Skip to main content

Ligament and Tendon Enthesis: Anatomy and Mechanics

  • Chapter
  • First Online:
Structural Interfaces and Attachments in Biology

Abstract

The insertions of ligaments and tendons to bone are morphologically and biomechanically complex. Within a short distance, the insertion (“enthesis”) is transformed from soft connective tissue to hard bone. In this chapter, we discuss the anatomy of the enthesis, including a review of the gross morphology as well as histology and appearance of two distinct types of insertions: the direct and indirect insertions to bone. The biomechanical function of insertion sites is then presented, including some challenges with methods involved in determining their properties. We then review the changes that occur across the insertion site during growth and skeletal maturity, using the femur-MCL-tibia complex as an example. The negative effects of immobilization on the insertion and its slow recovery following remobilization, together with positive effects of exercise, will then be presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Woo SLY, Gomez MA, Sites TJ, Newton PO, Orlando CA, Akeson WH (1987) The biomechanical and morphological-changes in the medial collateral ligament of the rabbit after immobilization and remobilization. J Bone Joint Surg Am 69A(8):1200–1211

    Google Scholar 

  2. Haus J, Halata Z (1990) Innervation of the anterior cruciate ligament. Int Orthop 14(3):293–296

    Article  Google Scholar 

  3. Aydog ST, Korkusuz P, Doral MN, Tetik O, Demirel HA (2006) Decrease in the numbers of mechanoreceptors in rabbit ACL: the effects of ageing. Knee Surg Sports Traumatol Arthrosc 14(4):325–329

    Article  Google Scholar 

  4. Grigg P (1975) Mechanical factors influencing response of joint afferent neurons from cat knee. J Neurophysiol 38(6):1473–1484

    Google Scholar 

  5. Grigg P, Harrigan EP, Fogarty KE (1978) Segmental reflexes mediated by joint afferent neurons in cat knee. J Neurophysiol 41(1):9–14

    Google Scholar 

  6. Grigg P, Hoffman AH (1982) Properties of Ruffini afferents revealed by stress-analysis of isolated sections of cat knee capsule. J Neurophysiol 47(1):41–54

    Google Scholar 

  7. Buckwalter JA, Woo SL-Y (1996) Age-related changes in ligaments and joint capsules: implications for participation in sports. Sports Med Arthrosc 4:250–262

    Article  Google Scholar 

  8. Woo SLY, Gomez MA, Seguchi Y, Endo CM, Akeson WH (1983) Measurement of mechanical properties of ligament substance from a bone ligament bone preparation. J Orthop Res 1(1):22–29

    Article  Google Scholar 

  9. Woo SLY, Hollis JM, Adams DJ, Lyon RM, Takai S (1991) Tensile properties of the human femur-anterior cruciate ligament-tibia complex—the effects of specimen age and orientation. Am J Sports Med 19(3):217–225

    Article  Google Scholar 

  10. Thomopoulos S, Williams GR, Gimbel JA, Favata M, Soslowsky LJ (2003) Variation of biomechanical, structural, and compositional properties along the tendon to bone insertion site. J Orthop Res 21(3):413–419

    Article  Google Scholar 

  11. Woo SLY, Abramowitch SD, Kilger R, Liang R (2006) Biomechanics of knee ligaments: injury, healing, and repair. J Biomech 39(1):1–20

    Article  Google Scholar 

  12. Woo SLY, Thomas M, Saw SSC (2004) Contribution of biomechanics, orthopaedics and rehabilitation: the past, present and future. Surgeon 2(3):125–136

    Article  Google Scholar 

  13. Tipton CM, Matthes RD, Martin RK (1978) Influence of age and sex on strength of bone-ligament junctions in knee joints of rats. J Bone Joint Surg Am 60(2):230–234

    Google Scholar 

  14. Woo SLY, Peterson RH, Ohland KJ, Sites TJ, Danto MI (1990) The effects of strain rate on the properties of the medial collateral ligament in skeletally immature and mature rabbits—a biomechanical and histological study. J Orthop Res 8(5):712–721

    Article  Google Scholar 

  15. Woo SLY, Orlando CA, Gomez MA, Frank CB, Akeson WH (1986) Tensile properties of the medial collateral ligament as a function of age. J Orthop Res 4(2):133–141

    Article  Google Scholar 

  16. Woo SLY, Buckwalter JA (1988) Injury and repair of the musculoskeletal soft tissues. J Orthop Res 6(6):907–931

    Article  Google Scholar 

  17. Newton PO, Woo SLY, Mackenna DA, Akeson WH (1995) Immobilization of the knee joint alters the mechanical and ultrastructural properties of the rabbit anterior cruciate ligament. J Orthop Res 13(2):191–200

    Article  Google Scholar 

  18. Woo SLY, Ritter MA, Amiel D, Sanders TM, Gomez MA, Kuel SC, Garfin SR, Akeson WH (1980) The biomechanical and biochemical properties of swine tendons—long-term effects of exercise on the digital extensors. Connect Tissue Res 7(3):177–183

    Article  Google Scholar 

  19. Woo SLY, Amiel D, Akeson WH, Kuei SC, Tipton CM (1979) Effect of long-term exercise on ligaments, tendons, and bones of swine. Med Sci Sports Exerc 11(1):105

    Google Scholar 

  20. Woo SLY, Gomez MA, Amiel D, Ritter MA, Gelberman RH, Akeson WH (1981) The effects of exercise on the biomechanical and biochemical properties of swine digital flexor tendons. J Biomech Eng-T ASME 103(1):51–56

    Article  Google Scholar 

  21. Frank C, Akeson WH, Woo SLY, Amiel D, Coutts RD (1984) Physiology and therapeutic value of passive joint motion. Clin Orthop Relat Res 185:113–125

    Google Scholar 

  22. Lee TQ, Woo SLY (1988) A new method for determining cross-sectional shape and area of soft-tissues. J Biomech Eng-T ASME 110(2):110–114

    Article  MathSciNet  Google Scholar 

  23. Woo SLY, Danto MI, Ohland KJ, Lee TQ, Newton PO (1990) The use of a laser micrometer system to determine the cross-sectional shape and area of ligaments—a comparative-study with 2 existing methods. J Biomech Eng-T ASME 112(4):426–431

    Article  Google Scholar 

  24. Moon DK, Abramowitch SD, Woo SLY (2006) The development and validation of a charge-coupled device laser reflectance system to measure the complex cross-sectional shape and area of soft tissues. J Biomech 39(16):3071–3075. doi:10.1016/j.jbiomech.2005.10.029

    Article  Google Scholar 

  25. Danto MI, Woo SLY (1993) The mechanical-properties of skeletally mature rabbit anterior cruciate ligament and patellar tendon over a range of strain rates. J Orthop Res 11(1):58–67

    Article  Google Scholar 

  26. Noyes FR, Delucas JL, Torvik PJ (1974) Biomechanics of anterior cruciate ligament failure—analysis of strain-rate sensitivity and mechanisms of failure in primates. J Bone Joint Surg Am 56(2):236–253

    Google Scholar 

  27. Noyes FR, Grood ES (1976) Strength of anterior cruciate ligament in humans and Rhesus-monkeys. J Bone Joint Surg Am 58(8):1074–1082

    Google Scholar 

  28. Noyes FR, Butler DL, Grood ES, Zernicke RF, Hefzy MS (1984) Biomechanical analysis of human ligament grafts used in knee-ligament repairs and reconstructions. J Bone Joint Surg Am 66A(3):344–352

    Google Scholar 

  29. Lam TC, Shrive NG, Frank CB (1995) Variations in rupture site and surface strains at failure in the maturing rabbit medial collateral ligament. J Biomech Eng-T ASME 117(4):455–461

    Article  Google Scholar 

  30. Harner CD, Baek GH, Vogrin TM, Carlin GJ, Kashiwaguchi S, Woo SLY (1999) Quantitative analysis of human cruciate ligament insertions. Arthroscopy 15(7):741–749

    Article  Google Scholar 

  31. Spalazzi JP, Gallina J, Fung-Kee-Fung SD, Konofagou EE, Lu HH (2006) Elastographic imaging of strain distribution in the anterior cruciate ligament and at the ligament-bone insertions. J Orthop Res 24(10):2001–2010. doi:10.1002/jor.20260

    Article  Google Scholar 

  32. Hastings DE (1980) The non-operative management of collateral ligament injuries of the knee-joint. Clin Orthop Relat Res 147:22–28

