Skip to main content

Recent Advances in Electrowetting Microdroplet Technologies

  • Chapter
  • First Online:
Microdroplet Technology

Part of the book series: Integrated Analytical Systems ((ANASYS))

Abstract

Electrowetting is potentially one of the most versatile techniques for manipulating submillimetre-sized droplets in microfluidic systems. By applying a voltage between a droplet and an electrode buried beneath the substrate of a microfluidic chip, it is possible to alter the wetting behaviour of the liquid so as to generate surface tension gradients around the droplet. This concept has subsequently become known as electrowetting-on-dielectric (EWOD) and has developed into one of the most popular technologies for droplet manipulation. Combining a large number of individually addressable electrodes onto a single microfluidic chip makes it possible to dispense, transport, split and merge individual droplets without the need for any moving components, and opens up the possibility for fully-controllable ‘digital’ microfluidic systems where the samples and reagents are manipulated using a standard set of droplet handling operations.

This chapter presents an overview of electrowetting and discusses the fundamental droplet handling operations that are common to all electrowetting applications. The use of open and covered EWOD systems is then discussed, together with the important effect of changing the shape of the electrodes to avoid droplet pinning. Finally, an overview is given of droplet-based electrowetting technologies in biological and chemical applications. The article aims to highlight the potential benefits of digital microfluidics and also discusses some of the challenges that need to be overcome for the successful design of EWOD-based microfluidic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Manz A, Becker H (1998) Microsystem technology in chemistry and life sciences: topics in current chemistry, vol 194. Springer, Berlin

    Google Scholar 

  2. Jakeway SC, de Mello AJ, Russell EL (2000) Miniaturized total analysis systems for biological analysis. Fresenius J Anal Chem 366:525–539

    CAS  Google Scholar 

  3. Squires TM, Quake SR (2005) Microfluidics: fluid physics at the nanoliter scale. Rev Mod Phys 77:977–1026

    CAS  Google Scholar 

  4. Whitesides GM (2006) The origins and the future of microfluidics. Nature 442:368–373

    CAS  Google Scholar 

  5. Tian W-C, Finehout E (2008) Microfluidics for biological applications. Springer, New York

    Google Scholar 

  6. Arora A, Simone G, Salieb-Beugelaar GB, Kim JT, Manz A (2010) Latest developments in micro total analysis systems. Anal Chem 82:4830–4847

    CAS  Google Scholar 

  7. Janasek D, Franzke J, Manz A (2006) Scaling and the design of miniaturized chemical-analysis systems. Nature 442:374–380

    CAS  Google Scholar 

  8. Karniadakis G, Beskok A, Aluru N (2005) Microflows and nanoflows: fundamentals and simulation. Springer, New York

    Google Scholar 

  9. Kockmann N (2008) Transport phenomena in micro process engineering. Springer, Berlin

    Google Scholar 

  10. de Mello AJ, Beard N (2003) Dealing with ‘real’ samples: sample pre-treatment in microfluidic systems. Lab Chip 3:11N–19N

    Google Scholar 

  11. Craighead H (2006) Future lab-on-a-chip technologies for interrogating individual molecules. Nature 442:387–393

    CAS  Google Scholar 

  12. Song H, Chen DL, Ismagilov RF (2006) Reactions in droplets in microfluidic channels. Angew Chem Int Ed 45:7336–7356

    CAS  Google Scholar 

  13. Haeberle S, Zengerle R (2007) Microfluidic platforms for lab-on-a-chip applications. Lab Chip 7:1094–1110

    CAS  Google Scholar 

  14. Fair RB (2007) Digital microfluidics: is a true lab-on-a-chip possible? Microfluid Nanofluid 3:245–281

    CAS  Google Scholar 

  15. Fair RB, Khlystov A, Tailor TD, Ivanov V, Evans RD, Srinivasan V, Pamula VK, Pollack MG, Griffin PB, Zhou J (2007) Chemical and biological applications of digital-microfluidic devices. IEEE Design Test Comput 24:10–24

    Google Scholar 

  16. Teh S-Y, Lin R, Hung L-H, Lee AP (2008) Droplet microfluidics. Lab Chip 8:198–220

    CAS  Google Scholar 

  17. Fouillet Y, Jary D, Chabrol C, Claustre P, Peponnet C (2008) Digital microfluidic design and optimization of classic and new fluidic functions for lab on a chip systems. Microfluid Nanofluid 4:159–165

    Google Scholar 

  18. Abdelgawad M, Wheeler AR (2009) The digital revolution: a new paradigm for microfluidics. Adv Mater 21:920–925

    CAS  Google Scholar 

  19. de Gennes P-G, Brochard-Wyart F, Quéré D (2004) Capillarity and wetting phenomena: drops, bubbles, pearls, waves. Springer, New York

    Google Scholar 

  20. Rosslee C, Abbott NL (2000) Active control of interfacial properties. Curr Opin Colloid Interface Sci 5:81–87

    CAS  Google Scholar 

  21. Lee J, Kim C-J (2000) Surface-tension-driven microactuation based on continuous electrowetting. J Microelectromech Syst 9:171–180

    CAS  Google Scholar 

  22. Darhuber AA, Troian SM (2005) Principles of microfluidic actuation by modulation of surface stresses. Annu Rev Fluid Mech 37:425–455

    Google Scholar 

  23. Gras SL, Mahmud T, Rosengarten G, Mitchell A, Kalantar-zadeh K (2007) Intelligent control of surface hydrophobicity. Chem Phys Chem 8:2036–2050

    CAS  Google Scholar 

  24. Lipowsky R (2001) Morphological wetting transitions at chemically structured surfaces. Curr Opin Colloid Interface Sci 6:40–48

    CAS  Google Scholar 

  25. Pfohl T, Mugele F, Seemann R, Herminghaus S (2003) Trends in microfluidics with complex fluids. Chem Phys Chem 4:1291–1298

    CAS  Google Scholar 

  26. Seemann R, Brinkmann M, Kramer EJ, Lange FF, Lipowsky R (2005) Wetting morphologies at microstructured surfaces. Proc Natl Acad Sci USA 102:1848–1852

    CAS  Google Scholar 

  27. Pollack MG, Fair RB, Shenderov AD (2000) Electrowetting-based actuation of liquid droplets for microfluidic applications. Appl Phys Lett 77:1725–1726

    CAS  Google Scholar 

  28. Quilliet C, Berge B (2001) Electrowetting: a recent outbreak. Curr Opin Colloid Interface Sci 6:34–39

    CAS  Google Scholar 

  29. Pollack MG, Shenderov AD, Fair RB (2002) Elecrowetting-based actuation of droplets for integrated microfluidics. Lab Chip 2:96–101

    CAS  Google Scholar 

  30. Mugele F, Klingner A, Buehrle J, Steinhauser D, Herminghaus S (2005) Electrowetting: a convenient way to switchable wettability patterns. J Phys Condens Matter 17:S559–S576

    CAS  Google Scholar 

  31. Mugele F, Baret J-C (2005) Electrowetting: from basics to applications. J Phys Condens Matter 17:R705–R774

    CAS  Google Scholar 

  32. Shamai R, Andelman D, Berge B, Hayes R (2008) Water, electricity, and between… On electrowetting and its applications. Soft Matter 4:38–45

    CAS  Google Scholar 

  33. Schwartz JA, Vykoukal JV, Gascoyne PRC (2004) Droplet-based chemistry on a programmable micro-chip. Lab Chip 4:11–17

    CAS  Google Scholar 

  34. Fan S-K, Hsieh T-H, Lin D-Y (2009) General digital microfluidic platform manipulating dielectric and conductive droplets by dielectrophoresis and electrowetting. Lab Chip 9:1236–1242

    CAS  Google Scholar 

  35. Wang K-L, Jones TB, Raisanen A (2009) DEP actuated nanoliter droplet dispensing using feedback control. Lab Chip 9:901–909

    CAS  Google Scholar 

  36. Darhuber AA, Valentino JP, Troian SM, Wagner S (2003) Thermocapillary actuation of droplets on chemically patterned surfaces by programmable microheater arrays. J Microelectromech Syst 12:873–879

    CAS  Google Scholar 

  37. Darhuber AA, Chen JZ, Davis JM, Troian SM (2004) A study of mixing in thermocapillary flows on micropatterned surfaces. Philos Trans R Soc Lond A 362:1037–1058

    CAS  Google Scholar 

  38. Darhuber AA, Valentino JP, Troian SM (2010) Planar digital nanoliter dispensing system based on thermocapillary actuation. Lab Chip 10:1061–1071

    CAS  Google Scholar 

  39. Chiou PY, Moon H, Toshiyoshi H, Kim C-J, Wu MC (2003) Light actuation of liquid by optoelectrowetting. Sens Actuators A 104:222–228

    Google Scholar 

  40. Chuang H-S, Kumar A, Wereley ST (2008) Open optoelectrowetting droplet actuation. Appl Phys Lett 93:064104

    Google Scholar 

  41. Chiou PY, Park S-Y, Wu MC (2008) Continuous optoelectrowetting for picoliter droplet manipulation. Appl Phys Lett 93:221110

    Google Scholar 

  42. Krogmann F, Qu H, Mönch W, Zappe H (2008) Push/pull actuation using opto-electrowetting. Sens Actuators A 141:499–505

    Google Scholar 

  43. Chiou PY, Chang Z, Wu MC (2008) Droplet manipulation with light on optoelectrowetting device. J Microelectromech Syst 17:133–138

    Google Scholar 

  44. Guttenberg Z, Müller H, Habermüller H, Geisbauer A, Pipper J, Felbel J, Kielpinski M, Scriba J, Wixforth A (2005) Planar chip device for PCR and hybridization with surface acoustic wave pump. Lab Chip 5:308–317

    CAS  Google Scholar 

  45. Beyssen D, Le Brizoual L, Elmazria O, Alnot P (2006) Microfluidic device based on surface acoustic wave. Sens Actuators B 118:380–385

    Google Scholar 

  46. Luo JK, Fu YQ, Li Y, Du XY, Flewitt AJ, Walton AJ, Milne WI (2009) Moving-part-free microfluidic systems for lab-on-a-chip. J Micromech Microeng 19:054001

    Google Scholar 

  47. Fu YQ, Luo JK, Du XY, Flewitt AJ, Li Y, Markx GH, Walton AJ, Milne WI (2010) Recent developments on ZnO films for acoustic wave based bio-sensing and microfluidic applications: a review. Sens Actuators B 143:606–619

    Google Scholar 

  48. Cho SK, Kim C-J (2003) Particle separation and concentration control for digital microfluidic systems. In: 16th IEEE annual international conference on MEMS, Kyoto, Japan, pp 686–689

    Google Scholar 

  49. Zhao Y, Yi U-C, Cho SK (2007) Microparticle concentration and separation by traveling-wave dielectrophoresis (twDEP) for digital microfluidics. J Microelectromech Syst 16:1472–1481

    CAS  Google Scholar 

  50. Cho SK, Zhao Y, Kim C-J (2007) Concentration and binary separation of microparticles for droplet-based digital microfluidics. Lab Chip 7:490–498

    CAS  Google Scholar 

  51. Fan S-K, Huang P-W, Wang T-T, Peng Y-H (2008) Cross-scale electric manipulations of cells and droplets by frequency-modulated dielectrophoresis and electrowetting. Lab Chip 8:1325–1331

    CAS  Google Scholar 

  52. Wang Y, Zhao Y, Cho SK (2007) Efficient in-droplet separation of magnetic particles for digital microfluidics. J Micromech Microeng 17:2148–2156

    CAS  Google Scholar 

  53. Sista RS, Eckhardt AE, Srinivasan V, Pollack MG, Palanki S, Pamula VK (2008) Heterogeneous immunoassays using magnetic beads on a digital microfluidic platform. Lab Chip 8:2188–2196

    CAS  Google Scholar 

  54. Shah GJ, Kim C-J (2009) Meniscus-assisted high-efficiency magnetic collection and separation for EWOD droplet microfluidics. J Microelectromech Syst 18:363–375

    Google Scholar 

  55. Nashida N, Satoh W, Fukuda J, Suzuki H (2007) Electrochemical immunoassay on a microfluidic device with sequential injection and flushing functions. Biosens Bioelectron 22:3167–3173

    CAS  Google Scholar 

  56. Sista R, Hua Z, Thwar P, Sudarsan A, Srinivasan V, Eckhardt A, Pollack M, Pamula V (2008) Development of a digital microfluidic platform for point of care testing. Lab Chip 8:2091–2104

    CAS  Google Scholar 

  57. Malic L, Brassard D, Veres T, Tabrizian M (2010) Integration and detection of biochemical assays in digital microfluidic LOC devices. Lab Chip 10:418–431

    CAS  Google Scholar 

  58. Lippmann G (1875) Relations entre les phénomènes électriques et capillaires. Ann Chim Phys 5:494–549

    Google Scholar 

  59. Berge B (1993) Electrocapillarity and wetting of insulator films by water. C R Acad Sci Paris, Série II 317:157–163

    CAS  Google Scholar 

  60. Vallet M, Berge B, Vovelle L (1996) Electrowetting of water and aqueous solutions on poly(ethylene terephthalate) insulating films. Polymer 37:2465–2470

    CAS  Google Scholar 

  61. Lee J, Moon H, Fowler J, Schoellhammer T, Kim C-J (2002) Electrowetting and electrowetting-on-dielectric for microscale liquid handling. Sens Actuators A 95:259–268

    Google Scholar 

  62. Berthier J (2008) Microdrops and digital microfluidics. William Andrew, Norwich, NY

    Google Scholar 

  63. Berthier J, Silberzan P (2010) Microfluidics for biotechnology, 2nd edn. Artech House, Boston

    Google Scholar 

  64. Pollack MG (2001) Electrowetting-based microactuation of droplets for digital microfluidics. PhD thesis, Duke University, USA

    Google Scholar 

  65. Srinivasan V (2005) A digital microfluidic lab-on-a-chip for clinical applications. PhD thesis, Duke University, USA

    Google Scholar 

  66. Chatterjee D, Hetayothin B, Wheeler AR, King DJ, Garrell RL (2006) Droplet-based microfluidics with nonaqueous solvents and solutions. Lab Chip 6:199–206

    CAS  Google Scholar 

  67. Brassard D, Malic L, Normandin F, Tabrizian M, Veres T (2008) Water–oil core-shell droplets for electrowetting-based digital microfluidic devices. Lab Chip 8:1342–1349

    CAS  Google Scholar 

  68. Probstein RF (1994) Physicochemical hydrodynamics: an introduction, 2nd edn. Wiley, New York

    Google Scholar 

  69. Berthier J, Clementz P, Raccurt O, Jary D, Claustre P, Peponnet C, Fouillet Y (2006) Computer aided design of an EWOD microdevice. Sens Actuators A 127:283–294

    Google Scholar 

  70. Yoon J-Y, Garrell RL (2003) Preventing biomolecular adsorption in electrowetting-based biofluidic chips. Anal Chem 75:5097–5102

    CAS  Google Scholar 

  71. Luk VN, Mo GCH, Wheeler AR (2008) Pluronic additives: a solution to sticky problems in digital microfluidics. Langmuir 24:6382–6389

    CAS  Google Scholar 

  72. Hayes RA, Feenstra BJ (2003) Video-speed electronic paper based on electrowetting. Nature 425:383–385

    CAS  Google Scholar 

  73. Washizu M (1998) Electrostatic actuation of liquid droplets for microreactor applications. IEEE Trans Ind Appl 34:732–737

    CAS  Google Scholar 

  74. Cho SK, Moon H, Kim C-J (2003) Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits. J Microelectromech Syst 12:70–80

    Google Scholar 

  75. Berge B, Peseux J (2000) Variable focal lens controlled by an external voltage: an application of electrowetting. Eur Phys J E 3:159–163

    CAS  Google Scholar 

  76. Kuiper S, Hendriks BHW (2004) Variable-focus liquid lens for miniature cameras. Appl Phys Lett 85:1128–1130

    CAS  Google Scholar 

  77. Dong L, Agarwal AK, Beebe DJ, Jiang H (2006) Adaptive liquid microlenses activated by stimuli-responsive hydrogels. Nature 442:551–554

    CAS  Google Scholar 

  78. Cattaneo F, Baldwin K, Yang S, Krupenkine T, Ramachandran S, Rogers JA (2003) Digitally tunable microfluidic optical fiber devices. J Microelectromech Syst 12:907–912

    Google Scholar 

  79. Levy U, Shamai R (2008) Tunable optofluidic devices. Microfluid Nanofluid 4:97–105

    Google Scholar 

  80. Chakrabarty K, Paik PY, Pamula VK (2007) Adaptive cooling of integrated circuits using digital microfluidics. Artech House, Boston

    Google Scholar 

  81. Peykov V, Quinn A, Ralston J (2000) Electrowetting: a model for contact-angle saturation. Colloid Polym Sci 278:789–793

    CAS  Google Scholar 

  82. Quinn A, Sedev R, Ralston J (2005) Contact angle saturation in electrowetting. J Phys Chem B 109:6268–6275

    CAS  Google Scholar 

  83. Papathanasiou AG, Boudouvis AG (2005) Manifestation of the connection between dielectric breakdown strength and contact angle saturation in electrowetting. Appl Phys Lett 86:164102

    Google Scholar 

  84. Mugele F (2009) Fundamental challenges in electrowetting: from equilibrium shapes to contact angle saturation and drop dynamics. Soft Matter 5:3377–3384

    CAS  Google Scholar 

  85. Krupenkin TN, Taylor JA, Schneider TM, Yang S (2004) From rolling ball to complete wetting: the dynamic tuning of liquids on nanostructured surfaces. Langmuir 20:3824–3827

    CAS  Google Scholar 

  86. Vallet M, Vallade M, Berge B (1999) Limiting phenomena for the spreading of water on polymer films by electrowetting. Eur Phys J B 11:583–591

    CAS  Google Scholar 

  87. Wang K-L, Jones TB (2005) Saturation effects in dynamic electrowetting. Appl Phys Lett 86:054104

    Google Scholar 

  88. Verheijen HJJ, Prins MWJ (1999) Reversible electrowetting and trapping of charge: model and experiments. Langmuir 15:6616–6620

    CAS  Google Scholar 

  89. Chen JZ, Troian SM, Darhuber AA, Wagner S (2005) Effect of contact angle hysteresis on thermocapillary droplet actuation. J Appl Phys 97:014906

    Google Scholar 

  90. Berthier J, Dubois P, Clementz P, Claustre P, Peponnet C, Fouillet Y (2007) Actuation potentials and capillary forces in electrowetting based microsystems. Sens Actuators A 134:471–479

    Google Scholar 

  91. Keshavarz-Motamed Z, Kadem L, Dolatabadi A (2010) Effects of dynamic contact angle on numerical modeling of electrowetting in parallel plate microchannels. Microfluid Nanofluid 8:47–56

    CAS  Google Scholar 

  92. Fan S-K, Yang H, Wang T-T, Hsu W (2007) Asymmetric electrowetting—moving droplets by a square wave. Lab Chip 7:1330–1335

    CAS  Google Scholar 

  93. Shapiro B, Moon H, Garrell RL, Kim C-J (2003) Equilibrium behavior of sessile drops under surface tension, applied external fields, and material variations. J Appl Phys 93:5794–5811

    CAS  Google Scholar 

  94. Zeng J, Korsmeyer T (2004) Principles of droplet electrohydrodynamics for lab-on-a-chip. Lab Chip 4:265–277

    CAS  Google Scholar 

  95. Zeng J (2006) Modeling and simulation of electrified droplets and its application to computer-aided design of digital microfluidics. IEEE Trans Comput Aid Des Integr Circ Syst 25:224–233

    Google Scholar 

  96. Lienemann J, Greiner A, Korvink JG (2006) Modeling, simulation, and optimization of electrowetting. IEEE Trans Comput Aid Des Integr Circ Syst 25:234–247

    Google Scholar 

  97. Walker SW, Shapiro B (2006) Modeling the fluid dynamics of electrowetting on dielectric (EWOD). J Microelectromech Syst 15:986–1000

    Google Scholar 

  98. Lu H-W, Glasner K, Bertozzi AL, Kim C-J (2007) A diffuse-interface model for electrowetting drops in a Hele-Shaw cell. J Fluid Mech 590:411–435

    Google Scholar 

  99. Song JH, Evans R, Lin Y-Y, Hsu BN, Fair RB (2009) A scaling model for electrowetting-on-dielectric microfluidic actuators. Microfluid Nanofluid 7:75–89

    CAS  Google Scholar 

  100. Clime L, Brassard D, Veres T (2010) Numerical modeling of electrowetting transport processes for digital microfluidics. Microfluid Nanofluid 8:599–608

    CAS  Google Scholar 

  101. Yi U-C, Kim C-J (2006) Characterization of electrowetting actuation on addressable single-sided coplanar electrodes. J Micromech Microeng 16:2053–2059

    Google Scholar 

  102. Moon H, Cho SK, Garrell RL, Kim C-J (2002) Low voltage electrowetting-on-dielectric. J Appl Phys 92:4080–4087

    CAS  Google Scholar 

  103. Paik P, Pamula VK, Pollack MG, Fair RB (2003) Electrowetting-based droplet mixers for microfluidic systems. Lab Chip 3:28–33

    CAS  Google Scholar 

  104. Paik P, Pamula VK, Fair RB (2003) Rapid droplet mixers for digital microfluidic systems. Lab Chip 3:253–259

    CAS  Google Scholar 

  105. Srinivasan V, Pamula VK, Fair RB (2004) An integrated digital microfluidic lab-on-a-chip for clinical diagnostics on human physiological fluids. Lab Chip 4:310–315

    CAS  Google Scholar 

  106. Srinivasan V, Pamula VK, Fair RB (2004) Droplet-based microfluidic lab-on-a-chip for glucose detection. Anal Chim Acta 507:145–150

    CAS  Google Scholar 

  107. Srinivasan V, Pamula V, Paik P, Fair R (2004) Protein stamping for MALDI mass spectrometry using an electrowetting-based microfluidic platform. In: Lab-on-a-chip: platforms, devices, and applications. Proceedings of SPIE, vol 5591, Philadelphia, Pennsylvania (PA), USA, pp 26–32

    Google Scholar 

  108. Wheeler AR, Moon H, Bird CA, Loo RRO, Kim C-J, Loo JA, Garrell RL (2005) Digital microfluidics with in-line sample purification for proteomics analyses with MALDI-MS. Anal Chem 77:534–540

    CAS  Google Scholar 

  109. Moon H, Wheeler AR, Garrell RL, Loo JA, Kim C-J (2006) An integrated digital microfluidic chip for multiplexed proteomic sample preparation and analysis by MALDI-MS. Lab Chip 6:1213–1219

    CAS  Google Scholar 

  110. Böhringer KF (2006) Modeling and controlling parallel tasks in droplet-based microfluidic systems. IEEE Trans Comput Aid Des Integr Circ Syst 25:334–344

    Google Scholar 

  111. Griffith EJ, Akella S, Goldberg MK (2006) Performance characterization of a reconfigurable planar-array digital microfluidic system. IEEE Trans Comput Aid Des Integr Circ Syst 25:345–357

    Google Scholar 

  112. Gascoyne PRC, Vykoukal JV, Schwartz JA, Anderson TJ, Vykoukal DM, Current KW, McConaghy C, Becker FF, Andrews C (2004) Dielectrophoresis-based programmable fluidic processors. Lab Chip 4:299–309

    CAS  Google Scholar 

  113. Li Y, Parkes W, Haworth LI, Stokes AA, Muir KR, Li P, Collin AJ, Hutcheon NG, Henderson R, Rae B, Walton AJ (2008) Anodic Ta2O5 for CMOS compatible low voltage electrowetting-on-dielectric device fabrication. Solid State Electron 52:1382–1387

    CAS  Google Scholar 

  114. Gong J, Kim C-J (2008) Direct-referencing two-dimensional-array digital microfluidics using multilayer printed circuit board. J Microelectromech Syst 17:257–264

    Google Scholar 

  115. Abdelgawad M, Wheeler AR (2007) Rapid prototyping in copper substrates for digital microfluidics. Adv Mater 19:133–137

    CAS  Google Scholar 

  116. Abdelgawad M, Wheeler AR (2008) Low-cost, rapid-prototyping of digital microfluidics devices. Microfluid Nanofluid 4:349–355

    CAS  Google Scholar 

  117. Herbertson DL, Evans CR, Shirtcliffe NJ, McHale G, Newton MI (2006) Electrowetting on superhydrophobic SU-8 patterned surfaces. Sens Actuators A 130–131:189–193

    Google Scholar 

  118. Verplanck N, Coffinier Y, Thomy V, Boukherroub R (2007) Wettability switching techniques on superhydrophobic surfaces. Nanoscale Res Lett 2:577–596

    CAS  Google Scholar 

  119. Abdelgawad M, Freire SLS, Yang H, Wheeler AR (2008) All-terrain droplet actuation. Lab Chip 8:672–677

    CAS  Google Scholar 

  120. Abdelgawad M, Watson MWL, Wheeler AR (2009) Hybrid microfluidics: a digital-to-channel interface for in-line sample processing and chemical separations. Lab Chip 9:1046–1051

    CAS  Google Scholar 

  121. Fan S-K, Yang H, Hsu W (2011) Droplet-on-a-wristband: chip-to-chip digital microfluidic interfaces between replaceable and flexible electrowetting modules. Lab Chip 11:343–347

    CAS  Google Scholar 

  122. Duan R-Q, Koshizuka S, Oka Y (2003) Two-dimensional simulation of drop deformation and breakup at around the critical Weber number. Nucl Eng Des 225:37–48

    CAS  Google Scholar 

  123. Raccurt O, Berthier J, Clementz P, Borella M, Plissonnier M (2007) On the influence of surfactants in electrowetting systems. J Micromech Microeng 17:2217–2223

    CAS  Google Scholar 

  124. Ren H, Fair RB, Pollack MG, Shaughnessy EJ (2002) Dynamics of electro-wetting droplet transport. Sens Actuators B 87:201–206

    Google Scholar 

  125. Bahadur V, Garimella SV (2006) An energy-based model for electrowetting-induced droplet actuation. J Micromech Microeng 16:1494–1503

    Google Scholar 

  126. Chakraborty S, Mittal R (2007) Droplet dynamics in a microchannel subjected to electrocapillary actuation. J Appl Phys 101:104901

    Google Scholar 

  127. Baird E, Young P, Mohseni K (2007) Electrostatic force calculation for an EWOD-actuated droplet. Microfluid Nanofluid 3:635–644

    Google Scholar 

  128. Bavière R, Boutet J, Fouillet Y (2008) Dynamics of droplet transport induced by electrowetting actuation. Microfluid Nanofluid 4:287–294

    Google Scholar 

  129. Ahmadi A, Najjaran H, Holzman JF, Hoorfar M (2009) Two-dimensional flow dynamics in digital microfluidic systems. J Micromech Microeng 19:065003

    Google Scholar 

  130. Chatterjee D, Shepherd H, Garrell RL (2009) Electromechanical model for actuating liquids in a two-plate droplet microfluidic device. Lab Chip 9:1219–1229

    CAS  Google Scholar 

  131. Berthier J, Peponnet C (2007) A model for the determination of the dimensions of dents for jagged electrodes in electrowetting on dielectric microsystems. Biomicrofluidics 1:014104

    CAS  Google Scholar 

  132. Moon I, Kim J (2006) Using EWOD (electrowetting-on-dielectric) actuation in a micro conveyor system. Sens Actuators A 130–131:537–544

    Google Scholar 

  133. CFD-ACE+ (2008) User manual: version 2008.2. ESI CFD, Inc., Huntsville, AL

    Google Scholar 

  134. Cooney CG, Chen C-Y, Emerling MR, Nadim A, Sterling JD (2006) Electrowetting droplet microfluidics on a single planar surface. Microfluid Nanofluid 2:435–446

    Google Scholar 

  135. Ren H (2004) Electrowetting-based sample preparation: an initial study for droplet transportation, creation and on-chip digital dilution. PhD thesis, Duke University, USA

    Google Scholar 

  136. Trinder P (1969) Determination of blood glucose using 4-amino phenazone as oxygen acceptor. J Clin Pathol 22:246

    CAS  Google Scholar 

  137. Pamula VK, Srinivasan V, Chakrapani H, Fair RB, Toone EJ (2005) A droplet-based lab-on-a-chip for colorimetric detection of nitroaromatic explosives. In: 18th IEEE international conference on MEMS, Miami Beach, FL, USA, pp 722–725

    Google Scholar 

  138. Terrier F (1982) Rate and equilibrium studies in Jackson-Meisenheimer complexes. Chem Rev 82:78–152

    Google Scholar 

  139. Pollack MG, Paik PY, Shenderov AD, Pamula VK, Dietrich FS, Fair RB (2003) Investigation of electrowetting-based microfluidics for real-time PCR applications. In: Seventh international conference on miniaturized chemical and biochemical analysis systems—proceedings of the 2003 MicroTAS conference, Squaw Valley, CA, pp 619–622

    Google Scholar 

  140. Chang Y-H, Lee G-B, Huang F-C, Chen Y-Y, Lin J-L (2006) Integrated polymerase chain reaction chips utilizing digital microfluidics. Biomed Microdevices 8:215–225

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert W. Barber .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Barber, R.W., Emerson, D.R. (2012). Recent Advances in Electrowetting Microdroplet Technologies. In: Day, P., Manz, A., Zhang, Y. (eds) Microdroplet Technology. Integrated Analytical Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3265-4_4

Download citation

Publish with us

Policies and ethics