Advertisement

Trust-Based Access Control for Secure Cloud Computing

  • Indrajit Ray
  • Indrakshi Ray
Chapter

Abstract

Multi-tenancy, elasticity and dynamicity pose several novel challenges for access control in a cloud environment. Accessing subjects may dynamically change, resources requiring protection may be created or modified, and subject access requirements to resources may change during the course of the application execution. Users may need to acquire different permissions from different administrative domains based on the services in cloud computing environment. Traditional identity-based access control models such as attribute-based access control (ABAC), role-based access control (RBAC), discretionary access control (DAC), or mandatory access control (MAC) cannot be applied directly in clouds. In this chapter, we explore challenges of cloud access control, identify desirable properties of access control models, and introduce the novel graph-theoretic semantics of access control model. We specify how authorization occurs in the proposed model, and present how to incorporate features such as separation of duty (SoD).

Notes

Acknowledgements

This material is based upon work partially supported by the Air Force Office of Scientific Research (AFOSR)/the Air Force Research Laboratory (AFRL) Visiting Faculty Research Program (VFRP) extension grant LRIR 11RI01COR. The authors would like to thank Mr. John Graniero, AFRL Information Institute Director, for support for this research and the CyberBAT team members for their suggestions and comments. The views and conclusions contained in this document are those of the authors and should not be automatically interpreted as representing official policies, either expressed or implied, of the Air Force Research Laboratory or other federal government agencies.

References

  1. 1.
    Abadi, M., Fournet, C.: Access control based on execution history. In: Proceedings of the 10th Annual Network and Distributed System Security Symposium, NDSS’03, San Diego. The Internet Society (2003)Google Scholar
  2. 2.
    Bauer, L., Schneider, M.A., Felten, E.W.: A general and flexible access-control system for the web. In: Proceedings of the 11th USENIX Security Symposium, San Francisco, pp. 93–108. USENIX Association, Berkeley (2002)Google Scholar
  3. 3.
    Bertino, E., Bonatti, P.A., Ferrari, E.: TRBAC: a temporal role-based access control model. ACM Trans. Inf. Syst. Secur. 4(3), 191–233 (2001). doi:10.1145/501978.501979CrossRefGoogle Scholar
  4. 4.
    Bhatti, R., Joshi, J., Bertino, E., Ghafoor, A.: Access control in dynamic XM-based web-services with X-RBAC. In: Proceedings of the 1st International Conference on Web Services, San Diego, pp. 243–249. CSREA Press (2003)Google Scholar
  5. 5.
    Bhatti, R., Bertino, E., Ghafoor, A.: A trust-based context-aware access control model for Web-services. Distrib. Parallel Databases 18(1), 83–105 (2005). doi:10.1007/s10619-005-1075-7CrossRefGoogle Scholar
  6. 6.
    Blaze, M., Feigenbaum, J., Lacy, J.: Decentralized trust management. In: Proceedings of the 17th IEEE Symposium on Security and Privacy, SP’96, Oakland, pp. 164–173. IEEE Computer Society, Washington, DC (1996)Google Scholar
  7. 7.
    Blaze, M., Feigenbaum, J., Ioannidis, J., Keromytis, A.: ietf.org, the KeyNote trust management system (version 2). http://goo.gl/Bpfn0 (1999)
  8. 8.
    Bobba, R., Fatemieh, O., Khan, F., Gunter, C.A., Khurana, H.: Using attribute-based access control to enable attribute-based messaging. In: Proceedings of the 22nd Annual Computer Security Applications Conference, ACSAC’06, Miami Beach, pp. 403–413. IEEE Computer Society, Washington, DC (2006). doi:10.1109/ACSAC.2006.53Google Scholar
  9. 9.
    Bonatti, P.A., Samarati, P.: A uniform framework for regulating service access and information release on the web. J. Comput. Secur. 10(3), 241–271 (2002)Google Scholar
  10. 10.
    Braynov, S., Sandholm, T.: Trust revelation in multiagent interaction. In: CHI 2002 Workshop on the Philosophy and Design of Socially Adept Technologies, Minneapolis, pp. 57–60 (2002)Google Scholar
  11. 11.
    Brucker, A.D., Petritsch, H.: Extending access control models with break-glass. In: Proceedings of the 14th ACM Symposium on Access Control Models and Technologies, SACMAT’09, Stresa, pp. 197–206. ACM, New York (2009). doi:10.1145/1542207.1542239Google Scholar
  12. 12.
    Chadwick, D.W., Otenko, A., Ball, E.: Role-based access control with X.509 attribute certificates. IEEE Internet Comput. 7(2), 62–69 (2003). doi:10.1109/MIC.2003.1189190Google Scholar
  13. 13.
    Chakraborty, S., Ray, I.: TrustBAC: integrating trust relationships into the RBAC model for access control in open systems. In: Proceedings of the 11th ACM Symposium on Access Control Models and Technologies, SACMAT’06, Lake Tahoe, pp. 49–58. ACM, New York (2006). doi:10. 1145/1133058.1133067Google Scholar
  14. 14.
    Chandran, S.M., Joshi, J.B.D.: LoT-RBAC: a location and time-based RBAC model. In: Proceedings of the 6th International Conference on Web Information Systems Engineering, WISE’05, New York, pp. 361–375. Springer, Berlin/Heidelberg (2005). doi:10.1007/11581062_ 27Google Scholar
  15. 15.
    Chen, L., Crampton, J.: On spatio-temporal constraints and inheritance in role-based access control. In: Proceedings of the 2008 ACM Symposium on Information, Computer and Communications Security, ASIACCS’08, Tokyo, pp. 205–216. ACM, New York (2008). doi:10.1145/1368310. 1368341Google Scholar
  16. 16.
    Cheng, P.C., Rohatgi, P., Keser, C., Karger, P.A., Wagner, G.M., Reninger, A.S.: Fuzzy multi-level security: an experiment on quantified risk-adaptive access control. In: Proceedings of the 2007 IEEE Symposium on Security and Privacy, SP’07, Oakland, pp. 222–230. IEEE Computer Society, Washington, DC (2007). doi:10.1109/SP.2007.21Google Scholar
  17. 17.
    Cohen, E., Thomas, R.K., Winsborough, W., Shands, D.: Models for coalition-based access control (CBAC). In: Proceedings of the 7th ACM Symposium on Access Control Models and Technologies, SACMAT’02, Monterey, pp. 97–106. ACM, New York (2002). doi:10.1145/507711. 507727Google Scholar
  18. 18.
    Covington, M.J., Long, W., Srinivasan, S., Dev, A.K., Ahamad, M., Abowd, G.D.: Securing context-aware applications using environment roles. In: Proceedings of the 6th ACM Symposium on Access Control Models and Technologies, SACMAT’01, Chantilly, pp. 10–20. ACM, New York (2001). doi:10.1145/373256.373258Google Scholar
  19. 19.
    Covington, M.J., Fogla, P., Zhan, Z., Ahamad, M.: A context-aware security architecture for emerging applications. In: Proceedings of the 18th Annual Computer Security Applications Conference, ACSAC’02, Las Vegas. IEEE Computer Society, Washington, DC (2002)Google Scholar
  20. 20.
    Coyne, E.J.: Role engineering. In: Proceedings of the 1st ACM Workshop on Role-Based Access Control, RBAC’95, Gaithersburg. ACM, New York (1996). doi:10.1145/270152.270159Google Scholar
  21. 21.
    Damiani, M.L., Bertino, E., Catania, B., Perlasca, P.: GEO-RBAC: a spatially aware RBAC. ACM Trans. Inf. Syst. Secur. 10(1) (2007). doi:10.1145/1210263.1210265Google Scholar
  22. 22.
    Edjlali, G., Acharya, A., Chaudhary, V.: History-based access control for mobile code. In: Proceedings of the 5th ACM Conference on Computer and Communications Security, CCS’98, San Francisco, pp. 38–48. ACM, New York (1998). doi:10.1145/288090.288102Google Scholar
  23. 23.
    fas.org: DOD 5200-28-STD: trusted computer system evaluation criteria. http://goo.gl/L0fUw (1985)
  24. 24.
    Ferraiolo, D., Kuhn, R.: Role-based access controls. In: Proceedings of the 15th NIST-NCSC National Computer Security Conference, Baltimore, pp. 554–563 (1992)Google Scholar
  25. 25.
    Ferraiolo, D.F., Sandhu, R., Gavrila, S., Kuhn, D.R., Chandramouli, R.: Proposed NIST standard for role-based access control. ACM Trans. Inf. Syst. Secur. 4(3), 224–274 (2001). doi:10.1145/501978.501980CrossRefGoogle Scholar
  26. 26.
    Franco, L., Sahama, T., Croll, P.: Security enhanced Linux to enforce mandatory access control in health information systems. In: Proceedings of the 2nd Australasian Workshop on Health Data and Knowledge Management, HDKM’08, Wollongong, pp. 27–33. Australian Computer Society, Inc., Darlinghurst (2008)Google Scholar
  27. 27.
    Frank, M., Basin, D., Buhmann, J.M.: A class of probabilistic models for role engineering. In: Proceedings of the 15th ACM Conference on Computer and Communications Security, CCS’08, Alexandria, pp. 299–310. ACM, New York (2008). doi:10.1145/1455770.1455809Google Scholar
  28. 28.
    Georgiadis, C.K., Mavridis, I., Pangalos, G., Thomas, R.K.: Flexible team-based access control using contexts. In: Proceedings of the 6th ACM Symposium on Access Control Models and Technologies, SACMAT’01, Chantilly, pp. 21–27. ACM, New York (2001). doi:10.1145/373256. 373259Google Scholar
  29. 29.
    Harrington, A., Jensen, C.: Cryptographic access control in a distributed file system. In: Proceedings of the 8th ACM Symposium on Access Control Models and Technologies, SACMAT’03, Como, pp. 158–165. ACM, New York (2003). doi:10.1145/775412.775432Google Scholar
  30. 30.
    Hu, V., Ferraiolo, D.F., Kuhn, D.R.: Assessment of access control systems. Interagency report 7316, National Institute of Standards and Technology (NIST) (2006)Google Scholar
  31. 31.
    Jin, S., Ahn, J., Cha, S., Huh, J.: Architectural support for secure virtualization under a vulnerable hypervisor. In: Proceedings of the 44th Annual IEEE/ACM International Symposium on Microarchitecture, MICRO’11, Porto Alegre, pp. 272–283. ACM, New York (2011). doi:10. 1145/2155620.2155652Google Scholar
  32. 32.
    Joshi, J.B.D., Shafiq, B., Ghafoor, A., Bertino, E.: Dependencies and separation of duty constraints in GTRBAC. In: Proceedings of the Eighth ACM Symposium on Access Control Models and Technologies, SACMAT’03, Como, pp. 51–64. ACM, New York (2003). doi:10.1145/ 775412.775420Google Scholar
  33. 33.
    Joshi, J.B.D., Bertino, E., Latif, U., Ghafoor, A.: A generalized temporal role-based access control model. IEEE Trans. Knowl. Data Eng. 17(1), 4–23 (2005). doi:10.1109/TKDE.2005.1CrossRefGoogle Scholar
  34. 34.
    Kandala, S., Sandhu, R., Bhamidipati, V.: An attribute based framework for risk-adaptive access control models. In: Proceedings of the 6th International Conference on Availability, Reliability and Security, ARES’11, Vienna, pp. 236–241. IEEE Computer Society, Washington, DC (2011). doi:10.1109/ARES.2011.41Google Scholar
  35. 35.
    Kumaraswamy, S., Lakshminarayanan, S., Reiter, M., Stein, J., Wilson, Y.: cloudsecurityalliance.org, domain 12: guidance for identity & access management v2.1. http://goo.gl/Nnjg1 (2010)
  36. 36.
    Li, N., Mitchell, J.C.: DATALOG with constraints: a foundation for trust management languages. In: Proceedings of the 5th International Symposium on Practical Aspects of Declarative Languages, PADL’03, New Orleans, pp. 58–73. Springer, London (2003)Google Scholar
  37. 37.
    Li, N., Mitchell, J.C.: RT: a role-based trust management framework. In: Proceedings of the 3rd DARPA Information Survivability Conference and Exposition, Washington DC, vol. 1, pp. 201–212 (2003)Google Scholar
  38. 38.
    Li, N., Mitchell, J.C., Winsborough, W.H.: Design of a role-based trust-management framework. In: Abadi, M., Bellovin, S. (eds.) Proceedings of the 23rd IEEE Symposium on Security and Privacy, SP’02, Oakland, pp. 114–130. IEEE Computer Society, Washington, DC (2002)Google Scholar
  39. 39.
    Marinovic, S., Craven, R., Ma, J., Dulay, N.: Rumpole: a flexible break-glass access control model. In: Proceedings of the 16th ACM Symposium on Access Control Models and Technologies, SACMAT’11, Innsbruck, pp. 73–82. ACM, New York (2011). doi:10.1145/1998441. 1998453Google Scholar
  40. 40.
    McGraw, R.W.: Risk-adaptable access control. In: Proceedings of the 1st NIST Privilege Management Workshop, Gaithersburg (2009)Google Scholar
  41. 41.
    Mell, P., Grance, T.: nist.gov, NIST special publication 800-145: the NIST definition of cloud computing. http://goo.gl/eBGBk (2011)
  42. 42.
    oasis-open.org: XACML language proposal, version 0.8. http://goo.gl/CXnLq (2002)
  43. 43.
    Ray, I., Toahchoodee, M.: A spatio-temporal role-based access control model. In: The 21st Annual IFIP TC-11 WG 11.3 Working Conference on Data and Applications Security, Redondo Beach, pp. 211–226. Springer, Berlin/Heidelberg (2007)Google Scholar
  44. 44.
    Ray, I., Toahchoodee, M.: A spatio-temporal access control model supporting delegation for pervasive computing applications. In: Proceedings of the 5th International Conference on Trust, Privacy and Security in Digital Business, TrustBus’08, Turin, pp. 48–58. Springer, Berlin/Heidelberg (2008). doi: 10.1007/978-3-540-85735-8_6
  45. 45.
    Ray, I., Kumar, M., Yu, L.: LRBAC: a location-aware role-based access control model. In: Proceedings of the 2nd International Conference on Information Systems Security, ICISS’06, Kolkata, pp. 147–161. Springer, Berlin/Heidelberg (2006). doi: 10.1007/11961635_10
  46. 46.
    Ristenpart, T., Tromer, E., Shacham, H., Savage, S.: Hey, you, get off of my cloud: exploring information leakage in third-party compute clouds. In: Proceedings of the 16th ACM Conference on Computer and Communications Security, CCS’09, Chicago, pp. 199–212. ACM, New York (2009). doi: 10.1145/1653662.1653687
  47. 47.
    Ruj, S., Stojmenovic, M., Nayak, A.: Privacy preserving access control with authentication for securing data in clouds. In: Proceedings of the 12th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, CCGRID’12, Ottawa, pp. 556–563. IEEE Computer Society, Washington, DC (2012). doi:10.1109/CCGrid.2012.92Google Scholar
  48. 48.
    Sampemane, G., Naldurg, P., Campbell, R.H.: Access control for active spaces. In: Proceedings of the 18th Annual Computer Security Applications Conference, ACSAC’02, Las Vegas, pp. 343–352. IEEE Computer Society, Washington, DC (2002)Google Scholar
  49. 49.
    Samuel, A., Ghafoor, A., Bertino, E.: A framework for specification and verification of generalized spatio-temporal role-based access control model. Technical report CERIAS TR 2007–08, Purdue University (2007)Google Scholar
  50. 50.
    Sandhu, R.S., Coyne, E.J., Feinstein, H.L., Youman, C.E.: Role-based access control models. IEEE Comput. 29(2), 38–47 (1996). doi:10.1109/ 2.485845CrossRefGoogle Scholar
  51. 51.
    Tassanaviboon, A., Gong, G.: OAuth and ABE based authorization in semi-trusted cloud computing: aauth. In: Proceedings of the 2nd International Workshop on Data Intensive Computing in the Clouds, DataCloud-SC’11, Seattle, pp. 41–50. ACM, New York (2011). doi:10. 1145/2087522.2087531Google Scholar
  52. 52.
    Thomas, R.K.: Team-based access control (TMAC): a primitive for applying role-based access controls in collaborative environments. In: Proceedings of the 2nd ACM Workshop on Role-Based Access Control, RBAC’97, Fairfax, pp. 13–19. ACM, New York (1997). doi:10.1145/ 266741.266748Google Scholar
  53. 53.
    Toahchoodee, M., Ray, I.: On the formal analysis of a spatio-temporal role-based access control model. In: Proceeedings of the 22nd Annual IFIP WG 11.3 Working Conference on Data and Applications Security, London, pp. 17–32. Springer, Berlin/Heidelberg (2008). doi: 10.1007/978-3-540-70567-3_2
  54. 54.
    van den Akker, T., Snell, Q.O., Clement, M.J.: The YGuard access control model: set-based access control. In: Proceedings of the 6th ACM Symposium on Access Control Models and Technologies, SACMAT’01, Chantilly, pp. 75–84. ACM, New York (2001). doi:10.1145/373256. 373268Google Scholar
  55. 55.
    Wang, Q., Jin, H.: Data leakage mitigation for discretionary access control in collaboration clouds. In: Proceedings of the 16th ACM Symposium on Access Control Models and Technologies, SACMAT’11, Innsbruck, pp. 103–112. ACM, New York (2011). doi:10.1145/1998441. 1998457Google Scholar
  56. 56.
    Ya-Jun, G., Fan, H., Qing-Guo, Z., Rong, L.: An access control model for ubiquitous computing application. In: Proceedings of the 2nd International Conference on Mobile Technology, Applications and Systems, Guangzhou, pp. 1–6 (2005)Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Colorado State UniversityFort CollinsUSA

Personalised recommendations