Methods for Measurement of Physical Fitness and Training Recommendations in Studies on Humans

  • Wildor Hollmann
  • Helge Knigge
  • Axel Knicker
  • Heiko K. Strüder


This chapter addresses methods for testing endurance and strength ­performance capacity. Following a short discussion about the physiological aspects of endurance and strength demands, contraindications for participating in physical fitness testing are presented. This is followed by examples of specific methods for measuring these states of fitness. Subsequently, how training recommendations can be derived from the respective test results and transferred into experimental protocols focusing on the effects of exercise on brain function is described.


Motor Unit Strength Training Anaerobic Threshold Respiratory Exchange Ratio Test Person 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Albracht K, Arampatzis A (2006) Influence of the mechanical properties of the muscle-tendon unit on force generation in runners with different running economy. Biol Cybern 95:87–96PubMedCrossRefGoogle Scholar
  2. ACSM Position Stand (1998) The recommended quantity and quality of exercise for developing and maintaining cardiorespiratory and muscular fitness and flexibility in healthy adults. Med Sci Sports Exerc 30(6):975–991CrossRefGoogle Scholar
  3. ACSM’s Guidelines for Exercise Testing and Prescription (2010) 8th Edn. American College of Sports Medicine. Lippincott Williams and Wilkins, Baltimore, MDGoogle Scholar
  4. Amann M, Subudhi AW, Walker J, Eisenman P, Shultz B, Foster C (2004) An evaluation of the predictive validity and reliability of ventilatory threshold. Med Sci Sports Exerc 36:1716–1722PubMedCrossRefGoogle Scholar
  5. Arampatzis A, Morey-Klapsing G, Karamanidis K, DeMonte G, Stafilidis S, Brüggemann GP (2005) Differences between measured and resultant joint moments during isometric contractions at the ankle joint. J Biomech 38:885–892PubMedCrossRefGoogle Scholar
  6. Arndt AN, Komi PV, Brüggemann GP, Lukkariniemi J (1998) Individual muscle contributions to the in vivo achilles tendon force. Clin Biomech 13:532–541CrossRefGoogle Scholar
  7. Bacon L, Kern M (1999) Evaluating a test protocol for predicting maximum lactate steady state. J Sports Med Phys Fitness 39:300–308PubMedGoogle Scholar
  8. Baron B, Dekerle J, Robin S, Neviere R, Dupont L, Matran R, Vanvelcenaher J, Robin H, Pelayo P (2003) Maximal lactate steady state does not correspond to a complete physiological steady state. Int J Sports Med 24(8):582–587PubMedCrossRefGoogle Scholar
  9. Baechle T, Earle RW (eds) (2008) Essentials of strength training and conditioning. Human Kintetics, ChampaignGoogle Scholar
  10. Baldari C, Guidetti L (2000) A simple method for individual anaerobic threshold as predictor of max lactate steady state. Med Sci Sports Exerc 32:1798–1802PubMedCrossRefGoogle Scholar
  11. Beneke R, Duvillard S (1996) Determination of maximal lactate steady state in selected sports events. Med Sci Sports Exerc 28:241–246PubMedCrossRefGoogle Scholar
  12. Beaver WL, Wasserman K, Whip BJ (1986) A new method for detecting anaerobic threshold by gas exchange. J Appl Physiol 60:2020–2027PubMedGoogle Scholar
  13. Bentley DJ, Newell J, Bishop D (2007) Incremental exercise test design and analysis: implications for performance diagnostics in endurance athletes. Sports Med 37(7):575–586PubMedCrossRefGoogle Scholar
  14. Billat VL, Sirvent P, Py G, Koralsztein JP, Mercier J (2003) The concept of maximal lactate steady state: a bridge between biochemistry, physiology, and sport science. Med Sci Sports Exerc 33(6):407–426Google Scholar
  15. Bishop D (1997) Reliability of a 1-h endurance performance test in trained female cyclists. Med Sci Sports Exerc 29:554–559PubMedCrossRefGoogle Scholar
  16. Borg G, Hassman P, Langerstrom M (1987) Perceived exertion in relation to heart rate and blood lactate during arm and leg exercise. Eur J Appl Physiol 65:679–685CrossRefGoogle Scholar
  17. Borg G (1998) Borg’s perceived exertion and pain scales. Human Kinetics, Champaign ILGoogle Scholar
  18. Bourdin M, Rambaud O, Dorel S, Lacour JR, Moyen B, Rahmani A (2010) Throwing performance is associated with muscular power. Int J Sportsmed 31:505–510CrossRefGoogle Scholar
  19. Bruhn S, Gollhofer A, Gruber M (2001) Proprioception training for prevention and rehabilitation of knee joint injuries. Eur J Sports Traumatol Rel Res 23:82–89Google Scholar
  20. Cairns S, Knicker AJ, Thompson MW, Sjøgaard G (2005) Evaluation of models used to study neuromuscular fatigue. Exerc Sport Sci Rev 33(1):9–16PubMedGoogle Scholar
  21. Cardinale M, Newton R, Nosaka K (2011) Strength and conditioning – biological principles and practical applications. Wiley Blackwell, Chichester, UKGoogle Scholar
  22. Colson SS, Martin A, Van Hoecke J (2009) Effects of electromyostimulation versus voluntary isometric training on elbow flexor muscle strength. J Electromyogr Kinesiol 19(5):311–319CrossRefGoogle Scholar
  23. Coyle EF, Feltner ME, Kautz SA (1991) Physiological and biomechanical factors associated with elite endurance cycling performance. Med Sci Sports Exerc 23:93–107PubMedGoogle Scholar
  24. De Luca CJ, Adam A, Wotiz R, Gilmore LD, Nawab SH (2006) Decomposition of surface EMG signals. J Neurophysiol 96:1646–1657PubMedCrossRefGoogle Scholar
  25. Dekerle J, Baron B, Dupont L, Vanvelcenaher J, Pelayo P (2003) Maximal lactate steady state, respiratory compensation threshold and critical power. Eur J Appl Physiol 89(3–4):281–288PubMedCrossRefGoogle Scholar
  26. Denis C, Foujuet R, Poty P, Geyssant A, Lacour JR (1982) Effects of 40 weeks of endurance training on the anaerobic threshold. Int J Sports Med 3:208–214PubMedCrossRefGoogle Scholar
  27. Dias JA, Dal Pupo JD, Reis DC, Borges L, Santos SG, Moro ARP, Borges NG Jr (2011) Validity of two methods for estimation of vertical jump height. J Strength Cond Res 25(7):2034–2039PubMedCrossRefGoogle Scholar
  28. Dickhuth HH, Röcker K, Mayer F, Nieß A, Horstmann T, Heitkamp HC (1996) Bedeutung der Leistungsdiagnostik und Trainingssteuerung bei Ausdauer- und Spielsportarten. Dt Zeit Sportmed 47:183–189Google Scholar
  29. Ditroilo M, Hunter AM, Haslam S, De Vito G (2011) The effectiveness of two novel techniques in establishing the mechanical and contractile responses of biceps femoris. Physiol Meas 32:1315–1326PubMedCrossRefGoogle Scholar
  30. Fabian K, Eisenkolb E, Sauermann A (1997) Praktikable Trainingssteuerung im leichtathletischen Langsprint durch Blutlaktatmessung. Leistungssport 27 (1997) 4:14–16Google Scholar
  31. Faude O, Kindermann W, Meyer T (2009) Lactate threshold concepts: how valid are they? Sports Med 39:469–490PubMedCrossRefGoogle Scholar
  32. Finni T, Komi PV, Lepola V (2000) In vivo human triceps surae and quadriceps femoris muscle function in a squat jump and counter movement jump. Eur J Appl Physiol 83(4–5):416–426PubMedCrossRefGoogle Scholar
  33. Finni T, Komi PV, Lepola V (2001) In vivo muscle mechanics during locomotion depend on movement amplitude and contraction intensity. Eur J Appl Physiol 85(1–2):170–176PubMedCrossRefGoogle Scholar
  34. Föhrenbach R, Mader A, Hollmann W (1987) Determination of endurance capacity and prediction of exercise intensities for training and competition in marathon runners. Int J Sports Med 8:11–18PubMedCrossRefGoogle Scholar
  35. Froelicher V, Myers JN (2000) Exercise and the heart, 4th edn. Saunders, PhiladelphiaGoogle Scholar
  36. Frost DM, Cronin J, Newton RU (2010) A biomechanical evaluation of resistance: fundamental concepts for training and sports performance. Sports Med (Auckland, NZ) 40(4):303–326CrossRefGoogle Scholar
  37. Fukashiro S, Komi PV, Järvinen M, Miyashita M (1995) In vivo Achilles tendon loading during jumping in humans. Eur J Appl Physiol Occup Physiol 71(5):453–458PubMedCrossRefGoogle Scholar
  38. Gardiner PF (2011) Advanced neuromuscular exercise physiology. Human Kinetics, ChampaignGoogle Scholar
  39. Gellish RL, Goslin BR, Olson RE, McDonald A, Russi GD, Moudgil VK (2007) Longitudinal modeling of the relationship between age and maximal heart rate. Med Sci Sports Exerc 39(5):822–829PubMedGoogle Scholar
  40. Gibbons RJ, Balady GJ, Bricker JT, Chaitman BR, Fletcher GF, Froelicher VF, Mark DB, McCallister BD, Mooss AN, O’Reilly MG, Winters WL, Gibbons RJ, Antman EM, Alpert JS, Faxon DP, Fuster V, Gregoratos G, Hiratzka LF, Jacobs AK, Russell RO, Smith SC (2002) ACC/AHA guideline update for exercise testing. A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee to Update the 1997 Exercise Testing Guidelines). Circulation 106:1883–1892PubMedCrossRefGoogle Scholar
  41. Gollhofer A, Horstmann GA, Schmidtbleicher D, Schönthall D (1990) Reproducibility of electromyographic patterns in stretch-shortening type contractions. Eur J Appl Physiol Occup Physiol 60:7–14PubMedCrossRefGoogle Scholar
  42. Granacher U, Muehlbauer T, Taube W, Gollhofer A, Gruber M (2011) Sensorimotor training. In: Cardinale M, Newton R, Nosaka K (eds) Strength and conditioning – biological principals and practical applications, 1st edn. Wiley Blackwell, Chichester, UK, pp 399–409Google Scholar
  43. Gregory CM, Bickel CS (2005) Recruitment patterns in human skeletal muscle during electrical stimulation. Phys Ther 85(4):358–364PubMedGoogle Scholar
  44. Grosser M, Starischka S, Zimmermann E (2001) Das neue Konditionstraining für alle Sportarten, für Kinder, Jugendliche und Aktive. BLV Verlagsgesellschaft GmbH, MünchenGoogle Scholar
  45. Heck H, Mader A, Hess G, Mücke S, Müller P, Hollmann W (1985a) Justification of the 4-mmol/l lactate threshold. Int J Sports Med 6(3):117–130PubMedCrossRefGoogle Scholar
  46. Heck H, Hess G, Mader A (1985b) Vergleichende Untersuchungen zu verschiedenen Laktat-Schwellenkonzepten. Dtsch Z Sportmed 1:19–25Google Scholar
  47. Heck H (1990) Laktat in der Leistungsdiagnostik. Wissenschaftliche Schriftenreihe des Deutschen Sportbundes. Karl Hofmann, SchorndorfGoogle Scholar
  48. Heck H, Beneke R (2008) 30 Jahre Laktatschwellen – was bleibt zu tun? Dtsch Z Sportmed 59:297–302Google Scholar
  49. Heitkamp HC, Holdt M, Scheib K (1991) The reproducibility of the 4 mmol/l lactate threshold in trained and untrained women. Int J Sports Med 12:363–368PubMedCrossRefGoogle Scholar
  50. Henneman E (1981) Recruitment of motor units: the size principle. In: Desmedt JE (ed) Motor unit types, recruitment and plasticity in health and disease. Karger, New York, pp 26–60Google Scholar
  51. Hill AV (1925) Muscular activity. Williams and Wilkins, BaltimoreGoogle Scholar
  52. Hill AV (1934) The efficiency of bicycle pedaling. J Physiol 82:207–210PubMedGoogle Scholar
  53. Hollmann W (1959a) Report on the Pan-American Congress of sport physicians in Chicago (1959 Sep 1–2) [in German]. Sportarzt Sportmed 10(12):285–6Google Scholar
  54. Hollmann W (1959b) The relationship between pH, lactic acid, potassium in the arterial and venous blood, the ventilation, PoW and pulse frequency during increasing spiroergometric work in endurance-trained and untrained persons. 3. Pan-American Congress for Sports Medicine, ChicagoGoogle Scholar
  55. Hollmann W (1961) The problem of endurance performance capacity [in German]. Fortschr Med 79:439Google Scholar
  56. Hollmann W (1963) Maximal and endurance performance capacity of untrained and endurance-trained persons [in German]. Barth, MunichGoogle Scholar
  57. Hollmann W (1967) Zur Trainingslehre: Muskuläre Beanspruchungsformen und ihre leistungsbegrenzenden Faktoren. Sportarzt Sportmed 11:443Google Scholar
  58. Hollmann W, Strüder HK (2009) Sportmedizin Grundlagen für körperliche Aktivität. Training und Präventivmedizin. New York Schattauer, StuttgartGoogle Scholar
  59. Jackson AS, Blair SN, Mahar MT, Wier LT, Ross RM, Stuteville JE (1990) Prediction of functional aerobic capacity without exercise testing. Med Sci Sports Exerc 22(6):863–870PubMedGoogle Scholar
  60. Jeukendrup A, Sarris WH, Brouns F, Kester AD (1996) A new validated endurance performance test. Med Sci Sports Exerc 28:266–270PubMedCrossRefGoogle Scholar
  61. Jorgensen T, Andersen LB, Froberg K, Maeder U, von Huth SL, Aadahl M (2009) Position statement: testing physical condition in a population – how good are the methods. Eur J Sport Sci 9:257–267CrossRefGoogle Scholar
  62. Judge LW, Moreau C, Burke JR (2003) Neural adaptations with sport-specific resistance training in highly skilled athletes. J Sports Sci 21(5):419–427PubMedCrossRefGoogle Scholar
  63. Karvonen MJ, Kentala E, Mustala O (1957) The effect of training on heart rate. A longitudinal study. Ann Med Exp Biol Fenn 35:307–315PubMedGoogle Scholar
  64. Katch VL, Sady SS, Freedson P (1982) Biological variability in maximum aerobic power. Med Sci Sports Exerc 14(1):211–215Google Scholar
  65. Kernell D (2006) The motoneuron and its muscle fibre. Oxford University Press, New YorkCrossRefGoogle Scholar
  66. Kilding AE, Jones AM (2005) Validity of a single-visit protocol to estimate the maximum lactate steady state. Med Sci Sports Exerc 37(10):1734–1740PubMedCrossRefGoogle Scholar
  67. Kline GM, Porcari JP, Hintermeister R, Freedson PS, Ward A, McCarron RF, Ross J, Rippe JM (1987) Estimation of V˙  O2max from a one-mile track walk, gender, age, and body weight. Med Sci Sports Exerc 19:253–259PubMedGoogle Scholar
  68. Knicker AJ, Renshaw I, Oldham ARH, Cairns SP (2011) Interactive processes link the multiple symptoms of fatigue in sport competition. Sports Med (Auckland, NZ) 41(4):307–328CrossRefGoogle Scholar
  69. Knipping HW (1929) The economy of muscle work in healthy and sick persons [in German]. Z Gesamte ExpMed 66:517CrossRefGoogle Scholar
  70. Knipping HW, Bolt W, Valentin H et al (1955/60) Examination and evaluation of heart patients [in German]. Enke, StuttgartGoogle Scholar
  71. Komi PV, Salonen M, Järvinen M, Kokko O (1987) In vivo registration of Achilles tendon forces in man. I. Methodological development. Int J Sports Med 8(1):3–8PubMedCrossRefGoogle Scholar
  72. Komi PV, Belli A, Huttunen V, Bonnefoy R, Geyssant A, Lacour JR (1996) Optic fibre as a transducer of tendomuscular forces. Eur J Appl Physiol 72:278–280CrossRefGoogle Scholar
  73. Kuipers H, Rietjens G, Verstappen F, Schoenmakers H, Hofman G (2003) Effects of stage duration in incremental running tests on physiological variables. Int J Sports Med 24:486–491PubMedCrossRefGoogle Scholar
  74. Laplaud D, Guinot M, Favre-Juvin A, Flore P (2006) Maximal lactate steady state determination with a single incremental test exercise. Eur J Appl Physiol 96(4):446–452PubMedCrossRefGoogle Scholar
  75. Liesen H, Hollmann W (1981) Ausdauersport und Stoffwechsel. Hofmann, SchorndorfGoogle Scholar
  76. Lindsay FH, Hawley JA, Myburgh KH, Schomer HH, Noakes TD, Dennis SC (1996) Improved athletic performance in highly trained cyclists after interval training. Med Sci Sports Exerc 28:1427–1434PubMedCrossRefGoogle Scholar
  77. Löllgen H, Graham T, Sjogaard G (1980) Muscle metabolites, force and perceived exertion bicycling at varying pedal rates. Med Sci Sports Exerc 12:345–351PubMedGoogle Scholar
  78. Löllgen H, Erdmann E, Gitt A (eds) (2009) Ergometrie – Belastungsuntersuchungen in Klinik und Praxis, 3rd edn. Berlin, SpringerGoogle Scholar
  79. Mader A, Liesen H, Heck H, Philippi H, Rost R, Schürch P, Hollmann W (1976) Evaluation of sports specific endurance capacity in the laboratory [in German]. Sportarzt Sportmed 27(4): 80(5):109Google Scholar
  80. Mattern CO, Gutilla MJ, Bright DL, Kirby TE, Hinchcliff KW, Devor ST (2003) Maximal lactate steady state declines during the aging process. J Appl Physiol 95:2576–2582PubMedGoogle Scholar
  81. Mayhew JL, Prinster JL, Ware JS, Zimmer DL, Arabas JR, Bemben MG (1995) Muscular endurance repetitions to predict bench press strength in men of different training levels. J Sports Med Phys Fitness 35(2):108–113PubMedGoogle Scholar
  82. Melnyk M, Schloz C, Schmitt S, Gollhofer A (2009) Neuromuscular ankle joint stabilisation after 4-weeks WBV training. Int J Sports Med 30(6):461–466PubMedCrossRefGoogle Scholar
  83. Meyer T, Lucia A, Earnest CP, Kindermann W (2005a) A conceptual framework for performance diagnosis and training prescription from submaximal gas exchange parameters-theory and application. Int J Sports Med 26(1):38–48CrossRefGoogle Scholar
  84. Meyer T, Davison RC, Kindermann W (2005b) Ambulatory gas exchange measurements – current status and future options. Int J Sports Med 26:19–27CrossRefGoogle Scholar
  85. Nawab SH, Chang SS, De Luca CJ (2010) High yield decomposition of surface EMG signals. Clin Neurophysiol 121:1602–1615PubMedCrossRefGoogle Scholar
  86. Newton R, Cormie P, Cardinale M (2011) Principles of athletic testing. In: Cardinale M, Newton R, Nosaka K (eds) Strength and conditioning – biological principals and practical applications. Wiley Blackwell, Chichester, UK, pp 255–276Google Scholar
  87. Neumann G, Pfützner A, Hottenrott K (2000) Alles unter Kontrolle: Ausdauertraining. Meyer and Meyer, AachenGoogle Scholar
  88. Nickel P, Nachreiner F, Zdobych A, Yanagibori R (1998) Evaluation of mental workload via the 0.1 Hz component of heart rate variability some methodological and technical problems [in German]. Z Arbeits- und Organisationspsychol 42:205–212Google Scholar
  89. Paillard T (2008) Combined application of neuromuscular electrical stimulation and voluntary muscular contractions. Sports Med (Auckland, NZ) 38(2):161–177CrossRefGoogle Scholar
  90. Pfitzinger P, Freedson PS (1998) The reliability of lactate measurements during exercise. Int J Sports Med 19:349–357PubMedCrossRefGoogle Scholar
  91. Plato PA, McNulty M, Crunk SM, Tug EA (2008) Predicting lactate threshold using ventilatory threshold. Int J Sports Med 29:732–737PubMedCrossRefGoogle Scholar
  92. Pringle JS, Jones AM (2002) Maximal lactate steady state, critical power and EMG during cycling. Eur J Appl Physiol 88(3):214–226PubMedCrossRefGoogle Scholar
  93. Roffey DM, Byrne NM, Hills AP (2007) Effect of stage duration on physiological variables commonly used to determine maximum aerobic performance during cycle ergometry. J Sports Sci 25:1325–1335PubMedCrossRefGoogle Scholar
  94. Rost R, Hollmann W (1978) Herz, Gefäßsystem und Sport. Mod Ther 1:46–58Google Scholar
  95. Saeterbakken AH, van den Tillaar R, Seiler S (2011) Effect of core stability training on throwing velocity in female handball players. J Strength Cond Res/National Strength and Conditioning Association 25(3):712–718Google Scholar
  96. Sale DG (2003) Neural adaptation to strength training. In: Komi PV (ed) Strength and power in sport, 2nd edn. Blackwell, Oxford, pp 281–314CrossRefGoogle Scholar
  97. Sjodin B, Jacobs I, Svedenhag J (1982) Changes in the onset of blood lactate accumulation (OBLA) and muscles enzymes after training at OBLA. Eur J Appl Physiol 49:45–57CrossRefGoogle Scholar
  98. Solberg G, Robstad B, Skjonsberg OH, Borchsenius F (2005) Respiratory gas exchange indices for estimating the anaerobic threshold. J Sports Sci Med 4:29–36Google Scholar
  99. Svedahl K, MacIntosh BR (2003) Anaerobic threshold: the concept and methods of measurement. Can J Appl Physiol 28:299–323PubMedCrossRefGoogle Scholar
  100. Tanaka H, Monahan KD, Seals DR (2001) Age-predicted maximal heart rate revisited. J Am Coll Cardiol 37:153–156PubMedCrossRefGoogle Scholar
  101. Washington RL, Bricker JT, Alpert BS, Daniels SR, Deckelbaum RJ, Fisher EA, Gidding SS, Isabel-Jones J, Kavey RE, Marx GR (1994) Guidelines for exercise testing in the pediatric age group. From the Committee on Atherosclerosis and Hypertension in Children, Council on Cardiovascular Disease in the Young, the American Heart Association. Circulation 90:2166–2179PubMedCrossRefGoogle Scholar
  102. Wasserman K, Mellroy MB (1964) Detecting the threshold of anaerobic metabolism in cardiac patients during exercise. Am J Cardiol 14:844PubMedCrossRefGoogle Scholar
  103. Wasserman K, Whipp BJ, Koyal SN, Beaver WL (1973) Anaerobic threshold and respiratory gas exchange during exercise. J Appl Physiol 35(2):236PubMedGoogle Scholar
  104. Wasserman K, Beaver WL, Whipp BJ (1986) Mechanisms and patterns of blood lactate increase during exercise in man. Med Sci Sports Exerc 18(3):344PubMedCrossRefGoogle Scholar
  105. Wasserman K, Hansen J, Darryl Y, Whipp B (2005) Principles of exercise testing and interpretation, 4th edn. Philadelphia, Lippincott Williams & WilkinsGoogle Scholar
  106. Wiksten D, Peter C (2000) The athletic trainer’s guide to strength and endurance training. SLACK Incorporated, Thorofare, NJGoogle Scholar
  107. Wilmore JH, Costill DL (2004) Cardiovascular and respiratory adaptation to training. In: Wilmore JH, Costill DL (eds) Physiology of sport and exercise. Human Kinetics, Champaign, pp 270–304Google Scholar
  108. Wonisch M, Hofmann P, Pokan R, Kraxner W, Hödl R, Maier R, Watzinger N, Smekal G, Klein W, Fruhwald FM (2003) Spiroergometry in cardiology – physiology and terminology (German). J Kardiol 10:383–390Google Scholar
  109. Zatsiorsky VM, Kraemer WJ (2006) Krafttraining – Praxis und Wissenschaft. Meyer und Meyer, AachenGoogle Scholar
  110. Zintl F, Eisenhut A (2001) Ausdauertraining. Grundlagen, Methoden, Trainingssteuerung. BLV Verlagsgesellschaft, MünchenGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Wildor Hollmann
    • 1
  • Helge Knigge
    • 2
  • Axel Knicker
    • 2
  • Heiko K. Strüder
    • 2
  1. 1.Institute of Cardiology and Sports MedicineGerman Sport University CologneCologneGermany
  2. 2.Institute of Movement and NeurosciencesGerman Sport University CologneCologneGermany

Personalised recommendations