Information Fusion in a Cloud-Enabled Environment

  • Erik Blasch
  • Yu Chen
  • Genshe Chen
  • Dan Shen
  • Ralph Kohler
Chapter

Abstract

Recent advances in cloud computing pose interesting capabilities for information fusion which have similar requirements of big data computations. With a cloud enabled environment, information fusion systems could be conducted over vast amounts of entities across multiple databases. In order to properly implement information fusion in a cloud, information management, system design, and real-time execution must be considered. In this chapter, three aspects of current developments integrating low/high-level information fusion (LLIF/HLIF) and cloud computing are discussed: (1) agent-based service architectures, (2) ontologies, and (3) metrics (timeliness, confidence, and security). We introduce the Cloud-Enabled Bayes Network (CEBN) for wide area motion imagery target tracking and identification. The Google Fusion Tables service is also selected as a case study to illustrate commercial cloud-based information fusion applications.

Notes

Acknowledgements

This material is based upon work partially supported by the Air Force Office of Scientific Research (AFOSR) and the Air Force Research Laboratory (AFRL) Visiting Faculty Research Program (VFRP) extension grant LRIR 11RI01COR. The authors appreciate the insightful directions from Dr. Frederica Darema of the Dynamic Data Driven Application System (DDDAS) concept for big data concerns. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of the Air Force.

References

  1. 1.
    Agrawal, D., Das, S., El Abbadi, A.: Big data and cloud computing: current state and future opportunities. In: Proceedings of the 14th International Conference on Extending Database Technology, EDBT/ICDT’11, Uppsala, pp. 530–533. ACM, New York (2011). doi:10.1145/1951365.1951432Google Scholar
  2. 2.
    Assadi, H.: Construction of a regional ontology from text and its use within a documentary system. In: Proceedings of the 1st International Conference on Formal Ontology in Information Systems, FOIS’98, Trento (1998)Google Scholar
  3. 3.
    Baird, S.A.: Heterogeneity and interoperability at the core: SOA, virtualization, the cloud and the government role. In: Proceedings of the 4th International Conference on Theory and Practice of Electronic Governance, ICEGOV’10, Beijing, pp. 387–388. ACM, New York (2010). doi:10.1145/1930321.1930409Google Scholar
  4. 4.
    Blasch, E.: Situation, impact, and user refinement. In: Proceedings of the SPIE, Orlando, vol. 5096, pp. 463–1134 (2003). doi:10.1117/12.542897CrossRefGoogle Scholar
  5. 5.
    Blasch, E.P.: Ontological issues in higher levels of information fusion: user refinement of the fusion process. In: Proceeding of the 6th International Conference on Information Fusion, FUSION’03, Cairns, pp. 634–641 (2003)Google Scholar
  6. 6.
    Blasch, E.: Modeling intent for a target tracking and identification scenario. In: Proceedings of the SPIE, Orlando, vol. 5428, pp. 260–851 (2004). doi:10.1117/12.542897CrossRefGoogle Scholar
  7. 7.
    Blasch, E.: Sensor, user, mission (SUM) resource management and their interaction with level 2/3 fusion. In: Proceedings of the 9th International Conference on Information Fusion, FUSION’06, Florence (2006). doi:10.1109/ICIF.2006.301791Google Scholar
  8. 8.
    Blasch, E.: User refinement in information fusion, Chap. 19. In: Liggins, M.E., Hall, D.L., Llinas, J. (eds.) Handbook of Multisensor Data Fusion, 2nd edn. CRC, Boca Raton (2008)Google Scholar
  9. 9.
    Blasch, E., Connare, T.: Improving track maintenance through group tracking. In: Proceedings of the Workshop on Estimation, Tracking and Fusion: A Tribute to Yaakov Bar-Shalom, pp. 360–371 (2001)Google Scholar
  10. 10.
    Blasch, E., Hanselman, P.: Information fusion for information superiority. In: Proceedings of the 2000 IEEE National Aerospace and Electronics Conference, NAECON’00, pp. 290–297 (2000). doi:10.1109/NAECON.2000.894923Google Scholar
  11. 11.
    Blasch, E., Plano, S.: Level 5: user refinement to aid the fusion process. In: Proceedings of the SPIE, vol. 5099, pp. 288–735 (2003). doi:10.1117/12.486899CrossRefGoogle Scholar
  12. 12.
    Blasch, E., Plano, S.: DFIG level 5 (user refinement) issues supporting situational assessment reasoning. In: Proceeding of the 8th International Conference on Information Fusion, FUSION’05, Philadelphia (2005). doi:10.1109/ICIF.2005.1591830Google Scholar
  13. 13.
    Blasch, E., Kadar, I., Salerno, J., Kokar, M.M., Das, S., Powell, G.M., Corkill, D.D., Ruspini, E.H.: Issues and challenges in situation assessment (level 2 fusion). J. Adv. Inf. Fusion 1(2), 122–139 (2006)Google Scholar
  14. 14.
    Blasch, E., Kadar, I., Hintz, K., Biermann, J., Chong, C., Das, S.: Resource management coordination with level 2/3 fusion issues and challenges. IEEE Aerosp. Electron. Syst. Mag. 23(3), 32–46 (2008). doi:10.1109/MAES.2008.4476103CrossRefGoogle Scholar
  15. 15.
    Blasch, E., Valin, P., Bosse, E., Nilsson, M., Laere, J.V., Shahbazian, E.: Implication of culture: user roles in information fusion for enhanced situational understanding. In: Proceedings of the 12th International Conference on Information Fusion, FUSION’09, Seattle, pp. 1272–1279 (2009)Google Scholar
  16. 16.
    Blasch, E., Breton, R., Valin, P.: Information fusion measures of effectiveness (MOE) for decision support. In: Proceedings of the SPIE, Orlando, vol. 8050 (2011). doi:10.1117/12.883988Google Scholar
  17. 17.
    Blasch, E., Breton, R., Valin, P., Bosse, E.: User information fusion decision making analysis with the C-OODA model. In: Proceedings of the 14th International Conference on Information Fusion, FUSION’11, Chicago (2011)Google Scholar
  18. 18.
    Blasch, E., Deignan, Jr., P.B., Dockstader, S.L., Pellechia, M., Palaniappan, K., Seetharaman, G.: Contemporary concerns in geographical/geospatial information systems (gis) processing. In: Proceedings of the 2011 IEEE National Aerospace and Electronics Conference, NAECON’11, Dayton, pp. 183–190 (2011). doi:10.1109/NAECON.2011.6183099Google Scholar
  19. 19.
    Blasch, E., Russell, S., Seetharaman, G.: Joint data management for MOVINT data-to-decision making. In: Proceedings of the 14th International Conference on Information Fusion, FUSION’11, Chicago (2011)Google Scholar
  20. 20.
    Blasch, E., Salerno, J.J., Tadda, G.: Measuring the worthiness of situation assessment. In: Proceedings of the 2011 IEEE National Aerospace and Electronics Conference, NAECON’11, Dayton (2011). doi:10.1109/NAECON.2011.6183083Google Scholar
  21. 21.
    Blasch, E., Costa, P.C.G., Laskey, K.B., Stampouli, D., Ng, G.W., Schubert, J., Nagi, R., Valin, P.: Issues of uncertainty analysis in high-level information fusion – Fusion 2012 panel discussion. In: Proceedings of the 15th International Conference on Information Fusion, Edinburgh, FUSION’12 (2012)Google Scholar
  22. 22.
    Blasch, E., Lambert, D.A., Valin, P., Kokar, M.M., Llinas, J., Das, S., Chong, C.Y., Shahbazian, E.: High level information fusion (HLIF) survey of models, issues, and grand challenges. IEEE Aerosp. Electron. Syst. Mag. 27(9), 4–20 (2012). doi:10.1109/MAES.2012.6366088CrossRefGoogle Scholar
  23. 23.
    Blasch, E.P., Bosse, E., Lambert, D.A.: High-Level Information Fusion Management and Systems Design. Artech House, Norwood (2012)Google Scholar
  24. 24.
    Bruzzone, L.: An approach to feature selection and classification of remote sensing images based on the bayes rule for minimum cost. IEEE Trans. Geosci. Remote Sens. 38(1), 429–438 (2000). doi:10.1109/36.823938CrossRefGoogle Scholar
  25. 25.
    Chen, G., Shen, D., Kwan, C., Cruz, J., Kruger, M., Blasch, E.: Game theoretic approach to threat prediction and situation awareness. J Adv Inf. Fusion 2(1), 1–14 (2007)Google Scholar
  26. 26.
    Chen, G., Blasch, E., Shen, D., Chen, H., Pham, K.: Services oriented architecture (SOA) based persistent isr simulation system. In: Proceedings of the SPIE, Orlando, vol. 7694 (2010). doi:10.1117/12.849783Google Scholar
  27. 27.
    Costa, P., Carvalho, R., Laskey, K., Park, C.: Evaluating uncertainty representation and reasoning in HLF systems. In: Proceeding of the 14th International Conference on Information Fusion, FUSION’11, Chicago, pp. 1–8 (2011)Google Scholar
  28. 28.
    Costa, P.C.G., Laskey, K.B., Blasch, E., Jousselme, A.L.: Towards unbiased evaluation of uncertainty reasoning: the URREF ontology. In: Proceedings of the 15th International Conference on Information Fusion, FUSION’12, Edinburgh (2012)Google Scholar
  29. 29.
    Das, S., Agrawal, D., El Abbadi, A.: ElasTraS: an elastic transactional data store in the cloud. In: Proceedings of the 2009 Conference on Hot Topics in Cloud Computing, HotCloud’09, San Diego. USENIX Association, Berkeley (2009)Google Scholar
  30. 30.
    Fenz, S., Ekelhart, A.: Formalizing information security knowledge. In: Proceedings of the 4th International Symposium on Information, Computer, and Communications Security, ASIACCS’09, Sydney, pp. 183–194. ACM, New York (2009) doi:10.1145/1533057.1533084Google Scholar
  31. 31.
    Gonzalez, H., Halevy, A., Jensen, C.S., Langen, A., Madhavan, J., Shapley, R., Shen, W.: Google fusion tables: data management, integration and collaboration in the cloud. In: Proceedings of the 1st ACM Symposium on Cloud Computing, SoCC’10, Indianapolis, pp. 175–180. ACM, New York (2010). doi:10.1145/1807128.1807158Google Scholar
  32. 32.
    Gonzalez, H., Halevy, A.Y., Jensen, C.S., Langen, A., Madhavan, J., Shapley, R., Shen, W., Goldberg-Kidon, J.: Google fusion tables: web-centered data management and collaboration. In: Proceedings of the 2010 ACM SIGMOD International Conference on Management of Data, SIGMOD’10, Indianapolis, pp. 1061–1066. ACM, New York (2010). doi:10.1145/1807167.1807286Google Scholar
  33. 33.
    Grauer-Gray, S., Kambhamettu, C., Palaniappan, K.: GPU implementation of belief propagation using CUDA for cloud tracking and reconstruction. In: IAPR Workshop on Pattern Recognition in Remote Sensing (PRRS), Tampa (2008)Google Scholar
  34. 34.
    Halevy, A., Shapley, R.: googleresearch.blogspot.com, Google fusion tables. http://goo.gl/6jX09 (2009)
  35. 35.
    Kessler, O., White, F.: Data fusion perspectives and its role in information processing,  Chap. 2. In: Liggins, M.E., Hall, D.L., Llinas, J. (eds.) Handbook of Multisensor Data Fusion, 2nd edn. CRC, Boca Raton (2008)Google Scholar
  36. 36.
    Khan, Z., Ludlow, D., McClatchey, R., Anjum, A.: An architecture for integrated intelligence in urban management using cloud computing. J. Cloud Comput. Adv. Syst. Appl. 1(1) (2012). doi:10.1186/2192-113X-1-1Google Scholar
  37. 37.
    Kim, A., Luo, J., Kang, M.: Security ontology for annotating resources. In: Proceedings of the 2005 OTM Confederated International Conference on the Move to Meaningful Internet Systems: CoopIS, COA, and ODBASE – Volume Part II, OTM’05, Agia Napa, pp. 1483–1499. Springer, Berlin/Heidelberg (2005). DOI 10.1007/11575801_34Google Scholar
  38. 38.
    Kowalenko, K.: ieee.org, Standards for seamless cloud computing. http://goo.gl/ajLfS (2012)
  39. 39.
    Kumar, P., Palaniappan, K., Mittal, A., Seetharaman, G.: Parallel blob extraction using the multi-core cell processor. In: Blanc-Talon, J., Philips, W., Popescu, D., Scheunders, P. (eds.) Advanced Concepts for Intelligent Vision Systems. Lecture Notes in Computer Science, vol. 5807, pp. 320–332, Springer, New York (2009)Google Scholar
  40. 40.
    Kurschl, W., Beer, W.: Combining cloud computing and wireless sensor networks. In: Proceedings of the 11th International Conference on Information Integration and Web-based Applications & Services, iiWAS’09, Kuala Lumpur, pp. 512–518. ACM, New York (2009). doi:10.1145/1806338.1806435Google Scholar
  41. 41.
    LarrañAga, P., Karshenas, H., Bielza, C., Santana, R.: A review on evolutionary algorithms in bayesian network learning and inference tasks. Inf. Sci. 233, 109–125 (2013). doi:10.1016/j.ins.2012.12.051CrossRefGoogle Scholar
  42. 42.
    Li, B., Yan, X.: Modeling of ambient intelligence based on information fusion and service oriented computing. In: Proceedings of the 5th International Conference on Ubiquitous Information Technologies and Applications, CUTE’10, Sanya, pp. 1–5 (2010). doi:10.1109/ICUT.2010.5677852Google Scholar
  43. 43.
    Liggins, M.E., Chang, K.C.: User refinement in information fusion, Chap. 17. In: Liggins, M.E., Hall, D.L., Llinas, J. (eds.) Handbook of Multisensor Data Fusion 2nd edn. CRC, Boca Raton (2008)CrossRefGoogle Scholar
  44. 44.
    Linderman, M., Haines, S., Siegel, B., Chase, G., Ouellet, D., O’May, J., Brichacek, J.: A reference model for information management to support coalition information sharing needs. In: Proceeding of the 2005 International Command and Control Research and Technology Symposium, ICCRTS’05, Washington, DC (2005)Google Scholar
  45. 45.
    Ling, H., Wu, Y., Blasch, E., Chen, G., Bai, L.: Evaluation of visual tracking in extremely low frame rate wide area motion imagery. In: Proceedings of the 14th International Conference on Information Fusion, Chicago (2011)Google Scholar
  46. 46.
    Mazur, S., Blasch, E., Chen, Y., Skormin, V.: Mitigating cloud computing security risks using a self-monitoring defensive scheme. In: Proceedings of the IEEE 2000 National Aerospace and Electronics Conference, NAECON’11, Dayton, pp. 39–45 (2011). doi:10.1109/NAECON.2011.6183074Google Scholar
  47. 47.
    Mendoza-Schrock, O., Patrick, J.A., Blasch, E.P.: Video image registration evaluation for a layered sensing environment. In: Proceedings of the 2009 IEEE National Aerospace and Electronics Conference, NAECON’09, Dayton (2009). doi:10.1109/NAECON.2009.5426624Google Scholar
  48. 48.
    Nathuji, R., Kansal, A., Ghaffarkhah, A.: Q-clouds: managing performance interference effects for QoS-aware clouds. In: Proceedings of the 5th European Conference on Computer Systems, EuroSys’10, Paris, pp. 237–250. ACM, New York (2010). doi:10.1145/1755913.1755938Google Scholar
  49. 49.
    O’Brien, L., Brebner, P., Gray, J.: Business transformation to soa: aspects of the migration and performance and QoS issues. In: Proceedings of the 2nd International Workshop on Systems Development in SOA Environments, SDSOA’08, Leipzig, pp. 35–40. ACM, New York (2008). doi:10.1145/1370916.1370925Google Scholar
  50. 50.
    Palaniappan, K., Bunyak, F., Kumar, P., et al.: Efficient feature extraction and likelihood fusion for vehicle tracking in low frame rate airborne video. In: Proceedings of the 13th International Conference on Information Fusion, FUSION’10, Edinburgh (2010)Google Scholar
  51. 51.
    Pelapur, R., Candemir, S., Poostchi, M., Bunyak, F., Wang, R., Seetharaman, G., Palaniappan, K.: Persistent target tracking using likelihood fusion in wide-area and full motion video sequences. In: Proceedings of the 15th International Conference on Information Fusion, FUSION’12, Singapore (2012)Google Scholar
  52. 52.
    Poon, H., Domingos, P.: Unsupervised ontology induction from text. In: Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics, ACL’10, Uppsala, Uppsala, pp. 296–305. Association for Computational Linguistics (2010)Google Scholar
  53. 53.
    Puig, E.J., Kwasniewksi, T.J.: Cloud computing in the government: a DACS critical review and technology assessment. In: DACS report 518136 (2011)Google Scholar
  54. 54.
    Raskin, V., Taylor, J.M., Hempelmann, C.F.: Ontological semantic technology for detecting insider threat and social engineering. In: Proceedings of the 2010 Workshop on New Security Paradigms, NSPW’10, Concord, pp. 115–128. ACM, New York (2010). doi 10.1145/1900546.1900563Google Scholar
  55. 55.
    Schadt, E., Linderman, M., Sorenson, J., Lee, L., Nolan, G.P.: Computational solutions to large-scale data management and analysis. Nat. Rev. Genet. 11, 647–657 (2010). doi:10.1038/nrg2857CrossRefGoogle Scholar
  56. 56.
    Shen, D., Chen, G., Pham, K., Blasch, E.: A trust-based sensor allocation algorithm in cooperative space search problems. In: Proceedings of the SPIE, Baltimore, vol. 8044 (2011). doi:10.1117/12.882904Google Scholar
  57. 57.
    Sotoca, J.M., Sanchez, J.S., Pla, F.: Attribute relevance in multiclass data sets using the naive bayes rule. In: Proceedings of 17th International Conference on the Pattern Recognition, ICPR’04, Cambridge, vol. 3, pp. 426–429. IEEE Computer Society, Washington, DC (2004). doi:10.1109/ICPR.2004.188Google Scholar
  58. 58.
    Takahashi, T., Kadobayashi, Y., Fujiwara, H.: Ontological approach toward cybersecurity in cloud computing. In: Proceedings of the 3rd International Conference on Security of Information and Networks, SIN’10, Taganrog, pp. 100–109. ACM, New York, (2010). doi:10.1145/1854099.1854121Google Scholar
  59. 59.
    Tan, K.L.: What’s NExT?: Sensor + Cloud!? In: Proceedings of the 7th International Workshop on Data Management for Sensor Networks, DMSN’10, Singapore, pp. 1–1. ACM, New York (2010). doi:10.1145/1858158.1858160Google Scholar
  60. 60.
    Tian, X., Tian, Z., Blasch, E., Pham, K., Shen, D., Chen, G.: Performance analysis of sliding window energy detection for spectrum sensing. J. Comput. Netw. Commun. Special Issue Trends Appl. Cogn. Radio (2012, Submitted)Google Scholar
  61. 61.
    Wang, Z., Chan, L.: Learning bayesian networks from markov random fields: an efficient algorithm for linear models. ACM Trans. Knowl. Discov. Data 6(3), 10:1–10:31 (2012). doi:10.1145/2362383.2362384Google Scholar
  62. 62.
    Wilde, N., Simmons, S., Pressel, M., Vandeville, J.: Understanding features in SOA: some experiences from distributed systems. In: Proceedings of the 2nd International Workshop on Systems Development in SOA Environments, SDSOA’08, Leipzig, pp. 59–62. ACM, New York (2008). doi:10.1145/1370916.1370931Google Scholar
  63. 63.
    Wu, Y., Blasch, E., Chen, G., Bai, L., Ling, H.: Multiple source data fusion via sparse representation for robust visual tracking. In: Proceedings of the 14th International Conference on Information Fusion, Chicago (2011)Google Scholar
  64. 64.
    Wu, Y., Chen, G., Blasch, E., Ling, H.: Feature based background registration in wide area motion imagery. In: Proceedings of the SPIE, Baltimore, vol. 8402 (2012). doi:10.1117/12.918804Google Scholar
  65. 65.
    Yang, C., Blasch, E.: Pose angular-aiding for maneuvering target tracking. In: Proceedings of the 8th International Conference on Information Fusion, FUSION’05, Philadelphia (2005)Google Scholar
  66. 66.
    Yang, C., Blasch, E.: Fusion of tracks with road constraints. J. Adv. Inf. Fusion 3(1), 14–32 (2008)Google Scholar
  67. 67.
    Yang, C., Blasch, E.: Performance measures of covariance and information matrices in resource management for target state estimation. IEEE Trans. Aerosp. Electron 48(3), 2594–2613 (2012)CrossRefGoogle Scholar
  68. 68.
    Yu, W., Wang, X., Fu, X., Xuan, D., Zhao, W.: An invisible localization attack to internet threat monitors. IEEE Trans. Parallel Distrib. Syst. (TPDS) 20(11), 1611–1625 (2009). doi:10.1109/TPDS.2008.255Google Scholar
  69. 69.
    Zhang, Y., Ji, Q.: Active and dynamic information fusion for multisensor systems with dynamic bayesian networks. IEEE Trans. Syst. Man Cybern. Part B 36(2), 467–472 (2006). doi:10.1109/TSMCB.2005.859081CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Erik Blasch
    • 1
  • Yu Chen
    • 2
  • Genshe Chen
    • 3
  • Dan Shen
    • 3
  • Ralph Kohler
    • 1
  1. 1.Air Force Research LaboratoryRomeUSA
  2. 2.SUNY-BinghamtonBinghamtonUSA
  3. 3.Intelligent Fusion Technology, Inc.GaithersburgUSA

Personalised recommendations