    Google Scholar 

  33. Weiss JA, Woo SLY, Ohland KJ, Horibe S, Newton PO (1991) Evaluation of a new injury model to study medial collateral ligament healing—primary repair versus nonoperative treatment. J Orthop Res 9(4):516–528

    Article  Google Scholar 

  34. Edson CJ (2006) Conservative and postoperative rehabilitation of isolated and combined injuries of the medial collateral ligament. Sports Med Arthrosc 14(2):105–110

    Article  Google Scholar 

  35. Firoozbakhsh KK, DeCoster TA, Moneim MS, McGuire MS, Naraghi FF (1996) Staple leg profile influence on pullout strength—a biomechanical study. Clin Orthop Relat Res 331:300–307

    Article  Google Scholar 

  36. Beynnon BD, Meriam CM, Ryder SH, Fleming BC, Johnson RJ (1998) The effect of screw insertion torque on tendons fixed with spiked washers. Am J Sports Med 26(4):536–539

    Google Scholar 

  37. Fealy S, Rodeo SA, MacGillivray JD, Nixon AJ, Adler RS, Warren RF (2006) Biomechanical evaluation of the relation between number of suture anchors and strength of the bone-tendon interface in a goat rotator cuff model. Arthroscopy 22(6):595–602

    Article  Google Scholar 

  38. Robertson DB, Daniel DM, Biden E (1986) Soft-tissue fixation to bone. Am J Sports Med 14(5):398–403

    Article  Google Scholar 

  39. Koh KH, Kang KC, Lim TK, Shon MS, Yoo JC (2011) Prospective randomized clinical trial of single- versus double-row suture anchor repair in 2-to 4-cm rotator cuff tears: clinical and magnetic resonance imaging results. Arthroscopy 27(4):453–462

    Article  Google Scholar 

  40. Philippon MJ, Souza BGSE, Briggs KK (2010) Labrum: resection, repair, and reconstruction. Sports Med Arthrosc 18(2):76–82

    Article  Google Scholar 

  41. Ozbaydar M, Elhassan B, Warner JJP (2007) The use of anchors in shoulder surgery: a shift from metallic to bioabsorbable anchors. Arthroscopy 23(10):1124–1126

    Article  Google Scholar 

  42. Drogset JO, Straume LG, Bjorkmo I, Myhr G (2011) A prospective randomized study of ACL-reconstructions using bone-patellar-tendon-bone grafts fixed with bioabsorbable or metal interference screws. Knee Surg Sports Traumatol Arthrosc 19(5):753–759

    Article  Google Scholar 

  43. Cerulli G, Zamarra G, Vercillo F, Pelosi F (2011) ACL reconstruction with “the original all-inside technique”. Knee Surg Sports Traumatol Arthrosc 19(5):829–831

    Article  Google Scholar 

  44. Emond CE, Woelber EB, Kurd SK, Ciccotti MG, Cohen SB (2011) A comparison of the results of anterior cruciate ligament reconstruction using bioabsorbable versus metal interference screws a meta-analysis. J Bone Joint Surg Br 93A(6):572–580

    Article  Google Scholar 

  45. Weiss AB, Blazina ME, Goldstein AR, Alexander H (1985) Ligament replacement with an absorbable copolymer carbon-fiber scaffold—early clinical-experience. Clin Orthop Relat Res 196:77–85

    Google Scholar 

  46. Richmond JC, Manseau CJ, Patz R, McConville O (1992) Anterior cruciate reconstruction using a Dacron ligament prosthesis—a long-term study. Am J Sports Med 20(1):24–28

    Article  Google Scholar 

  47. Dunn MG, Tria AJ, Kato YP, Bechler JR, Ochner RS, Zawadsky JP, Silver FH (1992) Anterior cruciate ligament reconstruction using a composite collagenous prosthesis—a biomechanical and histologic-study in rabbits. Am J Sports Med 20(5):507–575

    Article  Google Scholar 

  48. Paxton JZ, Donnelly K, Keatch RP, Baar K, Grover LM (2010) Factors affecting the longevity and strength in an in vitro model of the bone-ligament interface. Ann Biomed Eng 38(6):2155–2166

    Article  Google Scholar 

  49. Scherping SC Jr, Schmidt CC, Georgescu HI, Kwoh CK, Evans CH, Woo SL-Y (1997) Effect of growth factors on the proliferation of ligament fibroblasts from skeletally mature rabbits. Connect Tissue Res 36(1):1–8

    Article  Google Scholar 

  50. Hildebrand KA, Woo SL-Y, Smith DW, Allen CR, Deie M, Taylor BJ, Schmidt CC (1998) The effects of platelet-derived growth factor-BB on healing of the rabbit medial collateral ligament: an in vivo study. Am. Orthopaedic Society for Sports Medicine 1997 O’Donoghue Sports Injury Research Award paper. Am J Sports Med 26(4):549–554

    Google Scholar 

  51. Martinek V, Latterman C, Usas A, Abramowitch S, Pelinkovic D, Seil R, Lee J, Robbins P, Woo SL-Y, Fu FH, Huard J (2002) Enhancement of the tendon-bone integration of ACL tendon grafts with BMP-2 gene transfer: a histological and biomechanical study. J Bone Joint Surgery 84A(7):1123–1131

    Google Scholar 

  52. Karaoglu S, Fisher M, Woo SL-Y, Fu Y-C, Liang R, Abramowitch SD (2008) Use of a bioscaffold to improve healing of a patellar tendon defect after graft harvest for ACL reconstruction: a study in rabbits. J Orthop Res 26(2):255–263

    Article  Google Scholar 

  53. Liang R, Woo SL-Y, Nguyen TD, Liu P-C, Almarza A (2008) A bioscaffold to enhance collagen fibrillogenesis in healing medial collateral ligament in rabbits. J Orthopaedic Research 26(8):1098–1104

    Article  Google Scholar 

  54. Lu HH, Jiang J (2006) Interface tissue engineering and the formulation of multiple-tissue systems. Adv Biochem Eng Biotechnol 102:91–111

    Google Scholar 

  55. Spalazzi JP, Dagher E, Doty SB, Guo XE, Rodeo SA, Lu HH (2008) In vivo evaluation of a multiphased scaffold designed for orthopaedic interface tissue engineering and soft tissue-to-bone integration. J Biomed Mater Res A 86A(1):1–12

    Article  Google Scholar 

  56. Spalazzi JP, Doty SB, Moffat KL, Levine WN, Lu HH (2006) Development of controlled matrix heterogeneity on a triphasic scaffold for orthopedic interface tissue engineering. Tissue Eng 12(12):3497–3508

    Article  Google Scholar 

  57. Lu HH, Subramony SD, Boushell MK, Zhang XZ (2010) Tissue engineering strategies for the regeneration of orthopedic interfaces. Ann Biomed Eng 38(6):2142–2154

    Article  Google Scholar 

  58. Moffat KL, Kwei ASP, Spalazzi JP, Doty SB, Levine WN, Lu HH (2009) Novel nanofiber-based scaffold for rotator cuff repair and augmentation. Tissue Eng Part A 15(1):115–126

    Article  Google Scholar 

  59. Staiger MP, Pietak AM, Huadmai J, Dias G (2006) Magnesium and its alloys as orthopedic biomaterials: a review. Biomaterials 27(9):1728–1734

    Article  Google Scholar 

  60. Witte F, Feyerabend F, Maier P, Fischer J, Stormer M, Blawert C, Dietzel W, Hort N (2007) Biodegradable magnesium-hydroxyapatite metal matrix composites. Biomaterials 28(13):2163–2174

    Article  Google Scholar 

  61. Woo SLY, Hollis JM, Adams DJ, Lyon RM, Takai S (1987) Treatment of the medial collateral ligament injury, II: structure and function of canine knees in response to differing treatment regimes. Am J Sports Med 15(1):22–29

    Article  Google Scholar 

  62. Dörlf J (1980) Migration of tendinous insertions. I. Cause and mechanism. J Anat 131(Pt 1):179–95

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Commonwealth of Pennsylvania, McGowan Institute for Regenerative Medicine, NIH (MCL Grant 14918), and an NSF ERC Grant (#0812348).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Savio L.-Y. Woo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Tei, M.M., Farraro, K.F., Woo, S.LY. (2013). Ligament and Tendon Enthesis: Anatomy and Mechanics. In: Thomopoulos, S., Birman, V., Genin, G. (eds) Structural Interfaces and Attachments in Biology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3317-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-3317-0_4

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-3316-3

  • Online ISBN: 978-1-4614-3317-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics