Skip to main content

Engineering Graded Tissue Interfaces

  • Chapter
  • First Online:
Structural Interfaces and Attachments in Biology

Abstract

Native tissue interfaces show transitions in cell type, structure, composition, and organization of extracellular matrix, chemical signals, mineralization, mechanical properties, and biological function. In this chapter, we discuss engineering of tissue interfaces, with an emphasis on scaffold design. An ideal scaffold should be able to accommodate transitions in tissue elements in order to transmit the properties of one tissue to another. Regenerative medicine strategies for synthesizing tissue interfaces are reviewed, including the generation of continuous physical and chemical gradients for the formation of strong attachments. We highlight the importance of the scaffold for directing cellular behavior to form an interface similar to native tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Li Jeon N, Baskaran H, Dertinger SK, Whitesides GM, Van de Water L, Toner M (2002) Neutrophil chemotaxis in linear and complex gradients of interleukin-8 formed in a microfabricated device. Nat Biotechnol 20(8):826–830

    Google Scholar 

  2. Shamloo A, Ma N, Poo MM, Sohn LL, Heilshorn SC (2008) Endothelial cell polarization and chemotaxis in a microfluidic device. Lab Chip 8(8):1292–1299

    Article  Google Scholar 

  3. Gillitzer R, Goebeler M (2001) Chemokines in cutaneous wound healing. J Leukoc Biol 69(4):513–521

    Google Scholar 

  4. Middleton J, Patterson AM, Gardner L, Schmutz C, Ashton BA (2002) Leukocyte extravasation: chemokine transport and presentation by the endothelium. Blood 100(12):3853–3860

    Article  Google Scholar 

  5. Metz CN (2003) Fibrocytes: a unique cell population implicated in wound healing. Cell Mol Life Sci 60(7):1342–1350

    Article  Google Scholar 

  6. Mennicken F, Maki R, de Souza EB, Quirion R (1999) Chemokines and chemokine receptors in the CNS: a possible role in neuroinflammation and patterning. Trends Pharmacol Sci 20(2):73–78

    Article  Google Scholar 

  7. Johnson RL, Tabin CJ (1997) Molecular models for vertebrate limb development. Cell 90(6):979–990

    Article  Google Scholar 

  8. Pan J, Zhou X, Li W, Novotny JE, Doty SB, Wang L (2009) In situ measurement of transport between subchondral bone and articular cartilage. J Orthop Res 27(10):1347–1352

    Article  Google Scholar 

  9. Arkill KP, Winlove CP (2008) Solute transport in the deep and calcified zones of articular cartilage. Osteoarthritis Cartilage 16(6):708–714

    Article  Google Scholar 

  10. Lane LB, Villacin A, Bullough PG (1977) The vascularity and remodelling of subchondrial bone and calcified cartilage in adult human femoral and humeral heads. An age- and stress-related phenomenon. J Bone Joint Surg Br 59(3):272–278

    Google Scholar 

  11. Mori S, Harruff R, Burr DB (1993) Microcracks in articular calcified cartilage of human femoral heads. Arch Pathol Lab Med 117(2):196–198

    Google Scholar 

  12. Oegema TR Jr, Carpenter RJ, Hofmeister F, Thompson RC Jr (1997) The interaction of the zone of calcified cartilage and subchondral bone in osteoarthritis. Microsc Res Tech 37(4):324–332

    Article  Google Scholar 

  13. Poole AR, Kojima T, Yasuda T, Mwale F, Kobayashi M, Laverty S (2001) Composition and structure of articular cartilage: a template for tissue repair. Clin Orthop Relat Res (391 Suppl):S26-33.

