Skip to main content

Methods for Measurement of Physical Fitness and Training Recommendations in Studies on Humans

  • Chapter
  • First Online:
Book cover Functional Neuroimaging in Exercise and Sport Sciences

Abstract

This chapter addresses methods for testing endurance and strength ­performance capacity. Following a short discussion about the physiological aspects of endurance and strength demands, contraindications for participating in physical fitness testing are presented. This is followed by examples of specific methods for measuring these states of fitness. Subsequently, how training recommendations can be derived from the respective test results and transferred into experimental protocols focusing on the effects of exercise on brain function is described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albracht K, Arampatzis A (2006) Influence of the mechanical properties of the muscle-tendon unit on force generation in runners with different running economy. Biol Cybern 95:87–96

    Article  PubMed  Google Scholar 

  • ACSM Position Stand (1998) The recommended quantity and quality of exercise for developing and maintaining cardiorespiratory and muscular fitness and flexibility in healthy adults. Med Sci Sports Exerc 30(6):975–991

    Article  Google Scholar 

  • ACSM’s Guidelines for Exercise Testing and Prescription (2010) 8th Edn. American College of Sports Medicine. Lippincott Williams and Wilkins, Baltimore, MD

    Google Scholar 

  • Amann M, Subudhi AW, Walker J, Eisenman P, Shultz B, Foster C (2004) An evaluation of the predictive validity and reliability of ventilatory threshold. Med Sci Sports Exerc 36:1716–1722

    Article  PubMed  Google Scholar 

  • Arampatzis A, Morey-Klapsing G, Karamanidis K, DeMonte G, Stafilidis S, Brüggemann GP (2005) Differences between measured and resultant joint moments during isometric contractions at the ankle joint. J Biomech 38:885–892

    Article  PubMed  Google Scholar 

  • Arndt AN, Komi PV, Brüggemann GP, Lukkariniemi J (1998) Individual muscle contributions to the in vivo achilles tendon force. Clin Biomech 13:532–541

    Article  Google Scholar 

  • Bacon L, Kern M (1999) Evaluating a test protocol for predicting maximum lactate steady state. J Sports Med Phys Fitness 39:300–308

    PubMed  CAS  Google Scholar 

  • Baron B, Dekerle J, Robin S, Neviere R, Dupont L, Matran R, Vanvelcenaher J, Robin H, Pelayo P (2003) Maximal lactate steady state does not correspond to a complete physiological steady state. Int J Sports Med 24(8):582–587

    Article  PubMed  CAS  Google Scholar 

  • Baechle T, Earle RW (eds) (2008) Essentials of strength training and conditioning. Human Kintetics, Champaign

    Google Scholar 

  • Baldari C, Guidetti L (2000) A simple method for individual anaerobic threshold as predictor of max lactate steady state. Med Sci Sports Exerc 32:1798–1802

    Article  PubMed  CAS  Google Scholar 

  • Beneke R, Duvillard S (1996) Determination of maximal lactate steady state in selected sports events. Med Sci Sports Exerc 28:241–246

    Article  PubMed  CAS  Google Scholar 

  • Beaver WL, Wasserman K, Whip BJ (1986) A new method for detecting anaerobic threshold by gas exchange. J Appl Physiol 60:2020–2027

    PubMed  CAS  Google Scholar 

  • Bentley DJ, Newell J, Bishop D (2007) Incremental exercise test design and analysis: implications for performance diagnostics in endurance athletes. Sports Med 37(7):575–586

    Article  PubMed  Google Scholar 

  • Billat VL, Sirvent P, Py G, Koralsztein JP, Mercier J (2003) The concept of maximal lactate steady state: a bridge between biochemistry, physiology, and sport science. Med Sci Sports Exerc 33(6):407–426

    Google Scholar 

  • Bishop D (1997) Reliability of a 1-h endurance performance test in trained female cyclists. Med Sci Sports Exerc 29:554–559

    Article  PubMed  CAS  Google Scholar 

  • Borg G, Hassman P, Langerstrom M (1987) Perceived exertion in relation to heart rate and blood lactate during arm and leg exercise. Eur J Appl Physiol 65:679–685

    Article  Google Scholar 

  • Borg G (1998) Borg’s perceived exertion and pain scales. Human Kinetics, Champaign IL

    Google Scholar 

  • Bourdin M, Rambaud O, Dorel S, Lacour JR, Moyen B, Rahmani A (2010) Throwing performance is associated with muscular power. Int J Sportsmed 31:505–510

    Article  CAS  Google Scholar 

  • Bruhn S, Gollhofer A, Gruber M (2001) Proprioception training for prevention and rehabilitation of knee joint injuries. Eur J Sports Traumatol Rel Res 23:82–89

    Google Scholar 

  • Cairns S, Knicker AJ, Thompson MW, Sjøgaard G (2005) Evaluation of models used to study neuromuscular fatigue. Exerc Sport Sci Rev 33(1):9–16

    PubMed  Google Scholar 

  • Cardinale M, Newton R, Nosaka K (2011) Strength and conditioning – biological principles and practical applications. Wiley Blackwell, Chichester, UK

    Google Scholar 

  • Colson SS, Martin A, Van Hoecke J (2009) Effects of electromyostimulation versus voluntary isometric training on elbow flexor muscle strength. J Electromyogr Kinesiol 19(5):311–319

    Article  Google Scholar 

  • Coyle EF, Feltner ME, Kautz SA (1991) Physiological and biomechanical factors associated with elite endurance cycling performance. Med Sci Sports Exerc 23:93–107

    PubMed  CAS  Google Scholar 

  • De Luca CJ, Adam A, Wotiz R, Gilmore LD, Nawab SH (2006) Decomposition of surface EMG signals. J Neurophysiol 96:1646–1657

    Article  PubMed  Google Scholar 

  • Dekerle J, Baron B, Dupont L, Vanvelcenaher J, Pelayo P (2003) Maximal lactate steady state, respiratory compensation threshold and critical power. Eur J Appl Physiol 89(3–4):281–288

    Article  PubMed  CAS  Google Scholar 

  • Denis C, Foujuet R, Poty P, Geyssant A, Lacour JR (1982) Effects of 40 weeks of endurance training on the anaerobic threshold. Int J Sports Med 3:208–214

    Article  PubMed  CAS  Google Scholar 

  • Dias JA, Dal Pupo JD, Reis DC, Borges L, Santos SG, Moro ARP, Borges NG Jr (2011) Validity of two methods for estimation of vertical jump height. J Strength Cond Res 25(7):2034–2039

    Article  PubMed  Google Scholar 

  • Dickhuth HH, Röcker K, Mayer F, Nieß A, Horstmann T, Heitkamp HC (1996) Bedeutung der Leistungsdiagnostik und Trainingssteuerung bei Ausdauer- und Spielsportarten. Dt Zeit Sportmed 47:183–189

    Google Scholar 

  • Ditroilo M, Hunter AM, Haslam S, De Vito G (2011) The effectiveness of two novel techniques in establishing the mechanical and contractile responses of biceps femoris. Physiol Meas 32:1315–1326

    Article  PubMed  Google Scholar 

  • Fabian K, Eisenkolb E, Sauermann A (1997) Praktikable Trainingssteuerung im leichtathletischen Langsprint durch Blutlaktatmessung. Leistungssport 27 (1997) 4:14–16

    Google Scholar 

  • Faude O, Kindermann W, Meyer T (2009) Lactate threshold concepts: how valid are they? Sports Med 39:469–490

    Article  PubMed  Google Scholar 

  • Finni T, Komi PV, Lepola V (2000) In vivo human triceps surae and quadriceps femoris muscle function in a squat jump and counter movement jump. Eur J Appl Physiol 83(4–5):416–426

    Article  PubMed  CAS  Google Scholar 

  • Finni T, Komi PV, Lepola V (2001) In vivo muscle mechanics during locomotion depend on movement amplitude and contraction intensity. Eur J Appl Physiol 85(1–2):170–176

    Article  PubMed  CAS  Google Scholar 

  • Föhrenbach R, Mader A, Hollmann W (1987) Determination of endurance capacity and prediction of exercise intensities for training and competition in marathon runners. Int J Sports Med 8:11–18

    Article  PubMed  Google Scholar 

  • Froelicher V, Myers JN (2000) Exercise and the heart, 4th edn. Saunders, Philadelphia

    Google Scholar 

  • Frost DM, Cronin J, Newton RU (2010) A biomechanical evaluation of resistance: fundamental concepts for training and sports performance. Sports Med (Auckland, NZ) 40(4):303–326

    Article  Google Scholar 

  • Fukashiro S, Komi PV, Järvinen M, Miyashita M (1995) In vivo Achilles tendon loading during jumping in humans. Eur J Appl Physiol Occup Physiol 71(5):453–458

    Article  PubMed  CAS  Google Scholar 

  • Gardiner PF (2011) Advanced neuromuscular exercise physiology. Human Kinetics, Champaign

    Google Scholar 

  • Gellish RL, Goslin BR, Olson RE, McDonald A, Russi GD, Moudgil VK (2007) Longitudinal modeling of the relationship between age and maximal heart rate. Med Sci Sports Exerc 39(5):822–829

    PubMed  Google Scholar 

  • Gibbons RJ, Balady GJ, Bricker JT, Chaitman BR, Fletcher GF, Froelicher VF, Mark DB, McCallister BD, Mooss AN, O’Reilly MG, Winters WL, Gibbons RJ, Antman EM, Alpert JS, Faxon DP, Fuster V, Gregoratos G, Hiratzka LF, Jacobs AK, Russell RO, Smith SC (2002) ACC/AHA guideline update for exercise testing. A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee to Update the 1997 Exercise Testing Guidelines). Circulation 106:1883–1892

    Article  PubMed  Google Scholar 

  • Gollhofer A, Horstmann GA, Schmidtbleicher D, Schönthall D (1990) Reproducibility of electromyographic patterns in stretch-shortening type contractions. Eur J Appl Physiol Occup Physiol 60:7–14

    Article  PubMed  CAS  Google Scholar 

  • Granacher U, Muehlbauer T, Taube W, Gollhofer A, Gruber M (2011) Sensorimotor training. In: Cardinale M, Newton R, Nosaka K (eds) Strength and conditioning – biological principals and practical applications, 1st edn. Wiley Blackwell, Chichester, UK, pp 399–409

    Google Scholar 

  • Gregory CM, Bickel CS (2005) Recruitment patterns in human skeletal muscle during electrical stimulation. Phys Ther 85(4):358–364

    PubMed  Google Scholar 

  • Grosser M, Starischka S, Zimmermann E (2001) Das neue Konditionstraining für alle Sportarten, für Kinder, Jugendliche und Aktive. BLV Verlagsgesellschaft GmbH, München

    Google Scholar 

  • Heck H, Mader A, Hess G, Mücke S, Müller P, Hollmann W (1985a) Justification of the 4-mmol/l lactate threshold. Int J Sports Med 6(3):117–130

    Article  PubMed  CAS  Google Scholar 

  • Heck H, Hess G, Mader A (1985b) Vergleichende Untersuchungen zu verschiedenen Laktat-Schwellenkonzepten. Dtsch Z Sportmed 1:19–25

    Google Scholar 

  • Heck H (1990) Laktat in der Leistungsdiagnostik. Wissenschaftliche Schriftenreihe des Deutschen Sportbundes. Karl Hofmann, Schorndorf

    Google Scholar 

  • Heck H, Beneke R (2008) 30 Jahre Laktatschwellen – was bleibt zu tun? Dtsch Z Sportmed 59:297–302

    CAS  Google Scholar 

  • Heitkamp HC, Holdt M, Scheib K (1991) The reproducibility of the 4 mmol/l lactate threshold in trained and untrained women. Int J Sports Med 12:363–368

    Article  PubMed  CAS  Google Scholar 

  • Henneman E (1981) Recruitment of motor units: the size principle. In: Desmedt JE (ed) Motor unit types, recruitment and plasticity in health and disease. Karger, New York, pp 26–60

    Google Scholar 

  • Hill AV (1925) Muscular activity. Williams and Wilkins, Baltimore

    Google Scholar 

  • Hill AV (1934) The efficiency of bicycle pedaling. J Physiol 82:207–210

    PubMed  CAS  Google Scholar 

  • Hollmann W (1959a) Report on the Pan-American Congress of sport physicians in Chicago (1959 Sep 1–2) [in German]. Sportarzt Sportmed 10(12):285–6

    Google Scholar 

  • Hollmann W (1959b) The relationship between pH, lactic acid, potassium in the arterial and venous blood, the ventilation, PoW and pulse frequency during increasing spiroergometric work in endurance-trained and untrained persons. 3. Pan-American Congress for Sports Medicine, Chicago

    Google Scholar 

  • Hollmann W (1961) The problem of endurance performance capacity [in German]. Fortschr Med 79:439

    Google Scholar 

  • Hollmann W (1963) Maximal and endurance performance capacity of untrained and endurance-trained persons [in German]. Barth, Munich

    Google Scholar 

  • Hollmann W (1967) Zur Trainingslehre: Muskuläre Beanspruchungsformen und ihre leistungsbegrenzenden Faktoren. Sportarzt Sportmed 11:443

    Google Scholar 

  • Hollmann W, Strüder HK (2009) Sportmedizin Grundlagen für körperliche Aktivität. Training und Präventivmedizin. New York Schattauer, Stuttgart

    Google Scholar 

  • Jackson AS, Blair SN, Mahar MT, Wier LT, Ross RM, Stuteville JE (1990) Prediction of functional aerobic capacity without exercise testing. Med Sci Sports Exerc 22(6):863–870

    PubMed  CAS  Google Scholar 

  • Jeukendrup A, Sarris WH, Brouns F, Kester AD (1996) A new validated endurance performance test. Med Sci Sports Exerc 28:266–270

    Article  PubMed  CAS  Google Scholar 

  • Jorgensen T, Andersen LB, Froberg K, Maeder U, von Huth SL, Aadahl M (2009) Position statement: testing physical condition in a population – how good are the methods. Eur J Sport Sci 9:257–267

    Article  Google Scholar 

  • Judge LW, Moreau C, Burke JR (2003) Neural adaptations with sport-specific resistance training in highly skilled athletes. J Sports Sci 21(5):419–427

    Article  PubMed  Google Scholar 

  • Karvonen MJ, Kentala E, Mustala O (1957) The effect of training on heart rate. A longitudinal study. Ann Med Exp Biol Fenn 35:307–315

    PubMed  CAS  Google Scholar 

  • Katch VL, Sady SS, Freedson P (1982) Biological variability in maximum aerobic power. Med Sci Sports Exerc 14(1):211–215

    Google Scholar 

  • Kernell D (2006) The motoneuron and its muscle fibre. Oxford University Press, New York

    Book  Google Scholar 

  • Kilding AE, Jones AM (2005) Validity of a single-visit protocol to estimate the maximum lactate steady state. Med Sci Sports Exerc 37(10):1734–1740

    Article  PubMed  Google Scholar 

  • Kline GM, Porcari JP, Hintermeister R, Freedson PS, Ward A, McCarron RF, Ross J, Rippe JM (1987) Estimation of V˙  O2max from a one-mile track walk, gender, age, and body weight. Med Sci Sports Exerc 19:253–259

    PubMed  CAS  Google Scholar 

  • Knicker AJ, Renshaw I, Oldham ARH, Cairns SP (2011) Interactive processes link the multiple symptoms of fatigue in sport competition. Sports Med (Auckland, NZ) 41(4):307–328

    Article  Google Scholar 

  • Knipping HW (1929) The economy of muscle work in healthy and sick persons [in German]. Z Gesamte ExpMed 66:517

    Article  Google Scholar 

  • Knipping HW, Bolt W, Valentin H et al (1955/60) Examination and evaluation of heart patients [in German]. Enke, Stuttgart

    Google Scholar 

  • Komi PV, Salonen M, Järvinen M, Kokko O (1987) In vivo registration of Achilles tendon forces in man. I. Methodological development. Int J Sports Med 8(1):3–8

    Article  PubMed  Google Scholar 

  • Komi PV, Belli A, Huttunen V, Bonnefoy R, Geyssant A, Lacour JR (1996) Optic fibre as a transducer of tendomuscular forces. Eur J Appl Physiol 72:278–280

    Article  CAS  Google Scholar 

  • Kuipers H, Rietjens G, Verstappen F, Schoenmakers H, Hofman G (2003) Effects of stage duration in incremental running tests on physiological variables. Int J Sports Med 24:486–491

    Article  PubMed  CAS  Google Scholar 

  • Laplaud D, Guinot M, Favre-Juvin A, Flore P (2006) Maximal lactate steady state determination with a single incremental test exercise. Eur J Appl Physiol 96(4):446–452

    Article  PubMed  CAS  Google Scholar 

  • Liesen H, Hollmann W (1981) Ausdauersport und Stoffwechsel. Hofmann, Schorndorf

    Google Scholar 

  • Lindsay FH, Hawley JA, Myburgh KH, Schomer HH, Noakes TD, Dennis SC (1996) Improved athletic performance in highly trained cyclists after interval training. Med Sci Sports Exerc 28:1427–1434

    Article  PubMed  CAS  Google Scholar 

  • Löllgen H, Graham T, Sjogaard G (1980) Muscle metabolites, force and perceived exertion bicycling at varying pedal rates. Med Sci Sports Exerc 12:345–351

    PubMed  Google Scholar 

  • Löllgen H, Erdmann E, Gitt A (eds) (2009) Ergometrie – Belastungsuntersuchungen in Klinik und Praxis, 3rd edn. Berlin, Springer

    Google Scholar 

  • Mader A, Liesen H, Heck H, Philippi H, Rost R, Schürch P, Hollmann W (1976) Evaluation of sports specific endurance capacity in the laboratory [in German]. Sportarzt Sportmed 27(4): 80(5):109

    Google Scholar 

  • Mattern CO, Gutilla MJ, Bright DL, Kirby TE, Hinchcliff KW, Devor ST (2003) Maximal lactate steady state declines during the aging process. J Appl Physiol 95:2576–2582

    PubMed  Google Scholar 

  • Mayhew JL, Prinster JL, Ware JS, Zimmer DL, Arabas JR, Bemben MG (1995) Muscular endurance repetitions to predict bench press strength in men of different training levels. J Sports Med Phys Fitness 35(2):108–113

    PubMed  CAS  Google Scholar 

  • Melnyk M, Schloz C, Schmitt S, Gollhofer A (2009) Neuromuscular ankle joint stabilisation after 4-weeks WBV training. Int J Sports Med 30(6):461–466

    Article  PubMed  CAS  Google Scholar 

  • Meyer T, Lucia A, Earnest CP, Kindermann W (2005a) A conceptual framework for performance diagnosis and training prescription from submaximal gas exchange parameters-theory and application. Int J Sports Med 26(1):38–48

    Article  Google Scholar 

  • Meyer T, Davison RC, Kindermann W (2005b) Ambulatory gas exchange measurements – current status and future options. Int J Sports Med 26:19–27

    Article  Google Scholar 

  • Nawab SH, Chang SS, De Luca CJ (2010) High yield decomposition of surface EMG signals. Clin Neurophysiol 121:1602–1615

    Article  PubMed  Google Scholar 

  • Newton R, Cormie P, Cardinale M (2011) Principles of athletic testing. In: Cardinale M, Newton R, Nosaka K (eds) Strength and conditioning – biological principals and practical applications. Wiley Blackwell, Chichester, UK, pp 255–276

    Google Scholar 

  • Neumann G, Pfützner A, Hottenrott K (2000) Alles unter Kontrolle: Ausdauertraining. Meyer and Meyer, Aachen

    Google Scholar 

  • Nickel P, Nachreiner F, Zdobych A, Yanagibori R (1998) Evaluation of mental workload via the 0.1 Hz component of heart rate variability some methodological and technical problems [in German]. Z Arbeits- und Organisationspsychol 42:205–212

    Google Scholar 

  • Paillard T (2008) Combined application of neuromuscular electrical stimulation and voluntary muscular contractions. Sports Med (Auckland, NZ) 38(2):161–177

    Article  Google Scholar 

  • Pfitzinger P, Freedson PS (1998) The reliability of lactate measurements during exercise. Int J Sports Med 19:349–357

    Article  PubMed  CAS  Google Scholar 

  • Plato PA, McNulty M, Crunk SM, Tug EA (2008) Predicting lactate threshold using ventilatory threshold. Int J Sports Med 29:732–737

    Article  PubMed  CAS  Google Scholar 

  • Pringle JS, Jones AM (2002) Maximal lactate steady state, critical power and EMG during cycling. Eur J Appl Physiol 88(3):214–226

    Article  PubMed  CAS  Google Scholar 

  • Roffey DM, Byrne NM, Hills AP (2007) Effect of stage duration on physiological variables commonly used to determine maximum aerobic performance during cycle ergometry. J Sports Sci 25:1325–1335

    Article  PubMed  Google Scholar 

  • Rost R, Hollmann W (1978) Herz, Gefäßsystem und Sport. Mod Ther 1:46–58

    Google Scholar 

  • Saeterbakken AH, van den Tillaar R, Seiler S (2011) Effect of core stability training on throwing velocity in female handball players. J Strength Cond Res/National Strength and Conditioning Association 25(3):712–718

    Google Scholar 

  • Sale DG (2003) Neural adaptation to strength training. In: Komi PV (ed) Strength and power in sport, 2nd edn. Blackwell, Oxford, pp 281–314

    Chapter  Google Scholar 

  • Sjodin B, Jacobs I, Svedenhag J (1982) Changes in the onset of blood lactate accumulation (OBLA) and muscles enzymes after training at OBLA. Eur J Appl Physiol 49:45–57

    Article  CAS  Google Scholar 

  • Solberg G, Robstad B, Skjonsberg OH, Borchsenius F (2005) Respiratory gas exchange indices for estimating the anaerobic threshold. J Sports Sci Med 4:29–36

    Google Scholar 

  • Svedahl K, MacIntosh BR (2003) Anaerobic threshold: the concept and methods of measurement. Can J Appl Physiol 28:299–323

    Article  PubMed  CAS  Google Scholar 

  • Tanaka H, Monahan KD, Seals DR (2001) Age-predicted maximal heart rate revisited. J Am Coll Cardiol 37:153–156

    Article  PubMed  CAS  Google Scholar 

  • Washington RL, Bricker JT, Alpert BS, Daniels SR, Deckelbaum RJ, Fisher EA, Gidding SS, Isabel-Jones J, Kavey RE, Marx GR (1994) Guidelines for exercise testing in the pediatric age group. From the Committee on Atherosclerosis and Hypertension in Children, Council on Cardiovascular Disease in the Young, the American Heart Association. Circulation 90:2166–2179

    Article  PubMed  CAS  Google Scholar 

  • Wasserman K, Mellroy MB (1964) Detecting the threshold of anaerobic metabolism in cardiac patients during exercise. Am J Cardiol 14:844

    Article  PubMed  CAS  Google Scholar 

  • Wasserman K, Whipp BJ, Koyal SN, Beaver WL (1973) Anaerobic threshold and respiratory gas exchange during exercise. J Appl Physiol 35(2):236

    PubMed  CAS  Google Scholar 

  • Wasserman K, Beaver WL, Whipp BJ (1986) Mechanisms and patterns of blood lactate increase during exercise in man. Med Sci Sports Exerc 18(3):344

    Article  PubMed  CAS  Google Scholar 

  • Wasserman K, Hansen J, Darryl Y, Whipp B (2005) Principles of exercise testing and interpretation, 4th edn. Philadelphia, Lippincott Williams & Wilkins

    Google Scholar 

  • Wiksten D, Peter C (2000) The athletic trainer’s guide to strength and endurance training. SLACK Incorporated, Thorofare, NJ

    Google Scholar 

  • Wilmore JH, Costill DL (2004) Cardiovascular and respiratory adaptation to training. In: Wilmore JH, Costill DL (eds) Physiology of sport and exercise. Human Kinetics, Champaign, pp 270–304

    Google Scholar 

  • Wonisch M, Hofmann P, Pokan R, Kraxner W, Hödl R, Maier R, Watzinger N, Smekal G, Klein W, Fruhwald FM (2003) Spiroergometry in cardiology – physiology and terminology (German). J Kardiol 10:383–390

    Google Scholar 

  • Zatsiorsky VM, Kraemer WJ (2006) Krafttraining – Praxis und Wissenschaft. Meyer und Meyer, Aachen

    Google Scholar 

  • Zintl F, Eisenhut A (2001) Ausdauertraining. Grundlagen, Methoden, Trainingssteuerung. BLV Verlagsgesellschaft, München

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wildor Hollmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hollmann, W., Knigge, H., Knicker, A., Strüder, H.K. (2012). Methods for Measurement of Physical Fitness and Training Recommendations in Studies on Humans. In: Boecker, H., Hillman, C., Scheef, L., Strüder, H. (eds) Functional Neuroimaging in Exercise and Sport Sciences. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3293-7_5

Download citation

Publish with us

Policies and ethics