Droplet Microreactors for Materials Synthesis

  • Nick J. Carroll
  • Suk Tai Chang
  • Dimiter N. Petsev
  • Orlin D. Velev
Part of the Integrated Analytical Systems book series (ANASYS)


The miniaturization of fluid flow and analytical systems has created exciting avenues of scientific and engineering research in materials synthesis. The conventional microfluidic devices have channels with widths in the tens of micrometer range. Fluidic behavior at the microscale may differ from that at larger scales in that interfacial tension, viscous effects, and energy dissipation can dominate the system. Microfluidics has received much attention in the scientific community and has been the topic of many excellent reviews [89, 100]. In some applications slow or minimal mixing is required, and the laminar flows obtained in microchannels become highly desirable. The conventional microfluidic channels can also process liquid in the form of microscopic droplets. Water-in-oil emulsions can be formed in microfluidic devices to form a steady stream of monodisperse aqueous droplets with volumes as small as picoliters [4]. The drops can be loaded with reactants to perform chemical reactions of interest [83, 85, 86].


Interfacial Tension Microfluidic Device Droplet Formation Master Mold Electric Double Layer Thickness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by grants from the US National Science Foundation (CBET 0828900, PREM—DMR 0611616, and MRSEC DMR-1121107).


  1. 1.
    Abate AR, Lee D, Do T, Holtze C, Weitz DA (2008) Glass coating for PDMS microfluidic channels by sol–gel methods. Lab Chip 8:516–518CrossRefGoogle Scholar
  2. 2.
    Ahmed R, Jones TB (2007) Optimized liquid DEP droplet dispensing. J Micromech Microeng 17:1052–1058CrossRefGoogle Scholar
  3. 3.
    Andersson N, Kronberg B, Corkery R, Alberius P (2007) Combined emulsion and solvent evaporation (ESE) synthesis route to well-ordered mesoporous materials. Langmuir 23:1459–1464CrossRefGoogle Scholar
  4. 4.
    Anna SL, Bontoux N, Stone HA (2003) Formation of dispersions using “flow focusing” in microchannels. Appl Phys Lett 82:364–366CrossRefGoogle Scholar
  5. 5.
    Antencia J, Beebe DJ (2005) Controlled microfluidic interfaces. Nature 437:648–655CrossRefGoogle Scholar
  6. 6.
    Bhatt KH, Velev OD (2004) Control and modeling of the dielectrophoretic assembly of on-chip nanoparticle wires. Langmuir 20:467–476CrossRefGoogle Scholar
  7. 7.
    Bore MT, Rathod SB, Ward TL, Datye AK (2003) Hexagonal mesostructure in powders produced by evaporation-induced self-assembly of aerosols from aqueous tetraethoxysilane solutions. Langmuir 19:256CrossRefGoogle Scholar
  8. 8.
    Brinker CJ, Lu YF, Sellinger A, Fan HY (1999) Evaporation-induced self-assembly: nanostructures made easy. Adv Mater 11:579–585CrossRefGoogle Scholar
  9. 9.
    Brody JP, Yager P, Goldstein RE, Austin RH (1996) Biotechnology at low Reynolds numbers. Biophys J 71:3430–3441CrossRefGoogle Scholar
  10. 10.
    Buranda T, Huang J, Rama Rao GV, Ista LK, Larson RS, Ward TL, Sklar LA, Lopez GP (2003) Biomimetic molecular assemblies on glass and mesoporous silica microbeads for biotechnology. Langmuir 19:1654–1663CrossRefGoogle Scholar
  11. 11.
    Carroll N, Rathod SB, Derbins E, Mendez S, Weitz DA, Petsev DN (2008) Droplet-based microfluidics for emulsion and solvent evaporation synthesis of monodisperse mesoporous silica microspheres. Langmuir 24:658–661CrossRefGoogle Scholar
  12. 12.
    Carroll NJ, Pylypenko S, Atanassov PB, Petsev DN (2009) Bidisperse nano-porous microparticles derived by microemulsion templating. Langmuir 25:13540CrossRefGoogle Scholar
  13. 13.
    Carroll NJ, Pylypenko S, Ortiz A, Yonemoto BT, Lopez C, Atanassov P, Weitz DA, Petsev DN (2010) Droplet based microfluidics for synthesis of mesoporous silica microspheres. MRS Symp Proc 1272:KK08–KK02Google Scholar
  14. 14.
    Catellanos A, Ramos A, Gonzalez A, Green NG, Morgan H (2003) Eelectrohydrodynamics and dielectrophoresis in microsystems: scaling laws. J Phys D: Appl Phys 36:2584–2597CrossRefGoogle Scholar
  15. 15.
    Chang ST, Velev OD (2006) Evaporation-induced particle microseparations inside droplets floating on a chip. Langmuir 22:1459–1468CrossRefGoogle Scholar
  16. 16.
    Chia SY, Urano J, Tamanoi F, Dunn B, Zink JI (2000) Patterned hexagonal arrays of living cells in sol–gel silica films. J Am Chem Soc 122:6488–6489CrossRefGoogle Scholar
  17. 17.
    Cho SK, Moon H, Kim C-J (2003) Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits. J Microelectromech Syst 12:70–80CrossRefGoogle Scholar
  18. 18.
    Cui L, Holmes D, Morgan H (2001) The dielectrophoretic levitation and separation of latex beads in microchips. Electrophoresis 22:3893–3901CrossRefGoogle Scholar
  19. 19.
    Culbertson CT, Ramsey RS et al (2000) Electroosmotically induced hydraulic pumping on microchips: differential ion transport. Anal Chem 72:2285CrossRefGoogle Scholar
  20. 20.
    Daw R, Finkelstein J (2006) Lab on a chip. Nature 442:367CrossRefGoogle Scholar
  21. 21.
    Debye P, Huckel E (1923) Zur Theorie der Elektrolyte. I. Gefrierpunktserniedrigung und verwandte Erscheinungen. Phys Ztschr 24:185Google Scholar
  22. 22.
    Dendukuri D, Tsoi K, Hatton TA, Doyle PS (2004) Controlled synthesis of nonspherical microparticles using microfluidics. Langmuir 21:2113–2116CrossRefGoogle Scholar
  23. 23.
    Denkov ND, Velev OD, Kralchevsky PA, Ivanov IB, Yoshimura H, Nagayama K (1992) Mechanism of formation of 2-dimensional crystals from latex-particles on substrates. Langmuir 8:3183–3190CrossRefGoogle Scholar
  24. 24.
    Deval J, Tabeling P, Ho C-M (2002) A dielectrophoretic chaotic mixer. Proc. IEEE MEMS 2002, Micro Electro Mechanical Systems, Las Vegas, USA, pp 36–39Google Scholar
  25. 25.
    Diehl F, Li M, He Y, Kinzler KW, Vogelstein B, Dressman D (2006) BEAMing: single-molecule PCR on microparticles in water-in-oil emulsions. Nat Methods 3:551–559CrossRefGoogle Scholar
  26. 26.
    Dimitrov AS, Nagayama K (1996) Continuous convective assembling of fine particles into two-dimensional arrays on solid surfaces. Langmuir 12:1303–1311CrossRefGoogle Scholar
  27. 27.
    Dukhin SS, Derjaguin BV (1974) Equilibrium double layer and electrokinetic phenomena. Surface and Colloid Science E. Matijevic. Wiley Interscience, New YorkGoogle Scholar
  28. 28.
    Dussaud AD, Khusid B, Acrivos A (2000) Particle segregation in suspensions subject to high-gradient ac electric fields. J Appl Phys 88:5463–5473CrossRefGoogle Scholar
  29. 29.
    El-Ali J, Sorger PK, Jensen KF (2006) Cells on chips. Nature 442:403–411CrossRefGoogle Scholar
  30. 30.
    Fair RB (2007) Digital microfluidics: is a true lab-on-a-chip possible? Microfluid Nanofluid 3:245–281CrossRefGoogle Scholar
  31. 31.
    Garstecki P, Stone HA, Whitesides GM (2005) Mechanism for flow-rate controlled breakup in confined geometries: a route to monodisperse emulsions. Phys Rev Lett 94:164501-1-4Google Scholar
  32. 32.
    Gouy G (1910) Sur la constitution de la charge ´electrique `a la surface d’un electrolyte. J Physique 9:457–468Google Scholar
  33. 33.
    Gunther A, Jensen KF (2006) Multiphase microfluidics: from flow characteristics to chemical and materials synthesis. Lab Chip 6:1487–1503CrossRefGoogle Scholar
  34. 34.
    Happel J, Brenner H (1983) Low Reynolds number hydrodynamics. Kluwer, BostonGoogle Scholar
  35. 35.
    He M, Edgar JS, Jeffries GDM, Lorenz RM, Shelby JP, Chiu DT (2005) Selective encapsulation of single cells and subcellular organelles into picoliter- and femtoliter-volume droplets. Anal Chem 77:1539–1544CrossRefGoogle Scholar
  36. 36.
    Henkel T, Bermig T, Kielpinski M, Grodrian A, Metze J, Kohler JM (2004) Chip modules for generation and manipulation of fluid segments for micro serial flow processes. Chem Eng J 101:439–445CrossRefGoogle Scholar
  37. 37.
    Hermanson KD, Lumsdon SO, Williams JP, Kaler EW, Velev OD (2001) Dielectrophoretic assembly of electrically functional microwires from nanoparticle suspensions. Science 294:1082–1086CrossRefGoogle Scholar
  38. 38.
    Hunter RJ (1981) Zeta potential in colloid science. Academic, New YorkGoogle Scholar
  39. 39.
    Huo Q, Feng J, Schueth F, Stucky GD (1997) Preparation of hard mesoporous silica spheres. Chem Mater 9:14–17CrossRefGoogle Scholar
  40. 40.
    Ikkai F, Iwamoto S, Adachi E, Nakajima M (2005) New method of producing monosized polymer gel particles using microchannel emulsification and UV irradiation. Colloid Polym Sci 283:1149–1153CrossRefGoogle Scholar
  41. 41.
    Jones TB (1995) Electromechanics of particles. Cambridge Press, CambridgeCrossRefGoogle Scholar
  42. 42.
    Jones TB, Gunji M, Washizu M, Feldman MJ (2001) Dielectrophoretic liquid actuation and nanodroplet formation. J Appl Phys 89:1441–1448CrossRefGoogle Scholar
  43. 43.
    Ju JX, Zeng CF, Zhang LX, Xu NP (2006) Continuous synthesis of zeolite NaA in a microchannel reactor. Chem Eng J 116:115–121CrossRefGoogle Scholar
  44. 44.
    Kelly TB, Baret J-C, Taly V, Griffiths AD (2007) Miniaturizing chemistry and biology in microdroplets. Chem Commun 18:1773–1788CrossRefGoogle Scholar
  45. 45.
    Kim J-W, Utada AS, Fernandez-Nieves A, Hu Z, Weitz DA (2007) Fabrication of monodisperse gel shells and functional microgels in microfluidic devices. Angew Chem Int Ed 46:1819–1822CrossRefGoogle Scholar
  46. 46.
    Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS (1992) Ordered mesopourous molecular-sieves synthesized by a liquid-crystal template mechanism. Nature 359:710–712CrossRefGoogle Scholar
  47. 47.
    Kumar A, Qiu Z, Acrivos A (2004) Combined negative dielectrophoresis and phase separation in nondilute suspensions subject to a high-gradient ac electric field. Phys Rev E 69:021402CrossRefGoogle Scholar
  48. 48.
    Landau LD, Lifshitz EM (1988) Fluid mechanics. Pergamon Press, MoscowGoogle Scholar
  49. 49.
    Lau BTC, Baitz CA, Dong XP, Hansen CL (2007) A complete microfluidic screening platform for rational protein crystallization. J Am Chem Soc 129:454–455CrossRefGoogle Scholar
  50. 50.
    Lavi B, Marmur A et al (2008) Porous media characterization by the two-liquid method: effect of dynamic contact angle and inertia. Langmuir 24:1918–1923CrossRefGoogle Scholar
  51. 51.
    Li W, Nie Z, Paquet C, Seo M, Garstecki P, Kumacheva E (2007) Screening of the effect of surface energy on microchannels on microfluidic emulsification. Langmuir 23:8010–8014CrossRefGoogle Scholar
  52. 52.
    Link DR, Grasland-Mongrain E, Duri A, Sarrazin F, Cheng Z, Cristobal G, Marquez M, Weitz DA (2006) Electric control of droplets in microfluidic devices. Angew Chem Int Ed 45:2556–2560CrossRefGoogle Scholar
  53. 53.
    Lou T-JM, Soong R, Lan E, Dunn B, Montemagno B (2005) Photo-induced proton gradients and ATP biosynthesis produced by vesicles encapsulated in silica matrix. Nat Mater 4:220–224CrossRefGoogle Scholar
  54. 54.
    Lu Y, Fan H, Stump A, Ward TL, Riker T, Brinker CJ (1999) Aerosol-assisted self-assembly of mesostructured spherical nanoparticles. Nature 398:223–226CrossRefGoogle Scholar
  55. 55.
    Lumsdon SO, Kaler EW, Williams JP, Velev OD (2003) Dielectrophoretic assembly of oriented and switchable two-dimensional photonic crystals. Appl Phys Lett 82:949–951CrossRefGoogle Scholar
  56. 56.
    Lumsdon SO, Kaler EW, Velev OD (2004) Two-dimensional crystallization of microspheres by a coplanar AC electric field. Langmuir 20:2108–2116CrossRefGoogle Scholar
  57. 57.
    McKnight TE, Culbertson CT et al (2001) Electroosmotically induced hydraulic pumping with integrated electrodes on microfluidic devices. Anal Chem 73:4045CrossRefGoogle Scholar
  58. 58.
    Millman JR, Bhatt KH, Prevo BG, Velev OD (2005) Anisotropic particle synthesis in dielectrophoretically controlled microdroplet reactors. Nat Mater 4:98–102CrossRefGoogle Scholar
  59. 59.
    Morgan H, Green NG (2003) AC electrokinetics: colloids and nanoparticles. Research Studies Press Ltd., UKGoogle Scholar
  60. 60.
    Nie Z, Xu S, Seo M, Lewis PC, Kumacheva E (2005) Polymer particles with various shapes and morphologies produced in continuous microfluidic reactors. J Am Chem Soc 127:8058–8063CrossRefGoogle Scholar
  61. 61.
    Paik P, Pamula VK, Pollack MG, Fair RB (2003) Electrowetting-based droplet mixers for microfluidic systems. Lab Chip 3:28–33CrossRefGoogle Scholar
  62. 62.
    Paik P, Pamula VK, Fair RB (2003) Rapid droplet mixers for digital microfluidic systems. Lab Chip 3:253–259CrossRefGoogle Scholar
  63. 63.
    Paul PH, Arnold DW et al (1998) Electrokinetic generation of high pressures using porous microstructures. Proceedings of the μ-TAS’98, Banff, CanadaGoogle Scholar
  64. 64.
    Paul PH, Arnold DW et al (2000) Electrokinetic pump application in micro-total analysis systems; mechanical actuation to HPLC. Proceedings of the μ-TAS 2000, Enschede, The NetherlandsGoogle Scholar
  65. 65.
    Piyasena ME, Lopez GP et al (2006) An electrokinetic cell model for analysis and optimization of electroosmotic microfluidic pumps. Sens Actuators B 113:461–467CrossRefGoogle Scholar
  66. 66.
    Pohl HA (1951) The motion and precipitation of suspensoids in divergent electric fields. J Appl Phys 22:869–871CrossRefGoogle Scholar
  67. 67.
    Pollack MG, Fair RB, Shenderov AD (2000) Electrowetting-based actuation of liquid droplets for microfluidic applications. Appl Phys Lett 77:1725–1726CrossRefGoogle Scholar
  68. 68.
    Pollack MG, Shenderov AD, Fair RB (2002) Electrowetting-based actuation of droplets for integrated microfluidics. Lab Chip 2:96–101CrossRefGoogle Scholar
  69. 69.
    Pretorius V, Hopkins BJ et al (1974) Electro-osmosis: a new concept for high-speed liquid chromatography. J Chromatogr 99:23–30CrossRefGoogle Scholar
  70. 70.
    Rama Rao GV, Lopez GP, Bravo J, Pham H, Datye AK, Xu H, Ward TL (2002) Monodisperse mesoporous silica microspheres formed by evaporation-induced self assembly of surfactant templates in aerosols. Adv Mater 14:1301–1304CrossRefGoogle Scholar
  71. 71.
    Ramos A, Morgan H, Green NG, Castellanos A (1998) AC electrokinetics: a review of forces in microelectrode structures. J Phys D: Appl Phys 31:2338–2353CrossRefGoogle Scholar
  72. 72.
    Rastogi V, Velev OD (2007) Development and evaluation of realistic microbioassays in freely suspended droplets on a chip. Biomicrofluidics 1:14107CrossRefGoogle Scholar
  73. 73.
    Rastogi V, Melle S, Calderón OG, García AA, Marquez M, Velev OD (2008) Synthesis of light-diffracting assemblies from microspheres and nanoparticles in droplets on a superhydrophobic surface. Adv Mater 20:4263–4268CrossRefGoogle Scholar
  74. 74.
    Rastogi V, García AA, Marquez M, Velev OD (2010) Anisotropic particle synthesis inside droplet templates on superhydrophobic surfaces. Macromol Rapid Commun 31:190–195CrossRefGoogle Scholar
  75. 75.
    Rodriguez NF, Markx GH (2004) Improved levitation and trapping of particles by negative dielectrophoresis by the addition of amphoteric molecules. J Phys D: Appl Phys 37:353–361CrossRefGoogle Scholar
  76. 76.
    Rowlinson JS, Widom B (1982) Molecular theory of capillarity. Claredon Press, OxfordGoogle Scholar
  77. 77.
    Schacht S, Huo Q, Voigt-Martin IG, Stucky GD, Schueth F (1996) Oil–water interface templating of mesoporous macroscale structures. Science 273:768–771CrossRefGoogle Scholar
  78. 78.
    Schonfeld F, Rensink D (2003) Simulation of droplet generation by mixing nozzles. Chem Eng Technol 26:585–591CrossRefGoogle Scholar
  79. 79.
    Serra C, Berton N, Bouquey M, Prat L, Hadziioannou G (2007) A predictive approach of the influence of the operating parameters on the size of polymer particles synthesized in a simplified microfluidic system. Langmuir 23:7745–7750CrossRefGoogle Scholar
  80. 80.
    Shestopalov I, Tice JD, Ismagilov R (2004) Multi-step synthesis of nanoparticles performed on millisecond time scale in a microfluidic droplet-based system. Lab Chip 4:316–321CrossRefGoogle Scholar
  81. 81.
    Shui L, Eijkel JCT, van den Berg A (2007) Multiphase flow in microfluidic systems-control of droplets and interfaces. Adv Coll Int Sci 133:35–49CrossRefGoogle Scholar
  82. 82.
    von Smoluchowski M (1903) Contribution a la theorie de l’endosmose electrique et de quelques phenomenes correlatifs. Bull Intern Acad Sci Cracovie Ser A 8:182–200Google Scholar
  83. 83.
    Song H, Chen DL, Ismagilov RF (2006) Reactions in droplets in microfluidic channels. Angew Chem Int Ed 45:7336–7356CrossRefGoogle Scholar
  84. 84.
    Song H, Tice JD, Ismagilov RF (2003) A microfluidic system for controlling reaction networks in time. Angew Chem Int Ed 42:767–772Google Scholar
  85. 85.
    Song H, Li HW, Munson MS, Van Ha TG, Ismagilov RF (2006) On-chip titration of an anticoagulant argatroban and determination of the clotting time within whole blood or plasma using a plug-based microfluidic system. Anal Chem 78:4839–4849CrossRefGoogle Scholar
  86. 86.
    Song YJ, Modrow H, Henry LL, Saw CK, Doomes EE, Palshin V, Hormes J, Kumar C (2006) Microfluidic synthesis of cobalt nanoparticles. Chem Mater 18:2817–2827CrossRefGoogle Scholar
  87. 87.
    Sotowa KI, Irie K, Fukumori T, Kusakabe K, Sugiyama S (2007) Droplet formation by the collision of two aqueous solutions in a microchannel and application to particle synthesis. Chem Eng Technol 30:383–388CrossRefGoogle Scholar
  88. 88.
    Squires TM, Quake SR (2005) Microfluidics: fluid physics at the nanoliter scale. Rev Mod Phys 77:978–1026CrossRefGoogle Scholar
  89. 89.
    Stone HA, Kim S (2001) Microfluidics: basic issues, applications, and challenges. AIChE J 47:1250–1254CrossRefGoogle Scholar
  90. 90.
    Takagi M, Maki T, Miyahara M, Mae K (2004) Production of titania nanoparticles by using a new microreactor assembled with same axle dual pipe. Chem Eng J 101:269–276CrossRefGoogle Scholar
  91. 91.
    Tan Y-C, Hettiarachchi K, Siu M, Pan Y-R, Lee AP (2006) Controlled microfluidic encapsulation of cells, proteins, and microbeads in lipid vesicles. J Am Chem Soc 128:5656–5658CrossRefGoogle Scholar
  92. 92.
    Tan Y-C, Cristini V, Lee AP (2006) Monodispersed microfluidic droplet generation by shear focusing microfluidic device. Sens Actuators B 114:350–356CrossRefGoogle Scholar
  93. 93.
    Teh S-Y, Lin R, Hung L-H, Lee AP (2008) Droplet microfluidics. Lab Chip 8:198–220CrossRefGoogle Scholar
  94. 94.
    Thorsen T, Roberts RW, Arnold FH, Quake SR (2001) Dynamic pattern formation in a vesicle-generating microfluidic device. Phys Rev Lett 86:4163–4166CrossRefGoogle Scholar
  95. 95.
    Utada AS, Chu L-Y, Fernandez-Nieves A, Link DR, Holtz C, Weitz DA (2007) Dripping, jetting, drops, and wetting: the magic of microfluidics. MRS Bull 32:702–708CrossRefGoogle Scholar
  96. 96.
    Velev OD, Prevo BG, Bhatt KH (2003) On-chip manipulation of free droplets. Nature 426:515–516CrossRefGoogle Scholar
  97. 97.
    Velev OD (2003) Assembly of electrically functional microstructures from colloidal particles. In: Caruso F (ed) Colloids and colloid assemblies. Wiley-VCHPubl, Weinheim, pp 437–464Google Scholar
  98. 98.
    Velev OD, Bhatt KH (2006) On-chip micromanipulation and assembly of colloidal particles by electric fields. Soft Matter 2:738–750CrossRefGoogle Scholar
  99. 99.
    Wang K-L, Jones TB, Raisanen A (2007) Dynamic control of DEP actuation and droplet dispensing. J Micromech Microeng 17:76–80CrossRefGoogle Scholar
  100. 100.
    Whitesides GM (2006) The origins and the future of microfluidics. Nature 442:368–373CrossRefGoogle Scholar
  101. 101.
    Wong PK, Wang T-H, Deval JH, Ho C-M (2004) Electrokinetics in micro devices for biotechnology applications. IEEE/ASME Trans Mechatron 9:366–376CrossRefGoogle Scholar
  102. 102.
    Xia YN, Whitesides GM (1998) Soft lithography. Angew Chem Int Ed 37:550–575CrossRefGoogle Scholar
  103. 103.
    Xu S, Nie Z, Seo M, Lewis P, Kumacheva E, Stone HA, Garstecki P, Weibel DB, Giglin I, Whitesides GM (2005) Generation of monodisperse particles by using microfluidics: control over size, shape, and composition. Angew Chem 117:734–738CrossRefGoogle Scholar
  104. 104.
    Yi U-C, Kim C-J (2006) Characterization of electrowetting actuation on addressable single-side coplanar electrodes. J Micromech Microeng 16:2053–2059CrossRefGoogle Scholar
  105. 105.
    Zeng S, Chen CH et al (2001) Fabrication and characterization of electroosmotic micropumps. Sens Actuators B 79:107–114CrossRefGoogle Scholar
  106. 106.
    Zhang H, Tumarkin E, Peerani R, Nie Z, Sullan RMA, Walker GC, Kumacheva E (2006) Microfluidic production of biopolymer microcapsules with controlled morphology. J Am Chem Soc 128:12205–12210CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Nick J. Carroll
    • 1
  • Suk Tai Chang
    • 2
  • Dimiter N. Petsev
    • 1
  • Orlin D. Velev
    • 3
  1. 1.Department of Chemical and Nuclear Engineering, Center for Biomedical EngineeringUniversity of New MexicoAlbuquerqueUSA
  2. 2.School of Chemical Engineering and Materials ScienceChung-Ang UniversitySeoulSouth Korea
  3. 3.Department of Chemical and Biomolecular EngineeringNorth Carolina State UniversityRaleighUSA

Personalised recommendations