    Google Scholar 

  14. Cohen NP, Foster RJ, Mow VC (1998) Composition and dynamics of articular cartilage: structure, function, and maintaining healthy state. J Orthop Sports Phys Ther 28(4):203–215

    Google Scholar 

  15. Pape D, Filardo G, Kon E, van Dijk CN, Madry H (2010) Disease-specific clinical problems associated with the subchondral bone. Knee Surg Sports Traumatol Arthrosc 18(4):448–462

    Article  Google Scholar 

  16. Burr DB, Radin EL (2003) Microfractures and microcracks in subchondral bone: are they relevant to osteoarthrosis? Rheum Dis Clin North Am 29(4):675–685

    Article  Google Scholar 

  17. Cooper RR, Misol S (1970) Tendon and ligament insertion. A light and electron microscopic study. J Bone Joint Surg Am 52(1):1–20

    Google Scholar 

  18. Benjamin M, Evans EJ, Copp L (1986) The histology of tendon attachments to bone in man. J Anat 149:89–100

    Google Scholar 

  19. Thomopoulos S, Williams GR, Gimbel JA, Favata M, Soslowsky LJ (2003) Variation of biomechanical, structural, and compositional properties along the tendon to bone insertion site. J Orthop Res 21(3):413–419

    Article  Google Scholar 

  20. Sagarriga Visconti C, Kavalkovich K, Wu J, Niyibizi C (1996) Biochemical analysis of collagens at the ligament-bone interface reveals presence of cartilage-specific collagens. Arch Biochem Biophys 328(1):135–142

    Article  Google Scholar 

  21. Galatz LM, Ball CM, Teefey SA, Middleton WD, Yamaguchi K (2004) The outcome and repair integrity of completely arthroscopically repaired large and massive rotator cuff tears. J Bone Joint Surg Am 86-A(2):219–224

    Google Scholar 

  22. Jiang J, Nicoll SB, Lu HH (2005) Co-culture of osteoblasts and chondrocytes modulates cellular differentiation in vitro. Biochem Biophys Res Commun 338(2):762–770

    Article  Google Scholar 

  23. Wang IE, Shan J, Choi R, Oh S, Kepler CK, Chen FH, Lu HH (2007) Role of osteoblast-fibroblast interactions in the formation of the ligament-to-bone interface. J Orthop Res 25(12):1609–1620

    Article  Google Scholar 

  24. Jiang J, Tang A, Ateshian GA, Guo XE, Hung CT, Lu HH (2010) Bioactive stratified polymer ceramic-hydrogel scaffold for integrative osteochondral repair. Ann Biomed Eng 38(6):2183–2196

    Article  Google Scholar 

  25. Cheng HW, Luk KD, Cheung KM, Chan BP (2011) In vitro generation of an osteochondral interface from mesenchymal stem cell-collagen microspheres. Biomaterials 32(6):1526–1535

    Article  Google Scholar 

  26. DeLong SA, Moon JJ, West JL (2005) Covalently immobilized gradients of bFGF on hydrogel scaffolds for directed cell migration. Biomaterials 26(16):3227–3234

    Article  Google Scholar 

  27. Barkefors I, Le Jan S, Jakobsson L, Hejll E, Carlson G, Johansson H, Jarvius J, Park JW, Li Jeon N, Kreuger J (2008) Endothelial cell migration in stable gradients of vascular endothelial growth factor A and fibroblast growth factor 2: effects on chemotaxis and chemokinesis. J Biol Chem 283(20):13905–13912

    Article  Google Scholar 

  28. Mano JF, Reis RL (2007) Osteochondral defects: present situation and tissue engineering approaches. J Tissue Eng Regen Med 1(4):261–273

    Article  Google Scholar 

  29. Schaefer D, Martin I, Shastri P, Padera RF, Langer R, Freed LE, Vunjak-Novakovic G (2000) In vitro generation of osteochondral composites. Biomaterials 21(24):2599–2606

    Article  Google Scholar 

  30. Place ES, Evans ND, Stevens MM (2009) Complexity in biomaterials for tissue engineering. Nat Mater 8(6):457–470

    Article  Google Scholar 

  31. Malafaya PB, Reis RL (2009) Bilayered chitosan-based scaffolds for osteochondral tissue engineering: influence of hydroxyapatite on in vitro cytotoxicity and dynamic bioactivity studies in a specific double-chamber bioreactor. Acta Biomater 5(2):644–660

    Article  Google Scholar 

  32. Ahn JH, Lee TH, Oh JS, Kim SY, Kim HJ, Park IK, Choi BS, Im GI (2009) Novel hyaluronate-atelocollagen/beta-TCP-hydroxyapatite biphasic scaffold for the repair of osteochondral defects in rabbits. Tissue Eng Part A 15(9):2595–2604

    Article  Google Scholar 

  33. Sharma B, Elisseeff JH (2004) Engineering structurally organized cartilage and bone tissues. Ann Biomed Eng 32(1):148–159

    Article  Google Scholar 

  34. Spalazzi JP, Doty SB, Moffat KL, Levine WN, Lu HH (2006) Development of controlled matrix heterogeneity on a triphasic scaffold for orthopedic interface tissue engineering. Tissue Eng 12(12):3497–3508

    Article  Google Scholar 

  35. Iijima M, Huang YE, Devreotes P (2002) Temporal and spatial regulation of chemotaxis. Dev Cell 3(4):469–478

    Article  Google Scholar 

  36. Fan H, Hu Y, Qin L, Li X, Wu H, Lv R (2006) Porous gelatin-chondroitin-hyaluronate tri-copolymer scaffold containing microspheres loaded with TGF-beta1 induces differentiation of mesenchymal stem cells in vivo for enhancing cartilage repair. J Biomed Mater Res A 77(4):785–794

    Google Scholar 

  37. Tamai N, Myoui A, Hirao M, Kaito T, Ochi T, Tanaka J, Takaoka K, Yoshikawa H (2005) A new biotechnology for articular cartilage repair: subchondral implantation of a composite of interconnected porous hydroxyapatite, synthetic polymer (PLA-PEG), and bone morphogenetic protein-2 (rhBMP-2). Osteoarthritis Cartilage 13(5):405–417

    Article  Google Scholar 

  38. Hunziker EB, Kapfinger E, Martin J, Buckwalter J, Morales TI (2008) Insulin-like growth factor (IGF)-binding protein-3 (IGFBP-3) is closely associated with the chondrocyte nucleus in human articular cartilage. Osteoarthritis Cartilage 16(2):185–194

    Article  Google Scholar 

  39. Huang X, Yang D, Yan W, Shi Z, Feng J, Gao Y, Weng W, Yan S (2007) Osteochondral repair using the combination of fibroblast growth factor and amorphous calcium phosphate/poly(L-lactic acid) hybrid materials. Biomaterials 28(20):3091–3100

    Article  Google Scholar 

  40. Guo X, Park H, Liu G, Liu W, Cao Y, Tabata Y, Kasper FK, Mikos AG (2009) In vitro generation of an osteochondral construct using injectable hydrogel composites encapsulating rabbit marrow mesenchymal stem cells. Biomaterials 30(14):2741–2752

    Article  Google Scholar 

  41. Holland TA, Bodde EW, Baggett LS, Tabata Y, Mikos AG, Jansen JA (2005) Osteochondral repair in the rabbit model utilizing bilayered, degradable oligo(poly(ethylene glycol) fumarate) hydrogel scaffolds. J Biomed Mater Res A 75(1):156–167

    Google Scholar 

  42. Holland TA, Bodde EW, Cuijpers VM, Baggett LS, Tabata Y, Mikos AG, Jansen JA (2007) Degradable hydrogel scaffolds for in vivo delivery of single and dual growth factors in cartilage repair. Osteoarthritis Cartilage 15(2):187–197

    Article  Google Scholar 

  43. Oh SH, Kim TH, Lee JH (2011) Creating growth factor gradients in three dimensional porous matrix by centrifugation and surface immobilization. Biomaterials 32(32):8254–8260

    Article  Google Scholar 

  44. Wang X, Wenk E, Zhang X, Meinel L, Vunjak-Novakovic G, Kaplan DL (2009) Growth factor gradients via microsphere delivery in biopolymer scaffolds for osteochondral tissue engineering. J Control Release 134(2):81–90

    Article  Google Scholar 

  45. Dormer NH, Singh M, Wang L, Berkland CJ, Detamore MS (2010) Osteochondral interface tissue engineering using macroscopic gradients of bioactive signals. Ann Biomed Eng 38(6):2167–2182

    Article  Google Scholar 

  46. Phillips JE, Burns KL, Le Doux JM, Guldberg RE, Garcia AJ (2008) Engineering graded tissue interfaces. Proc Natl Acad Sci U S A 105(34):12170–12175

    Article  Google Scholar 

  47. Lutolf MP (2009) Integration column: artificial ECM: expanding the cell biology toolbox in 3D. Integr Biol (Camb) 1(3):235–241

    Article  Google Scholar 

  48. Slaughter BV, Khurshid SS, Fisher OZ, Khademhosseini A, Peppas NA (2009) Hydrogels in regenerative medicine. Adv Mater 21(32–33):3307–3329

    Article  Google Scholar 

  49. He J, Du Y, Villa-Uribe JL, Hwang C, Li D, Khademhosseini A (2010) Rapid generation of biologically relevant hydrogels containing long-range chemical gradients. Adv Funct Mater 20(1):131–137

    Article  Google Scholar 

  50. Tripathi A, Kathuria N, Kumar A (2009) Elastic and macroporous agarose-gelatin cryogels with isotropic and anisotropic porosity for tissue engineering. J Biomed Mater Res A 90(3):680–694

    Google Scholar 

  51. Annabi N, Nichol JW, Zhong X, Ji C, Koshy S, Khademhosseini A, Dehghani F (2010) Controlling the porosity and microarchitecture of hydrogels for tissue engineering. Tissue Eng Part B Rev 16(4):371–383

    Article  Google Scholar 

  52. Choi NW, Cabodi M, Held B, Gleghorn JP, Bonassar LJ, Stroock AD (2007) Microfluidic scaffolds for tissue engineering. Nat Mater 6(11):908–915

    Article  Google Scholar 

  53. Cooksey GA, Sip CG, Folch A (2009) A multi-purpose microfluidic perfusion system with combinatorial choice of inputs, mixtures, gradient patterns, and flow rates. Lab Chip 9(3):417–426

    Article  Google Scholar 

  54. Kloxin AM, Benton JA, Anseth KS (2010) In situ elasticity modulation with dynamic substrates to direct cell phenotype. Biomaterials 31(1):1–8

    Article  Google Scholar 

  55. Marklein RA, Burdick JA (2010) Controlling stem cell fate with material design. Adv Mater 22(2):175–189

    Article  Google Scholar 

  56. Cheung YK, Azeloglu EU, Shiovitz DA, Costa KD, Seliktar D, Sia SK (2009) Microscale control of stiffness in a cell-adhesive substrate using microfluidics-based lithography. Angew Chem Int Ed Engl 48(39):7188–7192

    Article  Google Scholar 

  57. He J, Du Y, Guo Y, Hancock MJ, Wang B, Shin H, Wu J, Li D, Khademhosseini A (2011) Microfluidic synthesis of composite cross-gradient materials for investigating cell-biomaterial interactions. Biotechnol Bioeng 108(1):175–185

    Article  Google Scholar 

  58. Du Y, Hancock MJ, He J, Villa-Uribe JL, Wang B, Cropek DM, Khademhosseini A (2010) Convection-driven generation of long-range material gradients. Biomaterials 31(9):2686–2694

    Article  Google Scholar 

  59. Chatterjee K, Lin-Gibson S, Wallace WE, Parekh SH, Lee YJ, Cicerone MT, Young MF, Simon CG Jr (2010) The effect of 3D hydrogel scaffold modulus on osteoblast differentiation and mineralization revealed by combinatorial screening. Biomaterials 31(19):5051–5062

    Article  Google Scholar 

  60. Nakajima S, Ohshima K, Kyogoku M, Miyachi Y, Kabashima K (2010) A case of intravascular large B-cell lymphoma with atypical clinical manifestations and analysis of CXCL12 and CXCR4 expression. Arch Dermatol 146(6):686–687

    Article  Google Scholar 

  61. Sant S, Hancock M, Donnelly J, Iyer D, Khademhosseini A (2010) Biomimetic gradient hydrogels for tissue engineering. Can J Chem Eng 88(6):899–911

    Article  Google Scholar 

  62. Li X, Xie J, Lipner J, Yuan X, Thomopoulos S, Xia Y (2009) Nanofiber scaffolds with gradations in mineral content for mimicking the tendon-to-bone insertion site. Nano Lett 9(7):2763–2768

    Article  Google Scholar 

  63. Liu C, Han Z, Czernuszka JT (2009) Gradient collagen/nanohydroxyapatite composite scaffold: development and characterization. Acta Biomater 5(2):661–669

    Article  Google Scholar 

  64. Kon E, Delcogliano M, Filardo G, Fini M, Giavaresi G, Francioli S, Martin I, Pressato D, Arcangeli E, Quarto R, Sandri M, Marcacci M (2010) Orderly osteochondral regeneration in a sheep model using a novel nano-composite multilayered biomaterial. J Orthop Res 28(1):116–124

    Google Scholar 

  65. Kon E, Delcogliano M, Filardo G, Pressato D, Busacca M, Grigolo B, Desando G, Marcacci M (2010) A novel nano-composite multi-layered biomaterial for treatment of osteochondral lesions: technique note and an early stability pilot clinical trial. Injury 41(7):693–701

    Article  Google Scholar 

  66. Griffon DJ, Sedighi MR, Schaeffer DV, Eurell JA, Johnson AL (2006) Chitosan scaffolds: interconnective pore size and cartilage engineering. Acta Biomater 2(3):313–320

    Article  Google Scholar 

  67. Salem AK, Stevens R, Pearson RG, Davies MC, Tendler SJ, Roberts CJ, Williams PM, Shakesheff KM (2002) Interactions of 3T3 fibroblasts and endothelial cells with defined pore features. J Biomed Mater Res 61(2):212–217

    Article  Google Scholar 

  68. O’Brien FJ, Harley BA, Yannas IV, Gibson LJ (2005) The effect of pore size on cell adhesion in collagen-GAG scaffolds. Biomaterials 26(4):433–441

    Article  Google Scholar 

  69. Karageorgiou V, Kaplan D (2005) Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26(27):5474–5491

    Article  Google Scholar 

  70. Oh SH, Park IK, Kim JM, Lee JH (2007) In vitro and in vivo characteristics of PCL scaffolds with pore size gradient fabricated by a centrifugation method. Biomaterials 28(9):1664–1671

    Article  Google Scholar 

  71. Fu Q, Rahaman MN, Bal BS, Brown RF (2009) Proliferation and function of MC3T3-E1 cells on freeze-cast hydroxyapatite scaffolds with oriented pore architectures. J Mater Sci Mater Med 20(5):1159–1165

    Article  Google Scholar 

  72. Hsu YH, Turner IG, Miles AW (2007) Fabrication of porous bioceramics with porosity gradients similar to the bimodal structure of cortical and cancellous bone. J Mater Sci Mater Med 18(12):2251–2256

    Article  Google Scholar 

  73. Sun W, Puzas JE, Sheu TJ, Lieu X, Fauchet PM (2007) Nano- to microscale porous silicon as a cell interface for bone-tissue engineering. Adv Mater 19:921–924

    Article  Google Scholar 

  74. McBeath R, Pirone DM, Nelson CM, Bhadriraju K, Chen CS (2004) Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev Cell 6(4):483–495

    Article  Google Scholar 

  75. Lo CM, Wang HB, Dembo M, Wang YL (2000) Cell movement is guided by the rigidity of the substrate. Biophys J 79(1):144–152

    Article  Google Scholar 

  76. Halliday NL, Tomasek JJ (1995) Mechanical properties of the extracellular matrix influence fibronectin fibril assembly in vitro. Exp Cell Res 217(1):109–117

    Article  Google Scholar 

  77. Rowlands AS, George PA, Cooper-White JJ (2008) Directing osteogenic and myogenic differentiation of MSCs: interplay of stiffness and adhesive ligand presentation. Am J Physiol Cell Physiol 295(4):C1037–C1044

    Article  Google Scholar 

  78. Sharma RI, Snedeker JG (2010) Biochemical and biomechanical gradients for directed bone marrow stromal cell differentiation toward tendon and bone. Biomaterials 31(30):7695–7704

    Article  Google Scholar 

  79. Gelinsky M, Welzel PB, Simon P, Bernhardt A, König U (2008) Porous three-dimensional scaffolds made of mineralised collagen: preparation and properties of a biomimetic nanocomposite material for tissue engineering of bone. Chem Eng J 137(1):84–96

    Article  Google Scholar 

  80. Ladd MR, Lee SJ, Stitzel JD, Atala A, Yoo JJ (2011) Co-electrospun dual scaffolding system with potential for muscle-tendon junction tissue engineering. Biomaterials 32(6):1549–1559

    Article  Google Scholar 

  81. Engler AJ, Griffin MA, Sen S, Bonnemann CG, Sweeney HL, Discher DE (2004) Myotubes differentiate optimally on substrates with tissue-like stiffness: pathological implications for soft or stiff microenvironments. J Cell Biol 166(6):877–887

    Article  Google Scholar 

  82. Myers BS, Woolley CT, Slotter TL, Garrett WE, Best TM (1998) The influence of strain rate on the passive and stimulated engineering stress–large strain behavior of the rabbit tibialis anterior muscle. J Biomech Eng 120(1):126–132

    Article  Google Scholar 

  83. Pollock CM, Shadwick RE (1994) Relationship between body mass and biomechanical properties of limb tendons in adult mammals. Am J Physiol 266(3 Pt 2):R1016–R1021

    Google Scholar 

  84. Mohan N, Nair PD (2010) A synthetic scaffold favoring chondrogenic phenotype over a natural scaffold. Tissue Eng Part A 16(2):373–384

    Article  Google Scholar 

  85. Wren TA, Yerby SA, Beaupre GS, Carter DR (2001) Mechanical properties of the human achilles tendon. Clin Biomech (Bristol, Avon) 16(3):245–251

    Article  Google Scholar 

  86. Bretcanu O, Samaille C, Boccaccini A (2008) Simple methods to fabricate bioglass-derived glass-ceramic scaffolds exhibiting porosity gradient. J Mater Sci 43:4127–4134

    Article  Google Scholar 

  87. Trotter JA (2002) Structure-function considerations of muscle-tendon junctions. Comp Biochem Physiol A Mol Integr Physiol 133(4):1127–1133

    Article  Google Scholar 

  88. Leong KF, Chua CK, Sudarmadji N, Yeong WY (2008) Engineering functionally graded tissue engineering scaffolds. J Mech Behav Biomed Mater 1(2):140–152

    Article  Google Scholar 

  89. Melchels FP, Bertoldi K, Gabbrielli R, Velders AH, Feijen J, Grijpma DW (2010) Mathematically defined tissue engineering scaffold architectures prepared by stereolithography. Biomaterials 31(27):6909–6916

    Article  Google Scholar 

  90. Park S, Kim G, Jeon YC, Koh Y, Kim W (2009) 3D polycaprolactone scaffolds with controlled pore structure using a rapid prototyping system. J Mater Sci Mater Med 20(1):229–234

    Article  Google Scholar 

  91. Liu L, Xiong Z, Yan Y, Zhang R, Wang X, Jin L (2009) Multinozzle low-temperature deposition system for construction of gradient tissue engineering scaffolds. J Biomed Mater Res B Appl Biomater 88(1):254–263

    Google Scholar 

  92. Sudarmadji N, Tan JY, Leong KF, Chua CK, Loh YT (2011) Investigation of the mechanical properties and porosity relationships in selective laser-sintered polyhedral for functionally graded scaffolds. Acta Biomater 7(2):530–537

    Article  Google Scholar 

  93. Erisken C, Kalyon DM, Wang H (2008) Functionally graded electrospun polycaprolactone and beta-tricalcium phosphate nanocomposites for tissue engineering applications. Biomaterials 29(30):4065–4073

    Article  Google Scholar 

  94. Nie H, Wang CH (2007) Fabrication and characterization of PLGA/HAp composite scaffolds for delivery of BMP-2 plasmid DNA. J Control Release 120(1–2):111–121

    Article  Google Scholar 

  95. Jiang H, Hu Y, Zhao P, Li Y, Zhu K (2006) Modulation of protein release from biodegradable core-shell structured fibers prepared by coaxial electrospinning. J Biomed Mater Res B Appl Biomater 79(1):50–57

    Google Scholar 

  96. Olszta M, Cheng X, Jee S, Kumar R, Kim Y, Kaufman M, Douglas E, Gower L (2007) Bone structure and formation: a new perspective. Mater Sci Eng 58(2):77–116

    Google Scholar 

  97. Song JH, Kim HE, Kim HW (2008) Electrospun fibrous web of collagen-apatite precipitated nanocomposite for bone regeneration. J Mater Sci Mater Med 19(8):2925–2932

    Article  MathSciNet  Google Scholar 

  98. Zhang Y, Venugopal JR, El-Turki A, Ramakrishna S, Su B, Lim CT (2008) Electrospun biomimetic nanocomposite nanofibers of hydroxyapatite/chitosan for bone tissue engineering. Biomaterials 29(32):4314–4322

    Article  Google Scholar 

  99. Chen F, Tang QL, Zhu YJ, Wang KW, Zhang ML, Zhai WY, Chang J (2010) Hydroxyapatite nanorods/poly(vinyl pyrolidone) composite nanofibers, arrays and three-dimensional fabrics: electrospun preparation and transformation to hydroxyapatite nanostructures. Acta Biomater 6(8):3013–3020

    Article  Google Scholar 

  100. Song JH, Yoon BH, Kim HE, Kim HW (2008) Bioactive and degradable hybridized nanofibers of gelatin-siloxane for bone regeneration. J Biomed Mater Res A 84(4):875–884

    Google Scholar 

  101. Zhang D, Chang J (2007) Patterning of electrospun fibers using electroconductive templates. Adv Mater 19:3664–4667

    Article  Google Scholar 

  102. Spalazzi JP, Dagher E, Doty SB, Guo XE, Rodeo SA, Lu HH (2008) In vivo evaluation of a multiphased scaffold designed for orthopaedic interface tissue engineering and soft tissue-to-bone integration. J Biomed Mater Res A 86(1):1–12

    Google Scholar 

  103. Sundararaghavan HG, Burdick JA (2011) Gradients with depth in electrospun fibrous scaffolds for directed cell behavior. Biomacromolecules 12(6):2344–2350

    Article  Google Scholar 

  104. Harley BA, Lynn AK, Wissner-Gross Z, Bonfield W, Yannas IV, Gibson LJ (2010) Design of a multiphase osteochondral scaffold III: fabrication of layered scaffolds with continuous interfaces. J Biomed Mater Res A 92(3):1078–1093

    Google Scholar 

  105. Singh M, Morris CP, Ellis RJ, Detamore MS, Berkland C (2008) Microsphere-based seamless scaffolds containing macroscopic gradients of encapsulated factors for tissue engineering. Tissue Eng Part C Methods 14(4):299–309

    Article  Google Scholar 

  106. Singh M, Dormer N, Salash JR, Christian JM, Moore DS, Berkland C, Detamore MS (2010) Three-dimensional macroscopic scaffolds with a gradient in stiffness for functional regeneration of interfacial tissues. J Biomed Mater Res A 94(3):870–876

    Google Scholar 

  107. Ingber DE, Mow VC, Butler D, Niklason L, Huard J, Mao J, Yannas I, Kaplan D, Vunjak-Novakovic G (2006) Tissue engineering and developmental biology: going biomimetic. Tissue Eng 12(12):3265–3283

    Article  Google Scholar 

  108. Dormer NH, Berkland CJ, Detamore MS (2010) Emerging techniques in stratified designs and continuous gradients for tissue engineering of interfaces. Ann Biomed Eng 38(6):2121–2141

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Detamore .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mohan, N., Detamore, M. (2013). Engineering Graded Tissue Interfaces. In: Thomopoulos, S., Birman, V., Genin, G. (eds) Structural Interfaces and Attachments in Biology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3317-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-3317-0_14

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-3316-3

  • Online ISBN: 978-1-4614-3317-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics