Skip to main content

Neuropathy in Prediabetes and the Metabolic Syndrome

  • Chapter
  • First Online:
Prevention of Type 2 Diabetes

Abstract

The issue of neuropathy in prediabetes and the metabolic syndrome has been controversial, the major reasons being the difficulty in defining neuropathy and the failure to recognize that a substantial proportion of patients with prediabetes have a sensory neuropathy without evidence of abnormalities in nerve conduction studies—the hallmark of the neurologists’ definition of what constitutes neuropathy. Secondly, there is a large cadre of people with neuropathy or neuropathic pain in whom careful studies of the criteria for prediabetes including impaired fasting glucose (IFG) and impaired glucose tolerance (IGT) as well as the lipid abnormalities of the metabolic syndrome (MS) such as elevated triglycerides and a low HDL-cholesterol have not been carried out. Taking these into consideration has vastly changed the appreciation of the relationship between neuropathy and the metabolic entities. Thus, it has been estimated that 24.6–62% of patients with chronic idiopathic symmetrical sensorimotor polyneuropathy (SPN) have prediabetes; as a corollary, of subjects with prediabetes, 11.2–24.3% exhibit SPN and 12.9–20.5% exhibit neuropathic pain. Population-based studies suggest a gradient for the prevalence of SPN, with the highest being in patients with diabetes, followed by IGT, IFG, and the lowest in normal glucose tolerance. The most sensitive test to evaluate glucose homeostasis is the oral glucose tolerance test (OGTT). The pathogenesis of neuropathy may be hyperglycemia, microvascular abnormalities, dyslipidemia, and the metabolic syndrome, with increasing evidence that oxidative and nitrosative stress may play a role. The characteristics of the neuropathy in prediabetes and the metabolic syndrome suggest that it may be a less severe neuropathy than in diabetes. Sensory modality findings prevail compared with motor, and small nerve fiber structure and function abnormalities may be the earliest findings. Diagnosis should rely on careful history and clinical examination, with emphasis on the evaluation of small fibers. A skin biopsy may be necessary to quantify intraepidermal nerve fiber density. An OGTT and fasting serum lipids should be performed in patients with idiopathic SPN to screen for prediabetes and the metabolic syndrome. Treatment should include hygienic measures such as diet and exercise. The only drug with potential for reversal of the neuropathy is Topiramate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vinik EJ, Hayes RP, Oglesby A, Bastyr E, Barlow P, Ford-Molvik SL, et al. The development and validation of the Norfolk QOL-DN, a new measure of patients’ perception of the effects of diabetes and diabetic neuropathy. Diabetes Technol Ther. 2005;7:497–508.

    Article  PubMed  Google Scholar 

  2. Boulton A, Vinik A, Arezzo J, Bril V, Feldman E, Freeman R, et al. Position statement: diabetic neuropathies. Diabetes Care. 2005;28(4):956–62.

    Article  PubMed  Google Scholar 

  3. Vinik AI, Ziegler D. Diabetic cardiovascular autonomic neuropathy. Circulation. 2007;115:387–97.

    Article  PubMed  Google Scholar 

  4. Smith AG, Singleton JR. Idiopathic neuropathy, prediabetes and the metabolic syndrome (Abstract). J Neurol Sci. 2006;242:9–14.

    Article  Google Scholar 

  5. Rota E, Quadri R, Fanti E, Isoardo G, Poglio F, Tavella A, et al. Electrophysiological findings of peripheral neuropathy in newly diagnosed type II diabetes mellitus. J Peripher Nerv Syst. 2005;10:348–53.

    Article  PubMed  Google Scholar 

  6. Pittenger G, Mehrabyan A, Simmons K, Rice A, Dublin C, Barlow P, et al. Small fiber neuropathy is associated with the metabolic syndrome. Metab Syndr Relat Disord. 2005;3:113–21.

    Article  PubMed  CAS  Google Scholar 

  7. Dyck P, Clark V, Overland C, et al. Does impaired glycemia cause polyneuropathy and other diabetic complications? (Abstract). Peripher Nerve Soc. 2011;16(Suppl):S30.

    Google Scholar 

  8. Papanas N, Vinik AI, Ziegler D. Neuropathy in prediabettes: does the clock start ticking early? Nat Rev Endocrinol. 2011;7:682–90.

    Article  PubMed  CAS  Google Scholar 

  9. Vinik A, Ullal J, Parson HK, Casellini CM. Diabetic neuropathies: clinical manifestations and current treatment options. Nat Clin Pract Endocrinol Metab. 2006;2:269–81.

    Article  PubMed  CAS  Google Scholar 

  10. Pittenger GL, Ray M, Burcus NI, McNulty P, Basta B, Vinik AI. Intraepidermal nerve fibers are indicators of small-fiber neuropathy in both diabetic and nondiabetic patients. Diabetes Care. 2004;27:1974–9.

    Article  PubMed  Google Scholar 

  11. Sadosky A, McDermott AM, Brandenburg NA, Strauss M. A review of the epidemiology of painful diabetic peripheral neuropathy, postherpetic neuralgia, and less commonly studied neuropathic pain conditions. Pain Pract. 2008;8:45–56.

    Article  PubMed  Google Scholar 

  12. Tesfaye S, Boulton AJ, Dyck PJ, Freeman R, Horowitz M, Kempler P, et al. Diabetic neuropathies: update on definitions, diagnostic criteria, estimation of severity, and treatments. Diabetes Care. 2010;33:2285–93.

    Article  PubMed  Google Scholar 

  13. Ziegler D. Painful diabetic neuropathy: treatment and future aspects. Diabetes Metab Res Rev. 2008;24 Suppl 1:S52–7.

    Article  PubMed  Google Scholar 

  14. Boulton AJ, Malik RA, Arezzo JC, Sosenko JM. Diabetic somatic neuropathies. Diabetes Care. 2004;27:1458–86.

    Article  PubMed  Google Scholar 

  15. Vinik AI, Maser RE, Ziegler D. Neuropathy: the crystal ball for cardiovascular disease? Diabetes Care. 2010;33:1688–90.

    Article  PubMed  Google Scholar 

  16. Vinik A, Maser R, Ziegler D. Autonomic imbalance: prophet of doom or scope for hope? Diabet Med. 2011;28:643–51.

    Article  PubMed  CAS  Google Scholar 

  17. Mantyselka P, Ahonen R, Kumpusalo E, Takala J. Variability in prescribing for musculoskeletal pain in Finnish primary health care. Pharm World Sci. 2001;23:232–6.

    Article  PubMed  CAS  Google Scholar 

  18. Treede RD, Jensen TS, Campbell JN, Cruccu G, Dostrovsky JO, Griffin JW, et al. Neuropathic pain: redefinition and a grading system for clinical and research purposes. Neurology. 2008;70:1630–5.

    Article  PubMed  CAS  Google Scholar 

  19. Jensen MP, Chodroff MJ, Dworkin RH. The impact of neuropathic pain on health-related quality of life: review and implications. Neurology. 2007;68:1178–82.

    Article  PubMed  Google Scholar 

  20. Bouhassira D, Lanteri-Minet M, Attal N, Laurent B, Touboul C. Prevalence of chronic pain with neuropathic characteristics in the general population. Pain. 2008;136:380–7.

    Article  PubMed  Google Scholar 

  21. Vinik E, Paulson J, Ford-Molvik S, Vinik A. German-Translated Norfolk Quality of Life (QOL-DN) identifies the same factors as the English version of the tool and discriminates different levels of neuropathy severity. J Diabetes Sci Technol. 2008;2:1075–86.

    PubMed  Google Scholar 

  22. Torrance N, Smith BH, Bennett MI, Lee AJ. The epidemiology of chronic pain of predominantly neuropathic origin. Results from a general population survey. J Pain. 2006;7:281–9.

    Article  PubMed  Google Scholar 

  23. Dieleman JP, Kerklaan J, Huygen FJ, Bouma PA, Sturkenboom MC. Incidence rates and treatment of neuropathic pain conditions in the general population. Pain. 2008;137:681–8.

    Article  PubMed  Google Scholar 

  24. Cornblath DR, Vinik A, Feldman E, Freeman R, Boulton AJ. Surgical decompression for diabetic sensorimotor polyneuropathy. Diabetes Care. 2007;30:421–2.

    Article  PubMed  Google Scholar 

  25. Smith AG, Russell J, Feldman EL, Goldstein J, Peltier A, Smith S, et al. Lifestyle intervention for pre-diabetic neuropathy. Diabetes Care. 2006;29:1294–9.

    Article  PubMed  Google Scholar 

  26. Ziegler D, Rathmann W, Dickhaus T, Meisinger C, Mielck A. Prevalence of polyneuropathy in pre-diabetes and diabetes is associated with abdominal obesity and macroangiopathy: the MONICA/KORA Augsburg Surveys S2 and S3. Diabetes Care. 2008;31:464–9.

    Article  PubMed  CAS  Google Scholar 

  27. Ziegler D, Rathmann W, Meisinger C, Dickhaus T, Mielck A. Prevalence and risk factors of neuropathic pain in survivors of myocardial infarction with pre-diabetes and diabetes. The KORA Myocardial Infarction Registry. Eur J Pain. 2009;13:582–7.

    Article  PubMed  Google Scholar 

  28. Ziegler D, Rathmann W, Dickhaus T, Meisinger C, Mielck A. Neuropathic pain in diabetes, prediabetes and normal glucose tolerance: the MONICA/KORA Augsburg Surveys S2 and S3. Pain Med. 2009;10:393–400.

    Article  PubMed  Google Scholar 

  29. Tesfaye S, Chaturvedi N, Eaton SE, Ward JD, Manes C, Ionescu-Tirgoviste C, et al. Vascular risk factors and diabetic neuropathy. N Engl J Med. 2005;352:341–50.

    Article  PubMed  CAS  Google Scholar 

  30. Lauria G, Hsieh S, Johansson O, Kennedy W, Leger J, Mellgren S, et al. European Federation of Neurological Societies/Peripheral Nerve Society Guideline on the Use of Skin Biopsy in the Diagnosis of Small Fiber Neuropathy. Report of a joint task force of the European Federation of Neurological Societies and the Peripheral Nerve Society. Eur J Neurol. 2010;17:903–12.

    Article  PubMed  CAS  Google Scholar 

  31. Lauria G, Bakkers M, Schmitz C, Lombardi R, Penza P, Devigili G, et al. Intraepidermal nerve fiber density at the distal leg: a worldwide normative reference study. J Peripher Nerv Syst. 2010;15:202–7.

    Article  PubMed  Google Scholar 

  32. Quattrini C, Tavakoli M, Jeziorska M, Kallinikos P, Tesfaye S, Finnigan J, et al. Surrogate markers of small fiber damage in human diabetic neuropathy. Diabetes. 2007;56:2148–54.

    Article  PubMed  CAS  Google Scholar 

  33. Tavakoli M, Quattrini C, Abbott C, Kallinikos P, Marshall A, Finnigan J, et al. Corneal confocal microscopy: a novel noninvasive test to diagnose and stratify the severity of human diabetic neuropathy. Diabetes Care. 2010;33:1792–7.

    Article  PubMed  Google Scholar 

  34. Zhivov A, Blum M, Guthoff R, Stachs O. Real-time mapping of the subepithelial nerve plexus by in vivo confocal laser scanning microscopy. Br J Ophthalmol. 2010;94:1133–5.

    Article  PubMed  Google Scholar 

  35. Parson HK, Nguyen VT, Boyd AL, Vinik A. CHEPS detects neuropathic changes earlier than traditional clinical measures. Diabetes. 2009;58(Suppl):829P.

    Google Scholar 

  36. Expert Committee on the Diagnosis and Classification of Diabete Mellitus. Report of the expert committee on the diagnosis and classification of diabetes mellitus (Abstract). Diabetes Care. 2003;26:S5–20.

    Article  Google Scholar 

  37. DECODE Study Group, European Diabetes Epidemiology Group. Glucose tolerance and cardiovascular mortality: comparison of fasting and 2-hour diagnostic criteria. Arch Intern Med. 2001;161:397–405.

    Article  Google Scholar 

  38. Qiao Q, Pyorala K, Pyorala M, Nissinen A, Lindstrom J, Tilvis R, et al. Two-hour glucose is a better risk predictor for incident coronary heart disease and cardiovascular mortality than fasting glucose. Eur Heart J. 2002;23:1267–75.

    Article  PubMed  CAS  Google Scholar 

  39. Hyvarinen M, Qiao Q, Tuomilehto J, Laatikainen T, Heine RJ, Stehouwer CD, et al. Hyperglycemia and stroke mortality: comparison between fasting and 2-h glucose criteria. Diabetes Care. 2009;32:348–54.

    Article  PubMed  Google Scholar 

  40. Ning F, Tuomilehto J, Pyorala K, Onat A, Soderberg S, Qiao Q. Cardiovascular disease mortality in Europeans in relation to fasting and 2-h plasma glucose levels within a normoglycemic range. Diabetes Care. 2010;33:2211–6.

    Article  PubMed  Google Scholar 

  41. Colagiuri S, Lee CM, Wong TY, Balkau B, Shaw JE, Borch-Johnsen K. Glycemic thresholds for diabetes-specific retinopathy: implications for diagnostic criteria for diabetes. Diabetes Care. 2011;34:145–50.

    Article  PubMed  Google Scholar 

  42. Sosenko JM, Kato M, Goldberg RB. Sensory function and albumin excretion according to diagnostic criteria for diabetes. Diabetes Care. 2004;27:1716–20.

    Article  PubMed  Google Scholar 

  43. Dyck PJ, Dyck PJ, Klein CJ, Weigand SD. Does impaired glucose metabolism cause polyneuropathy? Review of previous studies and design of a prospective controlled population-based study. Muscle Nerve. 2007;36:536–41.

    Article  PubMed  CAS  Google Scholar 

  44. Novella SP, Inzucchi SE, Goldstein JM. The frequency of undiagnosed diabetes and impaired glucose tolerance in patients with idiopathic sensory neuropathy. Muscle Nerve. 2001;24:1229–31.

    Article  PubMed  CAS  Google Scholar 

  45. Franklin GM, Kahn LB, Baxter J, Marshall JA, Hamman RF. Sensory neuropathy in non-insulin-dependent diabetes mellitus. The San Luis Valley Diabetes Study. Am J Epidemiol. 1990;131:633–43.

    PubMed  CAS  Google Scholar 

  46. Singleton JR, Smith AG, Bromberg MB. Painful sensory polyneuropathy associated with impaired glucose tolerance. Muscle Nerve. 2001;24:1225–8.

    Article  PubMed  CAS  Google Scholar 

  47. Sumner CJ, Sheth S, Griffin JW, Cornblath DR, Polydefkis M. The spectrum of neuropathy in diabetes and impaired glucose tolerance. Neurology. 2003;60:108–11.

    PubMed  CAS  Google Scholar 

  48. Smith AG, Singleton JR. The diagnostic yield of a standardized approach to idiopathic sensory-predominant neuropathy. Arch Intern Med. 2004;164:1021–5.

    Article  PubMed  Google Scholar 

  49. Singleton JR, Smith AG, Bromberg MB. Increased prevalence of impaired glucose tolerance in patients with painful sensory neuropathy. Diabetes Care. 2001;24:1448–53.

    Article  PubMed  CAS  Google Scholar 

  50. Hoffman-Snyder C, Smith BE, Ross MA, Hernandez J, Bosch EP. Value of the oral glucose tolerance test in the evaluation of chronic idiopathic axonal polyneuropathy. Arch Neurol. 2006;63:1075–9.

    Article  PubMed  Google Scholar 

  51. Expert Committee on the Diagnosis and Classification of Diabetes Mellitus. Report of the expert committee on the diagnosis and classification of diabetes mellitus (Abstract). Diabetes Care. 1997;20:1183–97.

    Google Scholar 

  52. Singleton JR et al. Diet and exercise counseling alone does not prevent long term neuropathy progression in IGTN (Abstract). American Academy of Neurology 59th Annual Meeting. May 4, 2007, Boston.

    Google Scholar 

  53. Sumner C, Sheth S, Griffin J, Cornblath D, Polydefkis M. The spectrum of neuropathy in diabetes and impaired glucose tolerance. Neurology. 2003;60:108–11.

    PubMed  CAS  Google Scholar 

  54. Hughes RA, Umapathi T, Gray IA, Gregson NA, Noori M, Pannala AS, et al. A controlled investigation of the cause of chronic idiopathic axonal polyneuropathy. Brain. 2004;127:1723–30.

    Article  PubMed  CAS  Google Scholar 

  55. Nebuchennykh M, Loseth S, Jorde R, Mellgren SI. Idiopathic polyneuropathy and impaired glucose metabolism in a Norwegian patient series. Eur J Neurol. 2008;15:810–6.

    Article  PubMed  CAS  Google Scholar 

  56. Harris MI, Flegal KM, Cowie CC, Eberhardt MS, Goldstein DE, Little RR, et al. Prevalence of diabetes, impaired fasting glucose, and impaired glucose tolerance in U.S. adults. The Third National Health and Nutrition Examination Survey, 1988–1994. Diabetes Care. 1998;21:518–24.

    Article  PubMed  CAS  Google Scholar 

  57. Centers for Disease Control and Prevention (CDC). Prevalence of diabetes and impaired fasting glucose in adults, United States, 1999––2000. MMWR Morb Mortal Wkly Rep. 2003;52:833–7.

    Google Scholar 

  58. Russell JW, Feldman EL. Impaired glucose tolerance-does it cause neuropathy? Muscle Nerve. 2001;24(9):1109–12.

    Article  PubMed  CAS  Google Scholar 

  59. Kissel JT. Peripheral neuropathy with impaired glucose tolerance: a sweet smell of success? Arch Neurol. 2006;63:1055–6.

    Article  PubMed  Google Scholar 

  60. de Neeling JN, Beks PJ, Bertelsmann FW, Heine RJ, Bouter LM. Peripheral somatic nerve function in relation to glucose tolerance in an elderly Caucasian population: the Hoorn study. Diabet Med. 1996;13:960–6.

    Article  PubMed  Google Scholar 

  61. Grandinetti A, Chow DC, Sletten DM, Oyama JK, Theriault AG, Schatz IJ, et al. Impaired glucose tolerance is associated with postganglionic sudomotor impairment. Clin Auton Res. 2007;17:231–3.

    Article  PubMed  Google Scholar 

  62. Isak B, Oflazoglu B, Tanridag T, Yitmen I, Us O. Evaluation of peripheral and autonomic neuropathy among patients with newly diagnosed impaired glucose tolerance. Diabetes Metab Res Rev. 2008;24:563–9.

    Article  PubMed  Google Scholar 

  63. Fujimoto WY, Leonetti DL, Kinyoun JL, Shuman WP, Stolov WC, Wahl PW. Prevalence of complications among second-generation Japanese-American men with diabetes, impaired glucose tolerance, or normal glucose tolerance. Diabetes. 1987;36:730–9.

    Article  PubMed  CAS  Google Scholar 

  64. Shaw JE, Hodge AM, de Courten M, Dowse GK, Gareeboo H, Tuomilehto J, et al. Diabetic neuropathy in Mauritius: prevalence and risk factors. Diabetes Res Clin Pract. 1998;42:131–9.

    Article  PubMed  CAS  Google Scholar 

  65. Barr EL, Wong TY, Tapp RJ, Harper CA, Zimmet PZ, Atkins R, et al. Is peripheral neuropathy associated with retinopathy and albuminuria in individuals with impaired glucose metabolism? The 1999–2000 AusDiab. Diabetes Care. 2006;29:1114–6.

    Article  PubMed  Google Scholar 

  66. Eriksson KF, Nilsson H, Lindgarde F, Osterlin S, Dahlin LB, Lilja B, et al. Diabetes mellitus but not impaired glucose tolerance is associated with dysfunction in peripheral nerves. Diabet Med. 1994;11:279–85.

    Article  PubMed  CAS  Google Scholar 

  67. Mantyselka P, Miettola J, Niskanen L, Kumpusalo E. Glucose regulation and chronic pain at multiple sites. Rheumatology (Oxford). 2008;47:1235–8.

    Article  CAS  Google Scholar 

  68. Mantyselka P, Miettola J, Niskanen L, Kumpusalo E. Chronic pain, impaired glucose tolerance and diabetes: a community-based study. Pain. 2008;137:34–40.

    Article  PubMed  CAS  Google Scholar 

  69. Feldman EL, Stevens MJ, Thomas PK, Brown MB, Canal N, Greene DA. A practical two-step quantitative clinical and electrophysiological assessment for the diagnosis and staging of diabetic neuropathy. Diabetes Care. 1994;17:1281–9.

    Article  PubMed  CAS  Google Scholar 

  70. Moghtaderi A, Bakhshipour A, Rashidi H. Validation of Michigan neuropathy screening instrument for diabetic peripheral neuropathy. Clin Neurol Neurosurg. 2006;108:477–81.

    Article  PubMed  Google Scholar 

  71. Vinik AI, Ullal J, Parson HK, Barlow PM, Casellini CM. Pioglitazone treatment improves nitrosative stress in type 2 diabetes. Diabetes Care. 2006;29:869–76.

    Article  PubMed  CAS  Google Scholar 

  72. Vinik AI, Maser RE, Mitchell BD, Freeman R. Diabetic autonomic neuropathy. Diabetes Care. 2003;26:1553–79.

    Article  PubMed  Google Scholar 

  73. Maser RE, Mitchell BD, Vinik AI, Freeman R. The association between cardiovascular autonomic neuropathy and mortality in individuals with diabetes: a meta-analysis. Diabetes Care. 2003;26:1895–901.

    Article  PubMed  Google Scholar 

  74. Ziegler D, Zentai CP, Perz S, Rathmann W, Haastert B, Doring A, et al. Prediction of mortality using measures of cardiac autonomic dysfunction in the diabetic and nondiabetic population: the MONICA/KORA Augsburg Cohort Study. Diabetes Care. 2008;31:556–61.

    Article  PubMed  Google Scholar 

  75. Task Force of the European Society of Cardiology, North American Society of Pacing and Electrophysiology. Heart rate variability: standards of measurement, physiological interpretation and clinical use. Circulation. 1996;93:1043–65.

    Article  Google Scholar 

  76. Beijers HJ, Ferreira I, Bravenboer B, Dekker JM, Nijpels G, Heine RJ, et al. Microalbuminuria and cardiovascular autonomic dysfunction are independently associated with cardiovascular mortality: evidence for distinct pathways: the Hoorn Study. Diabetes Care. 2009;32:1698–703.

    Article  PubMed  Google Scholar 

  77. Diakakis GF, Parthenakis FI, Patrianakos AP, Koukouraki SI, Stathaki MI, Karkavitsas NS, et al. Myocardial sympathetic innervation in patients with impaired glucose tolerance: relationship to subclinical inflammation. Cardiovasc Pathol. 2008;17:172–7.

    Article  PubMed  CAS  Google Scholar 

  78. Gerritsen J, Dekker JM, TenVoorde BJ, Bertelsmann FW, Kostense PJ, Stehouwer CD, et al. Glucose tolerance and other determinants of cardiovascular autonomic function: the Hoorn Study. Diabetologia. 2000;43:561–70.

    Article  PubMed  CAS  Google Scholar 

  79. Singh JP, Larson MG, O’Donnell CJ, Wilson PF, Tsuji H, Lloyd-Jones DM, et al. Association of hyperglycemia with reduced heart rate variability (The Framingham Heart Study). Am J Cardiol. 2000;86:309–12.

    Article  PubMed  CAS  Google Scholar 

  80. Schroeder EB, Chambless LE, Liao D, Prineas RJ, Evans GW, Rosamond WD, et al. Diabetes, glucose, insulin, and heart rate variability: the atherosclerosis risk in communities (ARIC) study. Diabetes Care. 2005;28:668–74.

    Article  PubMed  CAS  Google Scholar 

  81. Wu JS, Yang YC, Lin TS, Huang YH, Chen JJ, Lu FH, et al. Epidemiological evidence of altered cardiac autonomic function in subjects with impaired glucose tolerance but not isolated impaired fasting glucose. J Clin Endocrinol Metab. 2007;92:3885–9.

    Article  PubMed  CAS  Google Scholar 

  82. Wu JS, et al. Epidemiological evidence of altered cardiac autonomic function in overweight but not underweight subjects. Int J Obes (Lond). 2008;32:788–95.

    Article  Google Scholar 

  83. Stein PK, Barzilay JI, Domitrovich PP, Chaves PM, Gottdiener JS, Heckbert SR, et al. The relationship of heart rate and heart rate variability to non-diabetic fasting glucose levels and the metabolic syndrome: the Cardiovascular Health Study. Diabet Med. 2007;24:855–63.

    Article  PubMed  CAS  Google Scholar 

  84. Perciaccante A, Fiorentini A, Paris A, Serra P, Tubani L. Circadian rhythm of the autonomic nervous system in insulin resistant subjects with normoglycemia, impaired fasting glycemia, impaired glucose tolerance, type 2 diabetes mellitus. BMC Cardiovasc Disord. 2006;6:19.

    Article  PubMed  Google Scholar 

  85. Carnethon MR, Prineas RJ, Temprosa M, Zhang ZM, Uwaifo G, Molitch ME. The association among autonomic nervous system function, incident diabetes, and intervention arm in the Diabetes Prevention Program. Diabetes Care. 2006;29:914–9.

    Article  PubMed  Google Scholar 

  86. Vinik AI, Strotmeyer ES, Nakave AA, Patel CV. Diabetic neuropathy in older adults. Clin Geriatr Med. 2008;24:407–35; v.

    Google Scholar 

  87. Sugimoto K, Murakawa Y, Sima AA. Diabetic neuropathy—a continuing enigma. Diabetes Metab Res Rev. 2000;16:408–33.

    Article  PubMed  CAS  Google Scholar 

  88. Dobretsov M, Romanovsky D, Stimers JR. Early diabetic neuropathy: triggers and mechanisms. World J Gastroenterol. 2007;13:175–91.

    PubMed  CAS  Google Scholar 

  89. Russell JW, Sullivan KA, Windebank AJ, Herrmann DN, Feldman EL. Neurons undergo apoptosis in animal and cell culture models of diabetes. Neurobiol Dis. 1999;6:347–63.

    Article  PubMed  CAS  Google Scholar 

  90. Edwards JL, et al. Diabetes regulates mitochondrial biogenesis and fission in mouse neurons. Diabetologia. 2010;53:160–9.

    Article  PubMed  CAS  Google Scholar 

  91. Burchiel KJ, Russell LC, Lee RP, Sima AA. Spontaneous activity of primary afferent neurons in diabetic BB/Wistar rats. A possible mechanism of chronic diabetic neuropathic pain. Diabetes. 1985;34:1210–3.

    Article  PubMed  CAS  Google Scholar 

  92. Garcia SF. Diabetic endothelial dysfunction: the role of poly(ADP-ribose) polymerase activation. Nat Med. 2001;7:108–13.

    Article  Google Scholar 

  93. Heine RJ, Balkau B, Ceriello A, Del PS, Horton ES, Taskinen MR. What does postprandial hyperglycaemia mean? Diabet Med. 2004;21:208–13.

    Article  PubMed  CAS  Google Scholar 

  94. Su Y, Liu XM, Sun YM, Jin HB, Fu R, Wang YY, et al. The relationship between endothelial dysfunction and oxidative stress in diabetes and prediabetes. Int J Clin Pract. 2008;62:877–82.

    Article  PubMed  CAS  Google Scholar 

  95. Thrainsdottir S, Malik RA, Dahlin LB, Wiksell P, Eriksson KF, Rosen I, et al. Endoneurial capillary abnormalities presage deterioration of glucose tolerance and accompany peripheral neuropathy in man. Diabetes. 2003;52:2615–22.

    Article  PubMed  CAS  Google Scholar 

  96. Caballero AE, Arora S, Saouaf R, Lim SC, Smakowski P, Park JY, et al. Microvascular and macrovascular reactivity is reduced in subjects at risk for type 2 diabetes. Diabetes. 1999;48:1856–62.

    Article  PubMed  CAS  Google Scholar 

  97. Green AQ, Krishnan S, Finucane FM, Rayman G. Altered C-fiber function as an indicator of early peripheral neuropathy in individuals with impaired glucose tolerance. Diabetes Care. 2010;33:174–6.

    Article  PubMed  CAS  Google Scholar 

  98. Watcho P, Stavniichuk R, Ribnicky DM, Raskin I, Obrosova IG. High-fat diet-induced neuropathy of prediabetes and obesity: effect of PMI-5011, an ethanolic extract of Artemisia dracunculus L. Mediators Inflamm. 2010;2010:268547.

    Article  PubMed  CAS  Google Scholar 

  99. Stavniichuk R, Drel VR, Shevalye H, Vareniuk I, Stevens MJ, Nadler JL, et al. Role of 12/15-lipoxygenase in nitrosative stress and peripheral prediabetic and diabetic neuropathies. Free Radic Biol Med. 2010;49:1036–45.

    Article  PubMed  CAS  Google Scholar 

  100. Vincent AM, Hayes JM, McLean LL, Vivekanandan-Giri A, Pennathur S, Feldman EL. Dyslipidemia-induced neuropathy in mice: the role of oxLDL/LOX-1. Diabetes. 2009;58:2376–85.

    Article  PubMed  CAS  Google Scholar 

  101. Vincent AM, Hinder LM, Pop-Busui R, Feldman EL. Hyperlipidemia: a new therapeutic target for diabetic neuropathy. J Peripher Nerv Syst. 2009;14:257–67.

    Article  PubMed  CAS  Google Scholar 

  102. Davis TM, Yeap BB, Davis WA, Bruce DG. Lipid-lowering therapy and peripheral sensory neuropathy in type 2 diabetes: the Fremantle Diabetes Study. Diabetologia. 2008;51:562–6.

    Article  PubMed  CAS  Google Scholar 

  103. Herman RM, Brower JB, Stoddard DG, Casano AR, Targovnik JH, Herman JH, et al. Prevalence of somatic small fiber neuropathy in obesity. Int J Obes (Lond). 2007;31:226–35.

    Article  CAS  Google Scholar 

  104. Parson H, Bridge J, Dublin C, Ullal J, Vinik A. African-Americans exhibit differences in neurovascular and endothelial dysfunction when compared to Caucasians. Diabetes. 2005;54:A220.

    Article  Google Scholar 

  105. Smith AG, Rose K, Singleton JR. Idiopathic neuropathy patients are at high risk for metabolic syndrome. J Neurol Sci. 2008;273:25–8.

    Article  PubMed  Google Scholar 

  106. Smith AG, Singleton JR. Impaired glucose tolerance and neuropathy. Neurologist. 2008;14:23–9.

    Article  PubMed  Google Scholar 

  107. Singleton JR, Smith AG, Russell JW, Feldman EL. Microvascular complications of impaired glucose tolerance. Diabetes. 2003;52:2867–73.

    Article  PubMed  CAS  Google Scholar 

  108. Pacher P, Beckman JS, Liaudet L. Nitric oxide and peroxynitrite in health and disease. Physiol Rev. 2007;87:315–424.

    Article  PubMed  CAS  Google Scholar 

  109. Szabo C, Mabley JG, Moeller SM, Shimanovich R, Pacher P, Virag L, et al. Part I: pathogenetic role of peroxynitrite in the development of diabetes and diabetic vascular complications: studies with FP15, a novel potent peroxynitrite decomposition catalyst. Mol Med. 2002;8:571–80.

    PubMed  CAS  Google Scholar 

  110. Virag L, Szabo E, Gergely P, Szabo C. Peroxynitrite-induced cytotoxicity: mechanism and opportunities for intervention. Toxicol Lett. 2003;140–141:113–24.

    Article  PubMed  CAS  Google Scholar 

  111. Obrosova IG, Drel VR, Oltman CL, Mashtalir N, Tibrewala J, Groves JT, et al. Role of nitrosative stress in early neuropathy and vascular dysfunction in streptozotocin-diabetic rats. Am J Physiol Endocrinol Metab. 2007;293:E1645–55.

    Article  PubMed  CAS  Google Scholar 

  112. Ziegler D, Sohr CG, Nourooz-Zadeh J. Oxidative stress and antioxidant defense in relation to the severity of diabetic polyneuropathy and cardiovascular autonomic neuropathy. Diabetes Care. 2004;27:2178–83.

    Article  PubMed  CAS  Google Scholar 

  113. Ceriello A, Assaloni R, Da RR, Maier A, Quagliaro L, Piconi L, et al. Effect of irbesartan on nitrotyrosine generation in non-hypertensive diabetic patients. Diabetologia. 2004;47:1535–40.

    Article  PubMed  CAS  Google Scholar 

  114. Vinik A, Parson H, Ullal J. The role of PPARs in the microvascular dysfunction in diabetes. Vascul Pharmacol. 2006;45:54–64.

    Article  PubMed  CAS  Google Scholar 

  115. Julius U, Drel VR, Grassler J, Obrosova IG. Nitrosylated proteins in monocytes as a new marker of oxidative-nitrosative stress in diabetic subjects with macroangiopathy. Exp Clin Endocrinol Diabetes. 2009;117:72–7.

    Article  PubMed  CAS  Google Scholar 

  116. Kellogg AP, Converso K, Wiggin T, Stevens M, Pop-Busui R. Effects of cyclooxygenase-2 gene inactivation on cardiac autonomic and left ventricular function in experimental diabetes. Am J Physiol Heart Circ Physiol. 2009;296:H453–61.

    Article  PubMed  CAS  Google Scholar 

  117. Gaede P, Vedel P, Larsen N, Jensen GV, Parving HH, Pedersen O. Multifactorial intervention and cardiovascular disease in patients with type 2 diabetes. N Engl J Med. 2003;348:383–93.

    Article  PubMed  Google Scholar 

  118. Rezania K, Soliven B, Rezai KA, Roos RP. Impaired glucose tolerance and metabolic syndrome in idiopathic polyneuropathy: the role of pain and depression. Med Hypotheses. 2011;76:538–42.

    Article  PubMed  CAS  Google Scholar 

  119. Petrova M, Townsend R, Teff KL. Prolonged (48-hour) modest hyperinsulinemia decreases nocturnal heart rate variability and attenuates the nocturnal decrease in blood pressure in lean, normotensive humans. J Clin Endocrinol Metab. 2006;91:851–9.

    Article  PubMed  CAS  Google Scholar 

  120. Ziegler D, Zentai C, Perz S, Rathmann W, Haastert B, Meisinger C, et al. Selective contribution of diabetes and other cardiovascular risk factors to cardiac autonomic dysfunction in the general population. Exp Clin Endocrinol Diabetes. 2006;114:153–9.

    Article  PubMed  CAS  Google Scholar 

  121. Licht CM, Vreeburg SA, van Reedt Dortland AK, Giltay EJ, Hoogendijk WJ, Derijk RH, et al. Increased sympathetic and decreased parasympathetic activity rather than changes in hypothalamic-pituitary-adrenal axis activity is associated with metabolic abnormalities. J Clin Endocrinol Metab. 2010;95:2458–66.

    Article  PubMed  CAS  Google Scholar 

  122. Chang CJ, Yang YC, Lu FH, Lin TS, Chen JJ, Yeh TL, et al. Altered cardiac autonomic function may precede insulin resistance in metabolic syndrome. Am J Med. 2010;123:432–8.

    Article  PubMed  CAS  Google Scholar 

  123. Masuo K, Kawaguchi H, Mikami H, Ogihara T, Tuck ML. Serum uric acid and plasma norepinephrine concentrations predict subsequent weight gain and blood pressure elevation. Hypertension. 2003;42:474–80.

    Article  PubMed  CAS  Google Scholar 

  124. Carnethon MR, Jacobs Jr DR, Sidney S, Liu K. Influence of autonomic nervous system dysfunction on the development of type 2 diabetes: the CARDIA study. Diabetes Care. 2003;26:3035–41.

    Article  PubMed  Google Scholar 

  125. Putz Z, Tabak AG, Toth N, Istenes I, Nemeth N, Gandhi RA, et al. Noninvasive evaluation of neural impairment in subjects with impaired glucose tolerance. Diabetes Care. 2009;32:181–3.

    Article  PubMed  Google Scholar 

  126. Smith AG, Ramachandran P, Tripp S, Singleton JR. Epidermal nerve innervation in impaired glucose tolerance and diabetes-associated neuropathy. Neurology. 2001;57:1701–4.

    PubMed  CAS  Google Scholar 

  127. Hays AP. Utility of skin biopsy to evaluate peripheral neuropathy. Curr Neurol Neurosci Rep. 2010;10:101–7.

    Article  PubMed  Google Scholar 

  128. Peltier A, Smith AG, Russell JW, Sheikh K, Bixby B, Howard J, et al. Reliability of quantitative sudomotor axon reflex testing and quantitative sensory testing in neuropathy of impaired glucose regulation. Muscle Nerve. 2009;39:529–35.

    Article  PubMed  Google Scholar 

  129. Tavakoli M, Marshall A, Pitceathly R, Fadavi H, Gow D, Roberts ME, et al. Corneal confocal microscopy: a novel means to detect nerve fibre damage in idiopathic small fibre neuropathy. Exp Neurol. 2010;223:245–50.

    Article  PubMed  Google Scholar 

  130. Parson H, Orciga M, Huertas H, Vinik A. Evidence of early involvement of A delta and C-fibers in proximal sites in type 2 diabetes Abstract No. 14-LB. American Diabetes Association 71st Scientific Session, June 24–28, 2011, San Diego, California.

    Google Scholar 

  131. Selvarajah D, Rao G, Tesfaye S. Diagnosing diabetic peripheral neuropathy using Sudoscan, a new, rapid method of assessing Sudometer function Abstract No. 2119-PO. American Diabetes Association 71st Scientific Session, June 24–28, 2011, San Diego, California.

    Google Scholar 

  132. Gong Q, et al. Long-term effects of a randomised trial of a 6-year lifestyle intervention in impaired glucose tolerance on diabetes-related microvascular complications: the China Da Qing Diabetes Prevention Outcome Study. Diabetologia. 2011;54:300–7.

    Article  PubMed  CAS  Google Scholar 

  133. Gaede P, Vedel P, Larsen N, Jensen G, Parving H, Pedersen O. Multifactorial intervention and cardiovascular disease in patients with type 2 diabetes. N Engl J Med. 2003;348:383–93.

    Article  PubMed  Google Scholar 

  134. Boyd A, Casellini C, Vinik E, Vinik A. Quality of life and objective measures of diabetic neuropathy in a prospective placebo controlled trial of ruboxistaurin and topiramate. J Diabetes Sci Technol. 2011;5(3):714–22.

    PubMed  Google Scholar 

  135. Boyd AL, Barlow P, Pittenger G, Simmons K, Vinik A. Topiramate improves neurovascular function, epidermal nerve fiber morphology, and metabolism in patients with type 2 diabetes mellitus. Diabetes Metab Syndr Obes. 2010;3:431–7.

    Article  PubMed  CAS  Google Scholar 

  136. Colberg S, Swain D, Vinik A. Use of heart rate reserve and rating of perceived exertion to prescribe exercise intensity in diabetic autonomic neuropathy. Diabetes Care. 2003;26:986–90.

    Article  PubMed  Google Scholar 

  137. Colberg SR, Stansberry KB, McNitt PM, Vinik AI. Chronic exercise is associated with enhanced cutaneous blood flow in type 2 diabetes. J Diabetes Complications. 2002;16:139–45.

    Article  PubMed  Google Scholar 

  138. Michalsen A, Knoblauch NT, Lehmann N, Grossman P, Kerkhoff G, Wilhelm FH, et al. Effects of lifestyle modification on the progression of coronary atherosclerosis, autonomic function, and angina—the role of GNB3 C825T polymorphism. Am Heart J. 2006;151:870–7.

    Article  PubMed  CAS  Google Scholar 

  139. Howorka K, Pumprla J, Haber P, Koller-Strametz J, Mondrzyk J, Schabmann A. Effects of physical training on heart rate variability in diabetic patients with various degrees of cardiovascular autonomic neuropathy. Cardiovasc Res. 1997;34:206–14.

    Article  PubMed  CAS  Google Scholar 

  140. Motooka M, Koike H, Yokoyama T, Kennedy NL. Effect of dog-walking on autonomic nervous activity in senior citizens. Med J Aust. 2006;184:60–3.

    PubMed  Google Scholar 

  141. Ziegler D, Schatz H, Conrad F, Gries FA, Ulrich H, Reichel G. Effects of treatment with the antioxidant alpha-lipoic acid on cardiac autonomic neuropathy in NIDDM patients. A 4-month randomized controlled multicenter trial (DEKAN Study). Deutsche Kardiale Autonome Neuropathie. Diabetes Care. 1997;20:369–73.

    Article  PubMed  CAS  Google Scholar 

  142. Ziegler D, Weise F, Langen KJ, Piolot R, Boy C, Hubinger A, et al. Effect of glycaemic control on myocardial sympathetic innervation assessed by metaiodobenzylguanidine scintigraphy: a 4-year prospective study in IDDM patients. Diabetologia. 1998;41:443–51.

    Article  PubMed  CAS  Google Scholar 

  143. Shun C, et al. Brain. Skin denervation in type 2 diabetes: correlations with diabetic duration and functional impairments. 2004;127:1593–605.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aaron I. Vinik MD, PhD, FCP, MACP .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Vinik, A.I., Nevoret, ML. (2012). Neuropathy in Prediabetes and the Metabolic Syndrome. In: LeRoith, D. (eds) Prevention of Type 2 Diabetes. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3314-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-3314-9_8

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-3313-2

  • Online ISBN: 978-1-4614-3314-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics