Skip to main content

The Induced Magnetospheres of Mars, Venus, and Titan

  • Chapter
The Plasma Environment of Venus, Mars, and Titan

Part of the book series: Space Sciences Series of ISSI ((SSSI,volume 37))

Abstract

This article summarizes and aims at comparing the main features of the induced magnetospheres of Mars, Venus and Titan. All three objects form a well-defined induced magnetosphere (IM) and magnetotail as a consequence of the interaction of an external wind of plasma with the ionosphere and the exosphere of these objects. In all three, photoionization seems to be the most important ionization process. In all three, the IM displays a clear outer boundary characterized by an enhancement of magnetic field draping and massloading, along with a change in the plasma composition, a decrease in the plasma temperature, a deflection of the external flow, and, at least for Mars and Titan, an increase of the total density. Also, their magnetotail geometries follow the orientation of the upstream magnetic field and flow velocity under quasi-steady conditions. Exceptions to this are fossil fields observed at Titan and the near Mars regions where crustal fields dominate the magnetic topology. Magnetotails also concentrate the escaping plasma flux from these three objects and similar acceleration mechanisms are thought to be at work. In the case of Mars and Titan, global reconfiguration of the magnetic field topology (reconnection with the crustal sources and exits into Saturn’s magnetosheath, respectively) may lead to important losses of plasma. Finally, an ionospheric boundary related to local photoelectron signals may be, in the absence of other sources of pressure (crustal fields) a signature of the ultimate boundary to the external flow.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • N. Achilleos, C.S. Arridge, C. Bertucci, C.M. Jackman, M.K. Dougherty, K.K. Khurana, C.T. Russell, Large-scale dynamics of Saturn’s magnetopause: observations by Cassini. J. Geophys. Res. 113, A11209 (2008). doi:10.1029/2008JA013265

    Article  ADS  Google Scholar 

  • M.H. Acuña et al., Mars Observer magnetic fields investigation. J. Geophys. Res. 97(E5), 7799–7814 (1992)

    Article  ADS  Google Scholar 

  • M.H. Acuña et al., Magnetic field and plasma observations at Mars: Initial results of the Mars Global Surveyor mission. Science 279, 1676–1680 (1998)

    Article  ADS  Google Scholar 

  • K. Ågren et al., On magnetospheric electron impact ionization and dynamics in Titan’s ram-side and polar ionosphere, a Cassini case study. Ann. Geophys. 25, 2359 (2007)

    Article  ADS  Google Scholar 

  • A. Albee et al., Overview of the Mars Global Surveyor mission. J. Geophys. Res. 106(E10), 23291–23316 (2001)

    Article  ADS  Google Scholar 

  • H. Alfven, On the theory of comet tails. Tellus 9, 92 (1957)

    Article  ADS  Google Scholar 

  • C.S. Arridge, N. Achilleos, M.K. Dougherty, K.K. Khurana, C.T. Russell, Modeling the size and shape of Saturn’s magnetopause with variable dynamic pressure. J. Geophys. Res. 111, A11227 (2006). doi:10.1029/2005JA011574

    Article  ADS  Google Scholar 

  • C.S. Arridge, C.T. Russell, K.K. Khurana, N. Achilleos, S.W.H. Cowley, M.K. Dougherty, D.J. Southwood, E.J. Bunce, Saturn’s magnetodisc current sheet. J. Geophys. Res. 113, A04214 (2008a). doi:10.1029/2007JA012540

    Article  Google Scholar 

  • C.S. Arridge, N. Andre, N. Achilleos, K.K. Khurana, C.L. Bertucci, L.K. Gilbert, G.R. Lewis, A.J. Coates, M.K. Dougherty, Thermal electron periodicities at 20RS in Saturn’s magnetosphere. Geophys. Res. Lett. 35, L15107 (2008b). doi:10.1029/2008GL034132

    Article  ADS  Google Scholar 

  • H.U. Auster et al., ROMAP: Rosetta magnetometer and plasma monitor. Space Sci. Rev. 128(1), 221–240 (2007)

    Article  ADS  Google Scholar 

  • H. Backes et al., Titan’s magnetic field signature during the first Cassini encounter. Science 308, 992 (2005)

    Article  ADS  Google Scholar 

  • S. Barabash et al., The analyzer of space plasmas and energetic atoms (ASPERA-3) for the Mars Express Mission. Space Sci. Rev. (2006). doi:10.1007/s11214-006-9124-8

    Google Scholar 

  • S. Barabash et al., The analyser of space plasmas and energetic atoms (ASPERA-4) for the Venus express mission. Planet. Space Sci. 55, 1772–1792 (2007)

    Article  ADS  Google Scholar 

  • C. Beghin et al., New insights on Titan’s plasma-driven Schumann resonance inferred from Huygens and Cassini data. Planet. Space Sci. 57(14–15), 1872–1888 (2009)

    Article  ADS  Google Scholar 

  • C. Bertucci, Characteristics and variability of Titan’s magnetic environment. Philos. Trans. R. Soc. Lond. A 367, 789–798 (2009). doi:10.1098/rsta.2008.02502009

    Article  ADS  Google Scholar 

  • C. Bertucci et al., Magnetic field draping enhancement at the Martian magnetic pileup boundary from Mars global surveyor observations. Geophys. Res. Lett. 30(2), 1099 (2003a). doi:10.1029/2002GL015713

    Article  ADS  Google Scholar 

  • C. Bertucci et al., Magnetic field draping enhancement at Venus: Evidence for a magnetic pileup boundary. Geophys. Res. Lett. 30(17), 1876 (2003b). doi:10.1029/2003GL017271

    Article  ADS  Google Scholar 

  • C. Bertucci et al., MGS MAG/ER ER observations at the magnetic pileup boundary of Mars: draping enhancement and low frequency waves. Adv. Space Res. 33(11), 1938–1944 (2004)

    Article  ADS  Google Scholar 

  • C. Bertucci et al., Structure of the magnetic pileup boundary at Mars and Venus. J. Geophys. Res. 110, A01209 (2005a). doi:10.1029/2004JA010592

    Article  Google Scholar 

  • C. Bertucci et al., Interaction of the solar wind with Mars from Mars Global Surveyor MAG/ER observations. Journal of Atmospheric and Terrestrial Physics 67(17–18), 1797–1808 (2005b)

    ADS  Google Scholar 

  • C. Bertucci et al., Titan’s interaction with its plasma environment. American Geophysical Union, Fall Meeting 2005, abstract #P52A-02 (2005c)

    Google Scholar 

  • C. Bertucci, F.M. Neubauer, K. Szego, J.-E. Wahlund, A.J. Coates, M.K. Dougherty, D.T. Young, W.S. Kurth, Structure of Titan’s mid-range magnetic tail: Cassini magnetometer observations during the T9 flyby. Geophys. Res. Lett. 34, L24S02 (2007). doi:10.1029/2007GL030865

    Article  Google Scholar 

  • C. Bertucci et al., The magnetic memory of Titan’s ionized atmosphere. Science 321(5895), 1475 (2008)

    Article  ADS  Google Scholar 

  • C. Bertucci et al., The variability of Titan’s magnetic environment. Planet. Space Sci., 1813–1820 (2009)

    Google Scholar 

  • L.H. Brace et al., The ionotail of Venus—Its configuration and evidence for ion escape. J. Geophys. Res. 92(1), 15–26 (1987)

    Article  ADS  Google Scholar 

  • L.H. Brace et al., The dynamic behavior of the Venus ionosphere in response to solar wind interactions. J. Geophys. Res. 85(A13), 7663–7678 (1980)

    Article  ADS  Google Scholar 

  • D.A. Brain et al., Observations of low-frequency electromagnetic plasma waves upstream from the Martian shock. J. Geophys. Res. 107(A6), 1076 (2002). doi:10.1029/2000JA000416

    Article  Google Scholar 

  • D.A. Brain et al., Martian magnetic morphology: Contributions from the solar wind and crust. J. Geophys. Res. 108(A12), 1424 (2003). doi:10.1029/2002JA009482

    Article  Google Scholar 

  • D.A. Brain et al., Variability of the altitude of the Martian sheath. Geophys. Res. Lett. 32, L18203 (2005). doi:10.1029/2005GL023126

    Article  ADS  Google Scholar 

  • D.A. Brain et al., Episodic detachment of Martian crustal magnetic fields leading to bulk atmospheric plasma escape. Geophys. Res. Lett. 37(14), L14108 (2010a)

    Article  ADS  Google Scholar 

  • D.A. Brain et al., A comparison of global models for the solar wind interaction with Mars. Icarus 206, 139–151 (2010b)

    Article  ADS  Google Scholar 

  • J.C. Cain et al., An n=90 internal potential function of the martian crustal magnetic field. J. Geophys. Res. 108(E2), 5008 (2003). doi:10.1029/2000JE001487

    Article  Google Scholar 

  • L. Gan, T.E. Cravens, M. Horanyi, Electrons in the ionopause boundary layer of Venus. J. Geophys. Res. 95(1), 19023–19035 (1990)

    Article  ADS  Google Scholar 

  • J.Y. Chaufray, J.L. Bertaux, F. Leblanc, E. Quémerais, Observation of the hydrogen corona with SPICAM on Mars Express. Icarus 195(2), 598–613 (2008)

    Article  ADS  Google Scholar 

  • A. Chicarro et al., Mars express: a European mission to the red planet, in Mars Express, The Scientific Payload, SP-1240, ed. by A. Wilson (ESA Publication Division, Noordwijk, 2004), pp. 3–16

    Google Scholar 

  • A.J. Coates et al., Ionospheric electrons in Titan’s tail: Plasma structure during the Cassini T9 encounter. Geophys. Res. Lett. 34(24), L24S05 (2007)

    Article  Google Scholar 

  • A.J. Coates et al., Ionospheric photoelectrons at Venus: initial observations by ASPERA-4 ELS. Planet. Space Sci. 56(6), 802–806 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  • A.J. Coates et al., Ionospheric photoelectrons: comparing Venus, Earth, Mars and Titan planetary and space science. Planet. Space Sci. 59(10), 1019–1027 (2011)

    Article  ADS  Google Scholar 

  • J.E.P. Connerney, M.H. Acuña, N.F. Ness, G. Kletetschka, D.L. Mitchell, R.P. Lin, H. Rème, Proc. Natl. Acad. Sci. USA 102(42), 14970–14975 (2005)

    Article  ADS  Google Scholar 

  • T.E. Cravens et al., Model calculations of the dayside ionosphere of Venus: energetics. J. Geophys. Res. 85, 7778–7786 (1980)

    Article  ADS  Google Scholar 

  • T.E. Cravens, R.V. Yelle, J.-E. Wahlund, D.E. Shemansky, A.F. Nagy, Composition and structure of the ionosphere and thermosphere, in Titan From Cassini-Huygens, chap. 11, p. 259. ed. by R.H. Brown, J.-P. Lebreton, J.H. Waite (Springer, Dordrecht, 2010b). ISBN:978-1-4020-9214-5

    Google Scholar 

  • D.H. Crider et al., Evidence of electron impact ionization in the magnetic pileup boundary of Mars. Geophys. Res. Lett. 27(1), 45–48 (2000)

    Article  ADS  Google Scholar 

  • D.H. Crider et al., Observations of the latitude dependence of the location of the martian magnetic pileup boundary. Geophys. Res. Lett. 29(8), 1170 (2002) doi:10.1029/2001GL013860

    Article  ADS  Google Scholar 

  • D.H. Crider et al., Mars global surveyor observations of solar wind magnetic field draping around Mars. Space Sci. Rev. 111(1), 203–221 (2004)

    Article  ADS  Google Scholar 

  • Sh. Dolginov et al., The magnetic field of Mars according to the data from the Mars 3 and Mars 5. J. Geophys. Res. 81(19), 3353–3362 (1976)

    Article  ADS  Google Scholar 

  • Sh.Sh. Dolginov, E.M. Dubinin, Ye.G. Yeroshenko, P.L. Israilevich, I.M. Podgorny, S.I. Shkol’nikova, On the configuration of the field in the magnetic tail of Venus. Cosm. Res. 19, 624 (1981)

    Google Scholar 

  • M.K. Dougherty et al., The Cassini magnetic field investigation. Space Sci. Rev. 114, 331–383 (2004). doi:10.1007/s11214-004-1432-2

    Article  ADS  Google Scholar 

  • J. Du, T.L. Zhang, C. Wang, M. Wolwerk, M. Delva, W. Baumjohann, Magnetosheath fluctuations at Venus for two extreme orientations of the interplanetary magnetic field. Geophys. Res. Lett. 36(9), L09102 (2009)

    Article  Google Scholar 

  • E. Dubinin et al., Cold ions at the Martian bow shock—PHOBOS observations. J. Geophys. Res. 98(A4), 5617–5623 (1993a)

    Article  MathSciNet  ADS  Google Scholar 

  • E. Dubinin et al., Ion acceleration in the Martian tail: phobos observations. J. Geophys. Res. 98(A3), 3991–3997 (1993b)

    Article  ADS  Google Scholar 

  • E. Dubinin et al., Plasma morphology at Mars. ASPERA 3 observations. Space Sci. Rev. (2006a). doi:10.1007/s11214-006-9039-4

    Google Scholar 

  • E. Dubinin et al., Electric fields within the Martian magnetosphere and ion extraction: ASPERA-3 observations. Icarus 182, 337–342 (2006b)

    Article  ADS  Google Scholar 

  • E. Dubinin et al., Solar wind plasma protrusion into the Martian magnetosphere: ASPERA-3 observations. Icarus 182(2006), 343–349 (2006c)

    Article  ADS  Google Scholar 

  • E. Dubinin et al., Nonlinear 1-D stationary flows in multi-ion plasmas—sonic and critical loci—solitary and “oscillatory” waves. Ann. Geophys. 24(11), 3041–3057 (2006d)

    Article  ADS  Google Scholar 

  • E. Dubinin et al., Structure and dynamics of the solar wind/ionosphere interface on Mars: MEX-ASPERA-3 and MEX-MARSIS observations. Geophys. Res. Lett. 35, 11103 (2008a)

    Article  ADS  Google Scholar 

  • E.M. Dubinin et al., Access of solar wind electrons into the Martian magnetosphere. Ann. Geophys. 26(11), 3511–3524 (2008b)

    Article  ADS  Google Scholar 

  • F. Duru et al., Magnetically controlled structures in the ionosphere of Mars. J. Geophys. Res. 111, A11204 (2006). doi:10.1029/2006JA011975

    Article  Google Scholar 

  • F. Duru et al., Transient density gradients in the Martian ionosphere similar to the ionopause at Venus. J. Geophys. Res. 114(A12), A12310 (2009) (JGRA Homepage)

    Article  ADS  Google Scholar 

  • F. Duru et al., A plasma flow velocity boundary at Mars from the disappearance of electron plasma oscillations. Icarus 206, 74–82 (2010)

    Article  ADS  Google Scholar 

  • J.P. Eastwood, D.A. Brain, J.S. Halekas, J.F. Drake, T.D. Phan, M. Øieroset, D.L. Mitchell, R.P. Lin, M. Acuña, Evidence for collisionless magnetic reconnection at Mars. Geophys. Res. Lett. 35(2), L02106 (2008)

    Article  Google Scholar 

  • N.J.T. Edberg et al., Statistical analysis of the location of the Martian magnetic pileup boundary and bow shock and the influence of crustal magnetic fields J. Geophys. Res. 113(A8), A08206 (2008)

    Article  Google Scholar 

  • N.J.T. Edberg et al., Simultaneous measurements of Martian plasma boundaries by Rosetta and Mars Express. Planet. Space Sci. 57(8–9), 1085–1096 (2009a)

    Article  ADS  Google Scholar 

  • N.J.T. Edberg, D.A. Brain, M. Lester, S.W.H. Cowley, R. Modolo, M. Fränz, S. Barabash, Plasma boundary variability at Mars as observed by Mars Global Surveyor and Mars Express. Ann. Geophys. 27(9), 3537–3550 (2009b)

    Article  ADS  Google Scholar 

  • N.J.T. Edberg, M. Lester, S.W.H. Cowley, D.A. Brain, M. Fränz, S. Barabash, Magnetosonic Mach number effect of the position of the bow shock at Mars in comparison to Venus. J. Geophys. Res. 115, A07203 (2010). doi:10.1029/2009JA014998

    Article  Google Scholar 

  • R.C. Elphic et al., Observations of the dayside ionopause and ionosphere of Venus. J. Geophys. Res. 85, 7679 (1980)

    Article  ADS  Google Scholar 

  • R.C. Elphic et al., The Venus ionopause current sheet: thickness length scale and controlling factors. J. Geophys. Res. 86(A13), 11430–11438 (1981)

    Article  ADS  Google Scholar 

  • J.R. Espley et al., Observations of low-frequency magnetic oscillations in the Martian magnetosheath, magnetic pileup region, and tail. J. Geophys. Res. 109(A7), A07213 (2004)

    Article  Google Scholar 

  • A. Fedorov et al., Structure of the Martian Wake. Icarus 182, 329–336 (2006)

    Article  ADS  Google Scholar 

  • A. Fedorov et al., Comparative analysis of Venus and Mars magnetotails. Planet. Space Sci. 56, 812–817 (2008)

    Article  ADS  Google Scholar 

  • R.A. Frahm et al., Location of atmospheric photoelectron energy peaks within the Mars environment. Space Sci. Rev. 126, 389 (2006)

    Article  ADS  Google Scholar 

  • R.A. Frahm et al., Estimation of the escape of photoelectrons from Mars in 2004 liberated by the ionization of carbon dioxide and atomic oxygen. Icarus 206(1), 50–63 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  • M. Fränz, E. Dubinin, E. Roussos, J. Woch, J.D. Winningham, R. Frahm, A.J. Coates, A. Fedorov, S. Barabash, R. Lundin, Plasma moments in the environment of Mars. Mars Express ASPERA-3 observations. Space Sci. Rev. (2006a). doi:10.1007/s11214-006-9115-9

    Google Scholar 

  • M. Fränz et al., Plasma intrusion above Mars crustal fields—Mars Express ASPERA-3 observations. Icarus (2006b). doi:10.1016/j.icarus.2005.11.016

    Google Scholar 

  • J.L. Fox, A. Dalgarno, Ionization, luminosity, and heating of the upper atmosphere of Mars. J. Geophys. Res. 84, 7315–7333 (1979)

    Article  ADS  Google Scholar 

  • P. Garnier, Titan’s ionosphere in the magnetosheath: Cassini RPWS results during the T32 flyby. Ann. Geophys. 27(11), 4257–4272 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  • R. Grard et al., First measurements of plasma waves near Mars. Nature 341(19), 607–609 (1989)

    Article  ADS  Google Scholar 

  • K.I. Gringauz, V.V. Bezrukikh, T.K. Breus, T. Gombosi, A.P. Remizov, M.I. Verigin, G.I. Volkov, Plasma observations near Venus onboard Venera 9 and Venera 10 satellites by means of wide angle plasma detectors, in Physics of Solar Planetary Environment, ed. by D.J. Williams (AGU, Boulder, 1976), pp. 918–932

    Google Scholar 

  • D.A. Gurnett, A. Bhattacharjee, Introduction to Plasma Physics with Space and Laboratory Applications (Cambridge University Press, Cambridge, 2005)

    Google Scholar 

  • D.A. Gurnett et al., The Cassini radio and plasma wave investigation. Space Sci. Rev. 114, 395–463 (2004)

    Article  ADS  Google Scholar 

  • D.A. Gurnett et al., Radar soundings of the ionosphere of Mars. Science 310, 1929–1933 (2005)

    Article  ADS  Google Scholar 

  • J.S. Halekas et al., Current sheets at low altitudes in the Martian magnetotail. Geophys. Res. Lett. 33(13), L13101 (2006)

    Article  ADS  Google Scholar 

  • J.S. Halekas, D.A. Brain, R.P. Lin, J.G. Luhmann, D.L. Mitchell, Distribution and variability of accelerated electrons at Mars. Adv. Space Res. 41(9), 1347–1352 (2008)

    Article  ADS  Google Scholar 

  • R.E. Hartle et al., Titan’s ion exosphere observed from Voyager 1. J. Geophys. Res. 87, 1383–1394 (1982)

    Article  ADS  Google Scholar 

  • R. Hartle et al., Initial interpretation of Titan plasma interaction as observed by the Cassini plasma spectrometer: comparisons with Voyager 1. Planet. Space Sci. 54(12), 1211–1224 (2006)

    Article  ADS  Google Scholar 

  • A. Hasegawa, Plasma Instabilities and Non Linear Effects, Phys. and in Chem. Space, vol. 8 (Springer, New York, 1975)

    Book  Google Scholar 

  • M.M. Hoppe, C.T. Russell, Particle acceleration at planetary bow shock waves. Nature 295, 41–42 (1982)

    Article  ADS  Google Scholar 

  • K.K. Khurana et al., Sources of rotational signals in Saturn’s magnetosphere. J. Geophys. Res. 114(A2), A02211 (2009)

    Article  MathSciNet  Google Scholar 

  • T. Knetter, F.M. Neubauer, T. Horbury, A. Balogh, Four-point discontinuity observations using Cluster magnetic field data: a statistical survey. J. Geophys. Res. 109(A6), A06102 (2004)

    Article  Google Scholar 

  • W.C. Knudsen, K.L. Miller, K. Spenner, Improved Venus ionopause altitude calculation and comparison with measurement. J. Geophys. Res. 87, 2246–2254 (1982)

    Article  ADS  Google Scholar 

  • W.C. Knudsen et al., Retarding potential analyzer for the Pioneer-Venus Orbiter Mission. Space Sci. Instrum. 4, 351–372 (1979)

    ADS  Google Scholar 

  • W.C. Knudsen et al., Suprathermal electron energy distribution within the dayside venus ionosphere. J. Geophys. Res. 85(A13), 7754–7758 (1980). doi:10.1029/JA085iA13p07754

    Article  ADS  Google Scholar 

  • W.C. Knudsen et al., Solar cycle changes in the ionization sources of the nightside Venus ionosphere. J. Geophys. Res. 92, 13391 (1987)

    Article  ADS  Google Scholar 

  • W.C. Knudsen, Solar cycle changes in the morphology of the Venus ionosphere. J. Geophys. Res. 93, 8756 (1988)

    Article  ADS  Google Scholar 

  • W.S. Kurth et al., An update to a Saturnian longitude system based on kilometric radio emissions. J. Geophys. Res. 113, A05222 (2008). doi:10.1029/2007JA012861

    Article  Google Scholar 

  • B. Lembège, P. Savoini, Formation of reflected electron bursts by the nonstationarity and nonuniformity of a collisionless shock front. J. Geophys. Res. 107(A3), 1037 (2002). doi:10.1029/2001JA900128

    Article  Google Scholar 

  • J.G. Luhmann, A model of the ionospheric tail rays of Venus. J. Geophys. Res. 98(A10), 17615–17622 (1993)

    Article  ADS  Google Scholar 

  • J.G. Luhmann et al., Magnetic field fluctuations in the Venus magnetosheath. Geophys. Res. Lett. 10, 655–658 (1983)

    Article  ADS  Google Scholar 

  • R. Lundin et al., On the momentum transfer of the solar wind to the Martian topside ionosphere. Geophys. Res. Lett. 18, 1059–1062 (1991)

    Article  ADS  Google Scholar 

  • R. Lundin, E.M. Dubinin, Phobos-2 results on the ionospheric plasma escape from Mars. Adv. Space Res. 12(9), 255–263 (1992)

    Article  ADS  Google Scholar 

  • R. Lundin et al., Solar wind-induced atmospheric erosion at Mars: first results from ASPERA-3 on Mars Express. Science 305(5692), 1933–1936 (2004)

    Article  ADS  Google Scholar 

  • R. Lundin, S. Barabash, M. Holmstrom, H. Nilsson, M. Yamauchi, E.M. Dubinin, M. Fraenz, Atmospheric origin of cold ion escape from Mars. Geophys. Res. Lett. 36, L17202 (2009). doi:10.1029/2009GL039341

    Article  ADS  Google Scholar 

  • Y.J. Ma et al., Time-dependent global MHD simulations of Cassini T32 flyby: From magnetosphere to magnetosheath. J. Geophys. Res. 114, A03204 (2009). doi:10.1029/2008JA013676

    Article  Google Scholar 

  • G.P. Mantas, W.B. Hanson, Photoelectron fluxes in the Martian ionosphere. J. Geophys. Res. 84, 369–385 (1979)

    Article  ADS  Google Scholar 

  • C. Martinecz, The Venus plasma environment: a comparison of Venus Express ASPERA-4 measurements with 3D hybrid simulations. Ph.D. thesis, Uni. Braunschweig (2008)

    Google Scholar 

  • C. Martinecz et al., Location of the bow shock and ion composition boundaries at Venus-initial determinations from Venus Express ASPERA-4. Planet. Space Sci. 56, 780–784 (2008). doi:10.1016/j.pss.2007.07.007

    Article  ADS  Google Scholar 

  • C. Martinecz, A. Boesswetter, M. Fränz, E. Roussos, J. Woch, N. Krupp, E. Dubinin, U. Motschmann, S. Wiehle, S. Simon, S. Barabash, R. Lundin, T.L. Zhang, H. Lammer, H. Lichtenegger, Y. Kulikov, The plasma environment of Venus: comparison of Venus Express ASPERA-4 measurements with 3D hybrid simulations. J. Geophys. Res. 114, E00B30 (2009). doi:10.1029/2008JE003174; Correction: J. Geophys. Res. 114, E00B98 (2009). doi:10.1029/2009JE003377

    Article  Google Scholar 

  • C. Mazelle, H. Reme, G. Belmont et al., Ultra low frequency waves at the magnetic pile-up boundary of comet P/Halley. Adv. Space Res. 11(9), 73–77 (1991)

    Article  ADS  Google Scholar 

  • C. Mazelle et al., Bow shock and upstream phenomena at Mars. Space Sci. Rev. 111(1), 115–181 (2004)

    Article  ADS  Google Scholar 

  • H.J. McAndrews et al., Plasma in Saturn’s nightside magnetosphere and the implications for global circulation. Planet. Space Sci. 57(14–15), 1714–1722 (2009)

    Article  ADS  Google Scholar 

  • D.J. McComas, H.E. Spence, C.T. Russell, M.A. Saunders, The average magnetic field draping and consistent plasma properties of the Venus magnetotail. J. Geophys. Res. 91, 7939–7953 (1986)

    Article  ADS  Google Scholar 

  • P.T. McCormick et al., On the energy deposition of photoelectrons in the atmosphere of Venus. J. Geophys. Res. 81, 5196–5200 (1976)

    Article  ADS  Google Scholar 

  • D.L. Mitchell, Probing Mars’ crustal magnetic field and ionosphere with the MGS Electron Reflectometer. J. Geophys. Res. 106(E10), 23419–23428 (2001)

    Article  ADS  Google Scholar 

  • R. Modolo, G.M. Chanteur, A global hybrid model for Titan’s interaction with the Kronian plasma: Application to the Cassini Ta flyby. J. Geophys. Res. 113, A01317 (2008). doi:10.1029/2007JA012453

    Article  Google Scholar 

  • R. Modolo et al., Simulated solar wind plasma interaction with the Martian exosphere: influence of the solar EUV flux on the bow shock and the magnetic pile-up boundary. Ann. Geophys. 24(12), 3403–3410 (2006)

    Article  ADS  Google Scholar 

  • S.L. Moses, F.V. Coroniti, F.L. Scarf, Expectations for the microphysics of the Mars-solar wind interaction. Geophys. Res. Lett. 15(5), 429–432 (1988). doi:10.1029/GL015i005p00429

    Article  ADS  Google Scholar 

  • A.F. Nagy, D. Winterhalter, K. Sauer, T.E. Cravens, S. Brecht, C. Mazelle, D. Crider, E. Kallio, A. Zakharov, E. Dubinin, M. Verigin, G. Kotova, W.I. Axford, C. Bertucci, J.G. Trotignon, The plasma environment of Mars. Space Sci. Rev. 111, 33–114 (2004)

    Article  ADS  Google Scholar 

  • N.F. Ness, M.H. Acuna, K.W. Behannon, The induced magnetosphere of Titan. J. Geophys. Res. 87(1), 1369–1381 (1982)

    Article  ADS  Google Scholar 

  • F.M. Neubauer et al., Titan’s magnetospheric interaction, in Saturn, ed. by T. Gehrels, M.S. Matthews (University of Arizona Press, Tucson, 1984), pp. 760–787

    Google Scholar 

  • F.M. Neubauer et al., Titan’s near magnetotail from magnetic field and plasma observations and modelling: Cassini flybys TA, TB and T3. J. Geophys. Res. 111, A10220 (2006). doi:10.1029/2006JA011676

    Article  ADS  Google Scholar 

  • H. Pérez-de-Tejada, Distribution of plasma and magnetic fluxes in the Venus near wake. J. Geophys. Res. 91, 8039 (1986)

    Article  ADS  Google Scholar 

  • J.L. Phillips, D.J. McComas, The magnetosheath and magnetotail of Venus. Space Sci. Rev. 55, 1–80 (1991)

    Article  ADS  Google Scholar 

  • G. Picardi et al., Mars Express: a European mission to the red planet. ESA SP SP-1240, 51 (2004)

    ADS  Google Scholar 

  • J. Raeder et al., Macroscopic perturbations of the IMF by P/Halley as seen by the Giotto magnetometer. Astron. Astrophys. 187, 61–64 (1987)

    ADS  Google Scholar 

  • H. Rosenbauer et al., The relationship between the magnetic field in the Martian magnetotail and upstream solar wind parameters. J. Geophys. Res. 99(A9), 17,199–17,204 (1994)

    Article  ADS  Google Scholar 

  • L. Rosenqvist et al., Titan ionospheric conductivities from Cassini measurements. Planet. Space Sci. 57(14–15), 1828–1833 (2009)

    Article  ADS  Google Scholar 

  • C.T. Russell, The magnetic field of Mars—Mars 3 evidence re-examined. Geophys. Res. Lett. 5, 81–84 (1978a)

    Article  ADS  Google Scholar 

  • C.T. Russell, The magnetic field of Mars—Mars 5 evidence re-examined. Geophys. Res. Lett. 5, 85–88 (1978b)

    Article  ADS  Google Scholar 

  • C.T. Russell et al., Initial Pioneer-Venus magnetic field results: dayside observations. Science 203, 745–748 (1979)

    Article  ADS  Google Scholar 

  • C.T. Russell et al., Pioneer-Venus flux gate magnetometer. IEEE Trans. Geosci. Electron. GE-18, 32–35 (1980)

    ADS  Google Scholar 

  • C.T. Russell, O. Vaisberg, The interaction of the solar wind with Venus, in Venus, ed. by D.M. Hunton, L. Colin, T.M. Donahue, V.I. Moroz (University of Arizona Press, Tucson, 1983), pp. 873–940

    Google Scholar 

  • C.T. Russell, E. Chou, J.G. Luhmann, P. Gazis, L.H. Brace, W.R. Hoegy, Solar and interplanetary control of the location of the Venus bow shock. J. Geophys. Res. 93, 5461–5469 (1988)

    Article  ADS  Google Scholar 

  • C.T. Russell, J.G. Luhmann, R.J. Strangeway, The solar wind interaction with Venus through the eyes of the Pioneer Venus Orbiter. Planet. Space Sci. 54, 1482–1495 (2006a)

    Article  ADS  Google Scholar 

  • C.T. Russell, S.S. Mayerberger, X. Blanco-Cano, Proton cyclotron waves at Mars and Venus. Adv. Space Res. 38, 745–751 (2006b)

    Article  ADS  Google Scholar 

  • A.M. Rymer et al., Discrete classification and electron energy spectra of Titan’s varied magnetospheric environment. Geophys. Res. Lett. 36, L15109 (2009). doi:10.1029/2009GL039427

    Article  ADS  Google Scholar 

  • M.A. Saunders, C.T. Russell, Average dimension and magnetic structure of the distant Venus magnetotail. J. Geophys. Res. 91, 5589–5604 (1986)

    Article  ADS  Google Scholar 

  • K. Sauer, T. Roatsch, U. Motschmann, K. Schwingenschuh, R. Lundin, H. Rosenbauer, S. Livi, Observations of plasma boundaries and phenomena around Mars with Phobos 2. J. Geophys. Res. 97, 6227–6233 (1992)

    Article  ADS  Google Scholar 

  • R.W. Schunk, A.F. Nagy, Ionospheres: Physics, Plasma Physics, and Chemistry (Cambridge University Press, Cambridge, 2000)

    Book  Google Scholar 

  • K. Schwingenschuh, W. Riedler, T.-L. Zhang, H. Lichtenegger, H. Rosenbauer, S. Livi, G. Gevai, K. Gringauz, M. Verigin, E. Eroshenko, The Martian magnetic field environment—induced or dominated by an intrinsic magnetic field? Adv. Space Res. 12(9), 213–219 (1992)

    Article  ADS  Google Scholar 

  • S. Simon et al., Titan’s highly dynamic magnetic environment a systematic survey of Cassini magnetometer observations from flybys TA–T62. Planet. Space Sci. 58(10), 1230–1251 (2010a)

    Article  ADS  Google Scholar 

  • S. Simon et al., Dynamics of Saturn’s magnetodisk near Titan’s orbit Comparison of Cassini magnetometer observations from real and virtual Titan flybys. Planet. Space Sci. 58(12), 1625–1635 (2010b)

    Article  ADS  Google Scholar 

  • S. Simon, U. Motschmann, G. Kleindienst, K.-H. Glassmeier, C. Bertucci, M.K. Dougherty, Titan’s magnetic field signature during the Cassini T34 flyby: comparison between hybrid simulations and MAG data. Geophys. Res. Lett. 35, L04107 (2008). doi:10.1029/2007GL033056

    Article  Google Scholar 

  • S. Simon et al., Titan’s plasma environment during a magnetosheath excursion:Real-time scenarios for Cassini’s T32 flyby from a hybrid simulation. Ann. Geophys. 27, 669–685 (2009)

    Article  ADS  Google Scholar 

  • E. Sittler, R.E. Hartle, C. Bertucci, A. Coates, T. Cravens, I. Dandouras, D. Shemansky, Energy deposition processes, in Titan from Cassini-Huygens, ed. by R. Brown, J.P. Lebreton, H. Waite (Springer, Dordrecht, 2010a), pp. 393–453. ISBN978-1-4020-9214-5

    Google Scholar 

  • E.C. Sittler et al., Saturn’s magnetospheric interaction with Titan as defined by Cassini encounters T9 and T18: New results. Planet. Space Sci. 58(3), 327–350 (2010b)

    Article  ADS  Google Scholar 

  • J.A. Slavin, R.C. Elphic, C.T. Russell, F.L. Scarf, J.H. Wolfe, J.D. Mihalov, D.S. Intriligator, L.H. Brace, H.A. Taylor, R.E. Daniell, The solar wind interaction with Venus—Pioneer Venus observations of bow shock location and structure. J. Geophys. Res. 85, 7625–7641 (1980)

    Article  ADS  Google Scholar 

  • J.A. Slavin, R.E. Holzer, Solar wind flow about the terrestrial planets. I—Modeling bow shock position and shape. J. Geophys. Res. 86(11), 11401–11418 (1981)

    Article  ADS  Google Scholar 

  • J.A. Slavin, R.E. Holzer, J.R. Spreiter, S.S. Stahara, Planetary Mach cones—theory and observation. J. Geophys. Res. 89, 2708–2714 (1984)

    Article  ADS  Google Scholar 

  • J.A. Slavin et al., The solar wind interaction with Mars: Mariner 4, Mars 2, Mars 3, Mars 5 and Phobos 2 observations of bow shock position and shape. J. Geophys. Res. 96, 11235–11241 (1991)

    Article  ADS  Google Scholar 

  • K. Szego et al., Physics of mass loaded plasmas. Space Sci. Rev. 94(3/4), 429–671 (2000) 2000

    Article  ADS  Google Scholar 

  • B.U.Ö. Sonnerup, M. Scheible, Minimum and maximum variance analysis, in Analysis Methods for Multi-Spacecraft Data, ed. by G. Paschmann, P. Daly. ISSI Scientific Reports Series, ESA/ISSI, vol. 1 (1998), pp. 185–220. ISBN1608-280X

    Google Scholar 

  • K. Spenner, W.C. Knudsen, K.L. Miller, V. Novak, C.T. Russell, R.C. Elphic, Observation of the Venus mantle, the boundary region between solar wind and ionosphere. J. Geophys. Res. 85, 7655–7662 (1980)

    Article  ADS  Google Scholar 

  • K. Spenner et al., Photoelectron fluxes in the Venus dayside ionosphere. J. Geophys. Res. 102, 2577–2583 (1997)

    Article  ADS  Google Scholar 

  • K. Szego, Z. Bebesi, C. Bertucci, A.J. Coates, F. Crary, G. Erdos, R. Hartle, E.C. Sittler, D.T. Young, Charged particle environment of Titan during the T9 flyby. Geophys. Res. Lett. 34(24), L24S03 (2007)

    Article  Google Scholar 

  • M. Tátrallyay et al., Magnetic field overshoots in the Martian bow shock. J. Geophys. Res. 102(A2), 2157–2164 (1997)

    Article  ADS  Google Scholar 

  • J.G. Trotignon et al., Position and shape of the martian bow shock: the Phobos 2 plasma wave system observations. Planet. Space Sci. 41, 189–198 (1993)

    Article  ADS  Google Scholar 

  • J.-G. Trotignon, E. Dubinin, R. Grard, S. Barabash, R. Lundin, Martian planetopause as seen by the plasma wave system onboard Phobos 2. J. Geophys. Res. 101(A11), 24965–24977 (1996)

    Article  ADS  Google Scholar 

  • J.G. Trotignon, C. Mazelle, C. Bertucci, M.H. Acuña, Martian shock and magnetic pile-up boundary positions and shapes determined from the Phobos 2 and Mars Global Surveyor data sets. Planet. Space Sci. 54, 357–369 (2006)

    Article  ADS  Google Scholar 

  • B. Tsurutani, G.S. Lakhina, E.J. Smith et al., Mirror mode structures and ELF plasma waves in the Giacobini–Zinner magnetosheath. Nonlinear Process. Geophys. 6, 229–234 (1999)

    Article  ADS  Google Scholar 

  • O.L. Vaisberg, Mars-plasma environment, in Physics of Solar Planetary Environment, ed. by D.J. Williams (AGU, Boulder, 1976), pp. 854–871

    Google Scholar 

  • O.L. Vaisberg, A.V. Bogdanov, Flow of the solar wind around Mars and Venus—general principles. Cosm. Res. 12, 253–257 (1974)

    ADS  Google Scholar 

  • O.L. Vaisberg, S.A. Romanov, V.N. Smirnov, I.P. Karpinsky, B.I. Khazanov, B.V. Polenov, A.V. Bogdanov, N.M. Antonov, Ion flux parameters in the solar wind-venus interaction region, in Physics of Solar Planetary Environment, ed. by D.J. Williams (AGU, Boulder, 1976), pp. 904–917

    Google Scholar 

  • O.L. Vaisberg, L.M. Zeleny, Formation of the plasma mantle in the Venusian magnetosphere. Icarus 58, 412–430 (1984)

    Article  ADS  Google Scholar 

  • O.L. Vaisberg, A.V. Bogdanov, N.F. Borodin, A.A. Zertzalov, B.V. Polenov, S.A. Romanov, Solar plasma interaction with Mars: preliminary results. Icarus 18, 59–63 (1973)

    Article  ADS  Google Scholar 

  • O. Vaisberg, A. Fedorov, F. Dunjushkin, A. Kozhukhovsky, V. Smirnov, L. Avanov, C.T. Russell, J.G. Luhmann, Ion populations in the tail of Venus. Adv. Space Res. 16(4), 105–118 (1995)

    Article  ADS  Google Scholar 

  • S. Vennerstrom, N. Olsen, M. Purucker, M.H. Acuña, J.C. Cain, The magnetic field in the pile-up region at Mars, and its variation with the solar wind. Geophys. Res. Lett. 30(7), 1369 (2003). doi:10.1029/2003GL016883

    Article  ADS  Google Scholar 

  • M.I. Verigin, K.I. Gringauz, T. Gombosi, T.K. Breus, V.V. Bezrukikh, A.P. Remizov, G.I. Volkov, Plasma near Venus from the Venera 9 and 10 wide-angle analyzer data. J. Geophys. Res. 83, 3721–3728 (1978)

    Article  ADS  Google Scholar 

  • D. Vignes et al., The solar wind interaction with Mars: locations and shapes of the Bow Shock and the magnetic pile-up boundary from the observations of the MAG/ER experiment onboard Mars Global Surveyor. Geophys. Res. Lett. 27, 49–52 (2000). doi:10.1029/1999GL010703

    Article  ADS  Google Scholar 

  • D. Vignes, M.H. Acuña, J.E.P. Connerney, D.H. Crider, H. Rème, C. Mazelle, Factors controlling the location of the Bow Shock at Mars. Geophys. Res. Lett. 29(9), 1328 (2002). doi:10.1029/2001GL014513

    Article  ADS  Google Scholar 

  • M. Volwerk et al., Mirror-mode-like structures in Venus’ induced magnetosphere. J. Geophys. Res. 113(15), E0B016 (2008)

    Google Scholar 

  • M. Volwerk, M. Delva, Y. Futaana, A. Retinò, Z. Vörös, T.L. Zhang, W. Baumjohann, S. Barabash, Substorm activity in Venus’s magnetotail. Ann. Geophys. 27(6), 2321–2330 (2009)

    Article  ADS  Google Scholar 

  • Z. Vörös et al., Intermittent turbulence, noisy fluctuations, and wavy structures in the Venusian magnetosheath. J. Geophys. Res. 113(A12), E00B21 (2008)

    Article  Google Scholar 

  • J.E. Wahlund et al., Cassini measurements of cold plasma in the ionosphere of titan. Science 308(5724), 986–989 (2005)

    Article  ADS  Google Scholar 

  • H.Y. Wei, C.T. Russell, Proton cyclotron waves at Mars: exosphere structure and evidence for a fast neutral disk. Geophys. Res. Lett. 33(23), L23103 (2006)

    Article  ADS  Google Scholar 

  • H.Y. Wei et al., Cold ionospheric plasma in Titan’s magnetotail. Geophys.Res. Lett. 34, L24S06 (2007). doi:10.1029/2007GL030701

    Article  Google Scholar 

  • H.Y. Wei et al., Comparative study of ion cyclotron waves at Mars, Venus and Earth. Planet. Space Sci. 59(10), 1039–1047 (2011). doi:10.1016/j.pss.2010.01.004

    Article  ADS  Google Scholar 

  • D.A. Wolf, F.M. Neubauer, Titan’s highly variable plasma environment. J. Geophys. Res. 87, 881–885 (1982)

    Article  ADS  Google Scholar 

  • Y. Yeroshenko et al., The magnetotail of Mars—PHOBOS observations. Geophys. Res. Lett. 17, 885–888 (1990)

    Article  ADS  Google Scholar 

  • D.T. Young et al., Cassini plasma spectrometer investigation. Space Sci. Rev. 114, 1–112 (2004)

    Article  ADS  Google Scholar 

  • L.M. Zelenyi, O.L. Vaisberg, Venusian interaction with the solar wind plasma flow as a limiting case of the cometary type interaction, in Advances of Space Plasma Physics, ed. by B. Buti (World Scientific, Singapore, 1985), pp. 59–76

    Google Scholar 

  • T.-L. Zhang, J.G. Luhmann, C.T. Russell, The solar cycle dependence of the location and shape of the Venus bow shock. J. Geophys. Res. 95, 14961–14967 (1990)

    Article  ADS  Google Scholar 

  • T.L. Zhang, J.G. Luhmann, C.T. Russell, The magnetic barrier at Venus. J. Geophys. Res. 96(11), 11145–11153 (1991)

    Article  ADS  Google Scholar 

  • T.-L. Zhang et al., The flaring of the Martian magnetotail observed by the PHOBOS 2 spacecraft. Geophys. Res. Lett. 21(12), 1121–1124 (1994)

    Article  ADS  Google Scholar 

  • T.L. Zhang, K.K. Khurana, C.T. Russell, M.G. Kivelson, R. Nakamura, W. Baumjohann, On the Venus bow shock compressibility. Adv. Space Res. 33, 1920–1923 (2004)

    Article  ADS  Google Scholar 

  • T.L. Zhang et al., Magnetic field investigation of the Venus plasma environment: expected new results from Venus Express. Planet. Space Sci. 54, 1336–1343 (2006)

    Article  ADS  Google Scholar 

  • T.L. Zhang et al., Initial Venus Express magnetic field observations of the Venus bow shock location at solar minimum. Planet. Space Sci. 56, 785–789 (2008a)

    Article  ADS  Google Scholar 

  • T.L. Zhang et al., Induced magnetosphere and its outer boundary at Venus. J. Geophys. Res. 113, E00B20 (2008b). doi:10.1029/2008JE003215

    Article  Google Scholar 

  • T.L. Zhang et al., Disappearing induced magnetosphere at Venus: Implications for close-in exoplanets. Geophys. Res. Lett. 36(20), L20203 (2009)

    Article  ADS  Google Scholar 

  • T.L. Zhang, W. Baumjohann, J. Du, R. Nakamura, R. Jarvinen, E. Kallio, A.M. Du, M. Balikhin, J.G. Luhmann, C.T. Russell, Hemispheric asymmetry of the magnetic field wrapping pattern in the Venusian magnetotail. Geophys. Res. Lett. 37(14), L14202 (2010)

    Article  ADS  Google Scholar 

  • B.J. Zwan, R.A. Wolf, Depletion of solar wind plasma near a planetary boundary. J. Geophys. Res. 81, 1636–1648 (1976)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Bertucci .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Bertucci, C. et al. (2011). The Induced Magnetospheres of Mars, Venus, and Titan. In: Szego, K. (eds) The Plasma Environment of Venus, Mars, and Titan. Space Sciences Series of ISSI, vol 37. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3290-6_5

Download citation

Publish with us

Policies and ethics