropic bi-materials with a wedge. Int J Solids Struct 44(24):7748–7766

    Article  MATH  Google Scholar 

  28. Moffat KL, Sun WH, Chahine NO, Pena PE, Doty SB, Hung CT, Ateshian GA, Lu HH (2006) Characterization of the mechanical properties and mineral distribution of the anterior cruciate ligament-to-bone insertion site. Conf Proc IEEE Eng Med Biol Soc 1:2366–2369

    Google Scholar 

  29. Thomopoulos S, Marquez JP, Weinberger B, Birman V, Genin GM (2006) Collagen fiber orientation at the tendon to bone insertion and its influence on stress concentrations. J Biomech 39(10):1842–1851

    Article  Google Scholar 

  30. Thomopoulos S, Williams GR, Gimbel JA, Favata M, Soslowsky LJ (2003) Variation of biomechanical, structural, and compositional properties along the tendon to bone insertion site. J Orthop Res 21(3):413–419

    Article  Google Scholar 

  31. Yao HM, Dao M, Imholt T, Huang JM, Wheeler K, Bonilla A, Suresh S, Ortiz C (2010) Protection mechanisms of the iron-plated armor of a deep-sea hydrothermal vent gastropod. Proc Natl Acad Sci U S A 107(3):987–992

    Article  Google Scholar 

  32. Jitcharoen J, Padture NP, Giannakopoulos AE, Suresh S (1998) Hertzian-crack suppression in ceramics with elastic-modulus-graded surfaces. J Am Ceram Soc 81(9):2301–2308

    Article  Google Scholar 

  33. Suresh S (2001) Graded materials for resistance to contact deformation and damage. Science 292(5526):2447–2451

    Article  Google Scholar 

  34. Chudoba T, Schwarzer N, Linss V, Richter F (2004) Determination of mechanical properties of graded coatings using nanoindentation. Thin Solid Films 469–70:239–247

    Article  Google Scholar 

  35. Choi IS, Detor AJ, Schwaiger R, Dao M, Schuh CA, Suresh S (2008) Mechanics of indentation of plastically graded materials—II: experiments on nanocrystalline alloys with grain size gradients. J Mech Phys Solids 56(1):172–183

    Article  Google Scholar 

  36. Lakes R (1993) Materials with structural hierarchy. Nature 361(6412):511–515

    Article  Google Scholar 

  37. Mow VC, Ratcliffe A, Poole AR (1992) Cartilage and diarthrodial joints as paradigms for hierarchial materials and structures. Biomaterials 13(2):67–97

    Article  Google Scholar 

  38. O’Connor P, Orford CR, Gardner DL (1988) Differential response to compressive loads of zones of canine hyaline articular cartilage: micromechanical, light and electron microscopic studies. Ann Rheum Dis 47(5):414–420

    Article  Google Scholar 

  39. Weiss C, Rosenberg L, Helfet AJ (1968) An ultrastructural study of normal young adult human articular cartilage. J Bone Joint Surg Am 50(4):663–674

    Google Scholar 

  40. Buckwalter JA, Mankin HJ (1998) Articular cartilage: tissue design and chondrocyte-matrix interactions. Instr Course Lect 47:477–486

    Google Scholar 

  41. Burr DB (2004) Anatomy and physiology of the mineralized tissues: role in the pathogenesis of osteoarthrosis. Osteoarthr Cartil 12(suppl A):S20–S30

    Article  Google Scholar 

  42. Roberts S, Menage J, Urban JPG (1989) Biochemical and structural properties of the cartilage endplate and its relation to the intervertebral disc. Spine 14(2):166–174

    Article  Google Scholar 

  43. Roberts S, Evans H, Trivedi J, Menage J (2006) Histology and pathology of the human intervertebral disc. J Bone Joint Surg Am 88A:10–14

    Article  Google Scholar 

  44. Eyre DR, Caterson B, Benya P (1991) The intervertebral disc. In: Gordon S, Frymoyer J (eds) New perspectives on low back pain. American Institute of Orthopaedic Surgeons, Philadelphia, PA, pp 147–209

    Google Scholar 

  45. Mow VC, Ratcliffe A (1997) Structure and function of articular cartilage and meniscus. In: Mow VC, Hayes WC (eds) Basic orthopaedics biomechanics, 2nd edn. Lippincott-Raven Publishers, Philadelphia, PA, pp 113–177

    Google Scholar 

  46. Holm S, Maroudas A, Urban JP, Selstam G, Nachemson A (1981) Nutrition of the intervertebral disc: solute transport and metabolism. Connect Tissue Res 8(2):101–119

    Article  Google Scholar 

  47. Urban JP, Holm S, Maroudas A, Nachemson A (1982) Nutrition of the intervertebral disc: effect of fluid flow on solute transport. Clin Orthop Relat Res 170:296–302

    Google Scholar 

  48. Glimcher MJ (2006) Bone: nature of the calcium phosphate crystals and cellular, structural, and physical chemical mechanisms in their formation. Med Mineral Geochem 64:223–282

    Article  Google Scholar 

  49. Oegema TR, Thompson RC (eds) (1992) The zone of calcified cartilage and its role in osteoarthritis. Articular cartilage and osteoarthritis. Raven, New York

    Google Scholar 

  50. Zizak I, Roschger P, Paris O, Misof BM, Berzlanovich A, Bernstorff S, Amenitsch H, Klaushofer K, Fratzl P (2003) Characteristics of mineral particles in the human bone/cartilage interface. J Struct Biol 141(3):208–217

    Article  Google Scholar 

  51. Dmitrovsky E, Lane LB, Bullough PG (1978) Characterization of the tidemark in human articular cartilage. Metab Bone Dis Relat Res 1(2):115–118

    Article  Google Scholar 

  52. Buckwalter JA, Ehrlich MG, Armstrong AL, Mankin HJ (1987) Electron microscopic analysis of articular cartilage proteoglycan degradation by growth plate enzymes. J Orthop Res 5(1):128–132

    Article  Google Scholar 

  53. Campo RD, Romano JE (1986) Changes in cartilage proteoglycans associated with calcification. Calcif Tissue Int 39(3):175–184

    Article  Google Scholar 

  54. Lane JM, Weiss C (1975) Review of articular cartilage collagen research. Arthritis Rheum 18(6):553–562

    Article  Google Scholar 

  55. Lipshitz H, Etheredge R III, Glimcher MJ (1976) Changes in the hexosamine content and swelling ratio of articular cartilage as functions of depth from the surface. J Bone Joint Surg Am 58(8):1149–1153

    Google Scholar 

  56. Muir H, Bullough P, Maroudas A (1970) The distribution of collagen in human articular cartilage with some of its physiological implications. J Bone Joint Surg Br 52(3):554–563

    Google Scholar 

  57. Ratcliffe A, Fryer PR, Hardingham TE (1984) The distribution of aggregating proteoglycans in articular cartilage: comparison of quantitative immunoelectron microscopy with radioimmunoassay and biochemical analysis. J Histochem Cytochem 32(2):193–201

    Article  Google Scholar 

  58. Clarke IC (1971) Articular cartilage: a review and scanning electron microscope study. 1. The interterritorial fibrillar architecture. J Bone Joint Surg Br 53(4):732–750

    Google Scholar 

  59. Redler I, Zimny ML (1970) Scanning electron microscopy of normal and abnormal articular cartilage and synovium. J Bone Joint Surg Am 52(7):1395–1404

    Google Scholar 

  60. Hascall VC (1977) Interaction of cartilage proteoglycans with hyaluronic acid. J Supramol Struct 7(1):101–120

    Article  Google Scholar 

  61. Muir H (1983) Proteoglycans as organizers of the intercellular matrix. Biochem Soc Trans 11(6):613–622

    Google Scholar 

  62. Thambyah A, Broom N (2007) On how degeneration influences load-bearing in the cartilage-bone system: a microstructural and micromechanical study. Osteoarthr Cartil 15(12):1410–1423

    Article  Google Scholar 

  63. Urban JP, Roberts S (2003) Degeneration of the intervertebral disc. Arthritis Res Ther 5(3):120–130

    Article  Google Scholar 

  64. Mente PL, Lewis JL (1994) Elastic modulus of calcified cartilage is an order of magnitude less than that of subchondral bone. J Orthop Res 12(5):637–647

    Article  Google Scholar 

  65. Habelitz S, Marshall SJ, Marshall GW Jr, Balooch M (2001) Mechanical properties of human dental enamel on the nanometre scale. Arch Oral Biol 46(2):173–183

    Article  Google Scholar 

  66. Turner CH, Chandran A, Pidaparti RM (1995) The anisotropy of osteonal bone and its ultrastructural implications. Bone 17(1):85–89

    Article  Google Scholar 

  67. Mankin HJ (1964) Mitosis in articular cartilage of immature rabbits. A histologic, stathmokinetic (colchicine) and autoradiographic study. Clin Orthop Relat Res 34:170–183

    Google Scholar 

  68. Hunziker EB, Quinn TM, Hauselmann HJ (2002) Quantitative structural organization of normal adult human articular cartilage. Osteoarthr Cartil 10(7):564–572

    Article  Google Scholar 

  69. Hall BK, Newman S (1991) Cartilage: molecular aspects. CRC Press, Boca Raton, FL

    Google Scholar 

  70. Hwang J, Bae WC, Shieu W, Lewis CW, Bugbee WD, Sah RL (2008) Increased hydraulic conductance of human articular cartilage and subchondral bone plate with progression of osteoarthritis. Arthritis Rheum 58(12):3831–3842

    Article  Google Scholar 

  71. Hunziker EB (1992) Articular cartilage structure in humans and experimental animals. In: Kuettner KE, Schleyerbach R, Peyron JG, Hascall VC (eds) Articular cartilage and osteoarthritis. Raven, New York, pp 183–189

    Google Scholar 

  72. Hunziker EB (1994) Mechanism of longitudinal bone growth and its regulation by growth plate chondrocytes. Microsc Res Tech 28(6):505–519

    Article  Google Scholar 

  73. Hunziker EB, Wagner J, Zapf J (1994) Differential effects of insulin-like growth factor I and growth hormone on developmental stages of rat growth plate chondrocytes in vivo. J Clin Invest 93(3):1078–1086

    Article  Google Scholar 

  74. McMahon LA, O’Brien FJ, Prendergast PJ (2008) Biomechanics and mechanobiology in osteochondral tissues. Regen Med 3(5):743–759

    Article  Google Scholar 

  75. Nieminen MT, Toyras J, Laasanen MS, Silvennoinen J, Helminen HJ, Jurvelin JS (2004) Prediction of biomechanical properties of articular cartilage with quantitative magnetic resonance imaging. J Biomech 37(3):321–328

    Article  Google Scholar 

  76. Lima EG, Bian L, Ng KW, Mauck RL, Byers BA, Tuan RS, Ateshian GA, Hung CT (2007) The beneficial effect of delayed compressive loading on tissue-engineered cartilage constructs cultured with TGF-beta3. Osteoarthr Cartil 15(9):1025–1033

    Article  Google Scholar 

  77. Ding M, Dalstra M, Linde F, Hvid I (1998) Mechanical properties of the normal human tibial cartilage-bone complex in relation to age. Clin Biomech 13(4–5):351–358

    Article  Google Scholar 

  78. Korhonen RK, Laasanen MS, Toyras J, Rieppo J, Hirvonen J, Helminen HJ, Jurvelin JS (2002) Comparison of the equilibrium response of articular cartilage in unconfined compression, confined compression and indentation. J Biomech 35(7):903–909

    Article  Google Scholar 

  79. Freed LE, Langer R, Martin I, Pellis NR, Vunjak-Novakovic G (1997) Tissue engineering of cartilage in space. Proc Natl Acad Sci U S A 94(25):13885–13890

    Article  Google Scholar 

  80. Gupta HS, Schratter S, Tesch W, Roschger P, Berzlanovich A, Schoeberl T, Klaushofer K, Fratzl P (2005) Two different correlations between nanoindentation modulus and mineral content in the bone-cartilage interface. J Struct Biol 149(2):138–148

    Article  Google Scholar 

  81. Doube M, Firth EC, Boyde A, Bushby AJ (2010) Combined nanoindentation testing and scanning electron microscopy of bone and articular calcified cartilage in an equine fracture predilection site. Eur Cell Mater 19:242–251

    Google Scholar 

  82. Choi K, Kuhn JL, Ciarelli MJ, Goldstein SA (1990) The elastic moduli of human subchondral, trabecular, and cortical bone tissue and the size-dependency of cortical bone modulus. J Biomech 23(11):1103–1113

    Article  Google Scholar 

  83. Brown TD, Vrahas MS (1984) The apparent elastic modulus of the juxtarticular subchondral bone of the femoral head. J Orthop Res 2(1):32–38

    Article  Google Scholar 

  84. Karageorgiou V, Kaplan D (2005) Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26(27):5474–5491

    Article  Google Scholar 

  85. Grimm MJ, Williams JL (1997) Measurements of permeability in human calcaneal trabecular bone. J Biomech 30(7):743–745

    Article  Google Scholar 

  86. Raudenbush D, Sumner DR, Panchal PM, Muehleman C (2003) Subchondral thickness does not vary with cartilage degeneration on the metatarsal. J Am Podiatr Med Assoc 93(2):104–110

    Google Scholar 

  87. Sniekers YH, Intema F, Lafeber FP, van Osch GJ, van Leeuwen JP, Weinans H, Mastbergen SC (2008) A role for subchondral bone changes in the process of osteoarthritis; a micro-CT study of two canine models. BMC Musculoskelet Disord 9:20

    Article  Google Scholar 

  88. Duchemin L, Bousson V, Raossanaly C, Bergot C, Laredo JD, Skalli W, Mitton D (2008) Prediction of mechanical properties of cortical bone by quantitative computed tomography. Med Eng Phys 30(3):321–328

    Article  Google Scholar 

  89. Ferguson VL, Olesiak SE (2011) Nanoindentation of bone. In: Oyen ML (ed) Handbook of nanoindenation with biological applications. Pan Stanford, Singapore, pp 185–238

    Google Scholar 

  90. Pidaparti RM, Vogt A (2002) Experimental investigation of Poisson’s ratio as a damage parameter for bone fatigue. J Biomed Mater Res 59(2):282–287

    Article  Google Scholar 

  91. Ochoa JA, Hillberry BM (1992) Permeability of bovine cancellous bone. Trans Orthop Res Soc 17:163

    Google Scholar 

  92. Basillais A, Bensamoun S, Chappard C, Brunet-Imbault B, Lemineur G, Ilharreborde B, Ho Ba Tho MC, Benhamou CL (2007) Three-dimensional characterization of cortical bone microstructure by microcomputed tomography: validation with ultrasonic and microscopic measurements. J Orthop Sci 12(2):141–148

    Article  Google Scholar 

  93. Iatridis JC, Setton LA, Foster RJ, Rawlins BA, Weidenbaum M, Mow VC (1998) Degeneration affects the anisotropic and nonlinear behaviors of human anulus fibrosus in compression. J Biomech 31(6):535–544

    Article  Google Scholar 

  94. Panagiotacopulos ND, Pope MH, Krag MH, Bloch R (1987) A mechanical model for the human intervertebral disc. J Biomech 20(9):839–850

    Article  Google Scholar 

  95. Antoniou J, Goudsouzian NM, Heathfield TF, Winterbottom N, Steffen T, Poole AR, Aebi M, Alini M (1996) The human lumbar endplate. Evidence of changes in biosynthesis and denaturation of the extracellular matrix with growth, maturation, aging, and degeneration. Spine 21(10):1153–1161

    Article  Google Scholar 

  96. Acaroglu ER, Iatridis JC, Setton LA, Foster RJ, Mow VC, Weidenbaum M (1995) Degeneration and aging affect the tensile behavior of human lumbar anulus fibrosus. Spine 20(24):2690–2701

    Article  Google Scholar 

  97. Elliott DM, Setton LA (2001) Anisotropic and inhomogeneous tensile behavior of the human annulus fibrosus: experimental measurement and material model predictions. J Biomech Eng 123(3):256–263

    Article  Google Scholar 

  98. Boyde A, Firth EC (2004) Articular calcified cartilage canals in the third metacarpal bone of 2-year-old thoroughbred racehorses. J Anat 205(6):491–500

    Article  Google Scholar 

  99. Armstrong CG, Mow VC (1982) Variations in the intrinsic mechanical properties of human articular cartilage with age, degeneration, and water content. J Bone Joint Surg Am 64(1):88–94

    Google Scholar 

  100. MacLean JJ, Owen JP, Iatridis JC (2007) Role of endplates in contributing to compression behaviors of motion segments and intervertebral discs. J Biomech 40(1):55–63

    Article  Google Scholar 

  101. Fawns HT, Landells JW (1953) Histochemical studies of rheumatic conditions. I. Observations on the fine structures of the matrix of normal bone and cartilage. Ann Rheum Dis 12(2):105–113

    Article  Google Scholar 

  102. Lane LB, Bullough PG (1980) Age-related changes in the thickness of the calcified zone and the number of tidemarks in adult human articular cartilage. J Bone Joint Surg Br 62(3):372–375

    Google Scholar 

  103. Oegema TR Jr, Johnson SL, Meglitsch T, Carpenter RJ (1996) Prostaglandins and the zone of calcified cartilage in osteoarthritis. Am J Ther 3(2):139–149

    Article  Google Scholar 

  104. Muller-Gerbl M, Schulte E, Putz R (1987) The thickness of the calcified layer of articular cartilage: a function of the load supported? J Anat 154:103–111

    Google Scholar 

  105. O’Connor KM (1997) Unweighting accelerates tidemark advancement in articular cartilage at the knee joint of rats. J Bone Miner Res 12(4):580–589

    Article  Google Scholar 

  106. Doube M, Firth EC, Boyde A (2007) Variations in articular calcified cartilage by site and exercise in the 18-month-old equine distal metacarpal condyle. Osteoarthr Cartil 15(11):1283–1292

    Article  Google Scholar 

  107. Karvonen RL, Negendank WG, Teitge RA, Reed AH, Miller PR, Fernandez-Madrid F (1994) Factors affecting articular cartilage thickness in osteoarthritis and aging. J Rheumatol 21(7):1310–1318

    Google Scholar 

  108. Oegema TR Jr, Carpenter RJ, Hofmeister F, Thompson RC Jr (1997) The interaction of the zone of calcified cartilage and subchondral bone in osteoarthritis. Microsc Res Tech 37(4):324–332

    Article  Google Scholar 

  109. Kiviranta I, Jurvelin J, Tammi M, Saamanen AM, Helminen HJ (1987) Weight bearing controls glycosaminoglycan concentration and articular cartilage thickness in the knee joints of young beagle dogs. Arthritis Rheum 30(7):801–809

    Article  Google Scholar 

  110. Green WT Jr, Martin GN, Eanes ED, Sokoloff L (1970) Microradiographic study of the calcified layer of articular cartilage. Arch Pathol 90(2):151–158

    Google Scholar 

  111. Kaab MJ, Gwynn IA, Notzli HP (1998) Collagen fibre arrangement in the tibial plateau articular cartilage of man and other mammalian species. J Anat 193(pt 1):23–34

    Article  Google Scholar 

  112. Muller-Gerbl M, Schulte E, Putz R (1987) The thickness of the calcified layer in different joints of a single individual. Acta Morphol Neerl Scand 25(1):41–49

    Google Scholar 

  113. Laffosse JM, Kinkpe C, Gomez-Brouchet A, Accadbled F, Viguier E, de Gauzy JS, Swider P (2010) Micro-computed tomography study of the subchondral bone of the vertebral endplates in a porcine model: correlations with histomorphometric parameters. Surg Radiol Anat 32(4):335–341

    Article  Google Scholar 

  114. Martin RB, Sharkey NA (eds) (2001) Mechanical effects of postmortem changes, preservation, and allograft bone treatments. Bone mechanics handbook, 2nd edn. CRC Press, New York

    Google Scholar 

  115. Boyde A (2003) The real response of bone to exercise. J Anat 203(2):173–189

    Article  Google Scholar 

  116. Haralson MA, Hassell JR (1995) Extracellular matrix: a practical approach The Practical approach series, vol 151. IRL Press; Oxford University Press, Oxford, New York

    Google Scholar 

  117. Fratzl P, Weinkamer R (2007) Nature’s hierarchical materials. Prog Mater Sci 52(8):1263–1334

    Article  Google Scholar 

  118. Thambyah A, Broom N (2006) Micro-anatomical response of cartilage-on-bone to compression: mechanisms of deformation within and beyond the directly loaded matrix. J Anat 209(5):611–622

    Article  Google Scholar 

  119. Ferguson VL (2009) Deformation partitioning provides insight into elastic, plastic, and viscous contributions to bone material behavior. J Mech Behav Biomed Mater 2(4):364–374

    Article  Google Scholar 

  120. Oyen ML, Ko CC (2008) Indentation variability of natural nanocomposite materials. J Mater Res 23(3):760–767

    Article  Google Scholar 

  121. Duer MJ, Friscic T, Murray RC, Reid DG, Wise ER (2009) The mineral phase of calcified cartilage: its molecular structure and interface with the organic matrix. Biophys J 96(8):3372–3378

    Article  Google Scholar 

  122. Roschger P, Grabner BM, Rinnerthaler S, Tesch W, Kneissel M, Berzlanovich A, Klaushofer K, Fratzl P (2001) Structural development of the mineralized tissue in the human L4 vertebral body. J Struct Biol 136(2):126–136

    Article  Google Scholar 

  123. Bembey AK, Bushby AJ, Boyde A, Ferguson VL, Oyen ML (2006) Hydration effects on the micro-mechanical properties of bone. J Mater Res 21(8):1962–1968

    Article  Google Scholar 

  124. Elliott JC (2002) Calcium phosphate biominerals. In: Kohn MJ, Rakovan J, Hughes JM (eds) Phosphates: geochemical, geobiological, and materials importance, vol 48. Reviews in mineralogy & geochemistry. Mineralogical Society of America, Washington, DC, pp 427–453

    Google Scholar 

  125. Wilson EE, Awonusi A, Morris MD, Kohn DH, Tecklenburg MMJ, Beck LW (2006) Three structural roles for water in bone observed by solid-state NMR. Biophys J 90(10):3722–3731

    Article  Google Scholar 

  126. Ziv V, Weiner S (1994) Bone crystal sizes—a comparison of transmission electron-microscopic and X-ray-diffraction line-width broadening techniques. Connect Tissue Res 30(3):165–175

    Article  Google Scholar 

  127. Eppell SJ, Tong WD, Katz JL, Kuhn L, Glimcher MJ (2001) Shape and size of isolated bone mineralites measured using atomic force microscopy. J Orthop Res 19(6):1027–1034

    Article  Google Scholar 

  128. Wilson RM, Dowker SEP, Elliott JC (2006) Rietveld refinements and spectroscopic structural studies of a Na-free carbonate apatite made by hydrolysis of monetite. Biomaterials 27(27):4682–4692

    Article  Google Scholar 

  129. Petruska JA, Hodge AJ (1964) Subunit model for tropocollagen macromolecule. Proc Natl Acad Sci U S A 51(5):871–876

    Article  Google Scholar 

  130. Landis WJ, Hodgens KJ, Arena J, Song MJ, McEwen BF (1996) Structural relations between collagen and mineral in bone as determined by high voltage electron microscopic tomography. Microsc Res Tech 33(2):192–202

    Article  Google Scholar 

  131. Katz EP, Li S (1973) Structure and function of bone collagen fibrils. J Mol Biol 80(1):1–15

    Article  Google Scholar 

  132. Zizak I, Paris O, Roschger P, Bernstorff S, Amenitsch H, Klaushofer K, Fratzl P (2000) Investigation of bone and cartilage by synchrotron scanning-SAXS and -WAXD with micrometer spatial resolution. J Appl Crystallogr 33(1):820–823

    Article  Google Scholar 

  133. Brown RA, Blunn GW, Salisbury JR, Byers PD (1993) Two patterns of calcification in primary (physeal) and secondary (epiphyseal) growth cartilage. Clin Orthop 294:318–324

    Google Scholar 

  134. Reid SA, Boyde A (1987) Changes in the mineral density distribution in human bone with age: image analysis using backscattered electrons in the SEM. J Bone Miner Res 2(1):13–22

    Article  Google Scholar 

  135. Ratcliffe A, Mow VC (1996) Articular cartilage. In: Comper WD (ed) Extracellular matrix, vol I. Harwood Academic, Reading, UK, pp 235–302

    Google Scholar 

  136. Gong JK, Arnold JS, Cohn SH (1964) Composition of trabecular + cortical bone. Anat Rec 149(3):325–332

    Article  Google Scholar 

  137. Lovell TP, Eyre DR (1988) Unique biochemical characteristics of the calcified zone of articular cartilage. Trans Orthop Res Soc 13:511

    Google Scholar 

  138. Thambyah A, Broom N (2010) How subtle structural changes associated with maturity and mild degeneration influence the impact-induced failure modes of cartilage-on-bone. Clin Biomech 25(7):737–744

    Article  Google Scholar 

  139. Bushby AJ, Ferguson VL, Boyde A (2004) Nanoindentation of bone: comparison of specimens tested in liquid and embedded in polymethylmethacrylate. J Mater Res 19(1):249–259

    Article  Google Scholar 

  140. Redler I, Mow VC, Zimny ML, Mansell J (1975) The ultrastructure and biomechanical significance of the tidemark of articular cartilage. Clin Orthop Relat Res 112:357–362

    Article  Google Scholar 

  141. Oloyede A, Broom N (1996) The biomechanics of cartilage load-carriage. Connect Tissue Res 34(2):119–143

    Article  Google Scholar 

  142. Kaab MJ, Richards RG, Ito K, ap Gwynn I, Notzli HP (2003) Deformation of chondrocytes in articular cartilage under compressive load: a morphological study. Cells Tissues Organs 175(3):133–139

    Article  Google Scholar 

  143. Hough AJ, Banfield WG, Mottram FC, Sokoloff L (1974) The osteochondral junction of mammalian joints. An ultrastructural and microanalytic study. Lab Invest 31(6):685–695

    Google Scholar 

  144. Wei HW, Sun SS, Jao SH, Yeh CR, Cheng CK (2005) The influence of mechanical properties of subchondral plate, femoral head and neck on dynamic stress distribution of the articular cartilage. Med Eng Phys 27(4):295–304

    Article  Google Scholar 

  145. Anderson DD, Brown TD, Radin EL (1993) The influence of basal cartilage calcification on dynamic juxtaarticular stress transmission. Clin Orthop Relat Res 286:298–307

    Google Scholar 

  146. Brown TD, Radin EL, Martin RB, Burr DB (1984) Finite element studies of some juxtarticular stress changes due to localized subchondral stiffening. J Biomech 17(1):11–24

    Article  Google Scholar 

  147. Broom ND (1984) Further insights into the structural principles governing the function of articular cartilage. J Anat 139(pt 2):275–294

    Google Scholar 

  148. Flachsmann ER, Broom ND, Oloyede A (1995) A biomechanical investigation of unconstrained shear failure of the osteochondral region under impact loading. Clin Biomech 10(3):156–165

    Article  Google Scholar 

  149. Johnson-Nurse C, Dandy DJ (1985) Fracture-separation of articular cartilage in the adult knee. J Bone Joint Surg Br 67(1):42–43

    Google Scholar 

  150. Tomatsu T, Imai N, Takeuchi N, Takahashi K, Kimura N (1992) Experimentally produced fractures of articular cartilage and bone. The effects of shear forces on the pig knee. J Bone Joint Surg Br 74(3):457–462

    Google Scholar 

  151. Fry HJ (1974) The interlocked stresses of articular cartilage. Br J Plast Surg 27(4):363–364

    Article  Google Scholar 

  152. Matthewson MH, Dandy DJ (1978) Osteochondral fractures of the lateral femoral condyle: a result of indirect violence to the knee. J Bone Joint Surg Br 60-B(2):199–202

    Google Scholar 

  153. Rosenberg NJ (1964) Osteochondral fractures of the lateral femoral condyle. J Bone Joint Surg Am 46:1013–1026

    Google Scholar 

  154. Meachim G, Bentley G (1978) Horizontal splitting in patellar articular cartilage. Arthritis Rheum 21(6):669–674

    Article  Google Scholar 

  155. Mori S, Harruff R, Burr DB (1993) Microcracks in articular calcified cartilage of human femoral heads. Arch Pathol Lab Med 117(2):196–198

    Google Scholar 

  156. Sokoloff L (1993) Microcracks in the calcified layer of articular cartilage. Arch Pathol Lab Med 117(2):191–195

    Google Scholar 

  157. Freeman MAR (1979) Adult articular cartilage, 2nd edition, p. 560 (Pitman Medical, Kent)

    Google Scholar 

  158. Mow VC, Gu WY, Chen FH (2005) Structure and function of articular cartilage and meniscus. Basic orthopaedic biomechanics and mechano-biology (Eds V.C. Mow and R. Huiskes) pp. 181–258 (Lippin- cott Williams & Wilkins, Philadelphia)

    Google Scholar 

  159. Setton LA Swelling and curling behaviors of articular cartilage. J Biomech Eng 120(2):355–361

    Google Scholar 

Download references

Acknowledgments

Support for this work was funded by the National Science Foundation CAREER Award (NSF#1055989), the University of Colorado Innovative Grant Program, and a National Science Foundation graduate fellowship to RCP. Thank you also to Sara E. Campbell at the National Institute of Standards and Technology, Boulder CO USA, for imaging support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Virginia L. Ferguson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ferguson, V.L., Paietta, R.C. (2013). The Bone–Cartilage Interface. In: Thomopoulos, S., Birman, V., Genin, G. (eds) Structural Interfaces and Attachments in Biology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3317-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-3317-0_5

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-3316-3

  • Online ISBN: 978-1-4614-3317-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics