Future Trends

  • Guillermo López-Campos
  • Joaquín V. Martínez-Suárez
  • Mónica Aguado-Urda
  • Victoria López-Alonso
Chapter
Part of the SpringerBriefs in Food, Health, and Nutrition book series (BRIEFSFOOD)

Abstract

Detection technologies developed in the last 10 years have been directed to find more rapid, specific, and sensitive methods to detect multiple targets simultaneously. Much emphasis has been put on the desired characteristics of high sensitivity, high specificity, and cost-effectiveness, which are of great importance in routine high-volume food diagnostics. Developments in microfluidics, microarray technology, and nanotechnology facilitate the development of novel detection platforms such as protein and polysaccharide microarrays, lab on a chip, biosensors, and high-throughput sequencing technologies. Such methods will be used for larger applications and will open new avenues in food microbiology. These multiplexed assays will allow the development of tests for the detection of virtually any combination of target sequences in any type of sample that contains nucleic acid material. Genomics, proteomics, and other areas of study concerning microbial cells will provide new opportunities for achieving objectives that were hard to imagine not so long ago. These promising new technologies are making the transition from the research laboratory to routine diagnostic use. Obviously, the new technologies will also need to be carefully evaluated and thoroughly validated for specific applications.

Keywords

Protein microarrays Polysaccharide microarrays Phenotype microarrays Biosensors Nanotechnology Next-generation high-throughput sequencing technologies 

References

  1. Ahmed N, Dobrindt U, Hacker J, Hasnain SE (2008) Genomic fluidity and pathogenic bacteria: applications in diagnostics, epidemiology and intervention. Nat Rev Microbiol 6:387–394.CrossRefPubMedGoogle Scholar
  2. Arora P, Sindhu A, Dilbaghi N, Chaudhury A (2011) Biosensors as innovative tools for the detection of food borne pathogens. Biosens Bioelectron 28:1–12.CrossRefPubMedGoogle Scholar
  3. Bennett ST, Barnes C, Cox A, Davies L, Brown C (2005) Toward the 1,000 dollars human genome. Pharmacogenomics 6:373–382.CrossRefPubMedGoogle Scholar
  4. Bhunia AK (2008) Biosensors and bio-based methods for the separation and detection of foodborne pathogens. Adv Food Nutr Res 54:1–44.CrossRefPubMedGoogle Scholar
  5. Bielaszewska M, Mellmann A, Zhang W, Köck R, Fruth A, Bauwens A, Peters G, Karch H (2011) Characterisation of the Escherichia coli strain associated with an outbreak of haemolytic uraemic syndrome in Germany, 2011: a microbiological study. Lancet Infect Dis 11:671–676.CrossRefPubMedGoogle Scholar
  6. BioForce Nanosciences http://www.bioforcenano.com/index.php?id=58. Accessed 1 December 2011.
  7. Blixt O, Hoffmann J, Svenson S, Norberg T (2008) Pathogen specific carbohydrate antigen microarrays: a chip for detection of Salmonella O-antigen specific antibodies. Glycoconj J 25:27–36.CrossRefPubMedGoogle Scholar
  8. Bochner BR, Gadzinski P, Panomitros E (2001) Phenotype microarrays for high-throughput phenotypic testing and assay of gene function. Genome Res 11:1246–1255.PubMedCentralCrossRefPubMedGoogle Scholar
  9. Chandra H, Reddy PJ, Srivastava S (2011) Protein microarrays and novel detection platforms. Expert Rev Proteomics 8:61–79.CrossRefPubMedGoogle Scholar
  10. Disney MD, Seeberger PH (2004) The use of carbohydrate microarrays to study carbohydrate-cell interactions and to detect pathogens. Chem Biol 11:1701–1707.CrossRefPubMedGoogle Scholar
  11. Dominguez-Bello MG, Blaser MJ, Ley RE, Knight R (2011) Development of the human gastrointestinal microbiota and insights from high-throughput sequencing. Gastroenterology 140:1713–1719.CrossRefPubMedGoogle Scholar
  12. Ehricht R, Adelhelm K, Monecke S, Huelseweh B (2009) Application of protein arraytubes to bacteria, toxin, and biological warfare agent detection. Methods Mol Biol 509:85–105.CrossRefPubMedGoogle Scholar
  13. Farabullini F, Lucarelli F, Palchetti I, Marrazza G, Mascini M (2007) Disposable electrochemical genosensor for the simultaneous analysis of different bacterial food contaminants. Biosens Bioelectron 22:1544–1549.CrossRefPubMedGoogle Scholar
  14. Fournier-Wirth C, Coste J (2010) Nanotechnologies for pathogen detection: future alternatives? Biologicals 38:9–13.CrossRefPubMedGoogle Scholar
  15. Fox EM, Leonard N, Jordan K (2011) Physiological and transcriptional characterization of persistent and nonpersistent Listeria monocytogenes isolates. Appl Environ Microbiol 77:6559–6569.PubMedCentralCrossRefPubMedGoogle Scholar
  16. Gehring AG, Albin DM, Reed SA, Tu SI, Brewster JD (2008) An antibody microarray, in multiwell plate format, for multiplex screening of foodborne pathogenic bacteria and biomolecules. Anal Bioanal Chem 391:497–506.CrossRefPubMedGoogle Scholar
  17. Hall DA, Ptacek J, Snyder M (2007) Protein microarray technology. Mech Ageing Dev 128:161–167.PubMedCentralCrossRefPubMedGoogle Scholar
  18. Horlacher T, Seeberger PH (2008) Carbohydrate arrays as tools for research and diagnostics. Chem Soc Rev 37:1414–1422.CrossRefPubMedGoogle Scholar
  19. Jung JH, Kim GY, Seo TS (2011) An integrated passive micromixer-magnetic separation-capillary electrophoresis microdevice for rapid and multiplex pathogen detection at the single-cell level. Lab Chip 11:3465–3470.CrossRefPubMedGoogle Scholar
  20. LaGier MJ, Fell JW, Goddwin KD (2007) Electrochemical detection of harmful algae and other microbial contaminants in coastal waters using hand-held biosensors. Mar Pollut Bull 54:757–770.CrossRefPubMedGoogle Scholar
  21. Laschi S, Palchetti I, Marrazza G, Mascini M (2006) Development of disposable low density screen-printed electrode arrays for simultaneous electrochemical measurements of the hybridization reaction. J Electroanal Chem 593: 211–218.CrossRefGoogle Scholar
  22. Li D, Feng Y, Zhou L, Ye Z, Wang J, Ying Y, Ruan C, Wang R, Li Y (2011) Label-free capacitive immunosensor based on quartz crystal Au electrode for rapid and sensitive detection of Escherichia coli O157:H7. Anal Chim Acta 687:89–96.CrossRefPubMedGoogle Scholar
  23. Liang PH, Wang SK, Wong CH (2007) Quantitative analysis of carbohydrate-protein interactions using glycan microarrays: determination of surface and solution dissociation constants. J Am Chem Soc 129:11177–11184.CrossRefPubMedGoogle Scholar
  24. Louie AS, Marenchic IG, Whelan RH (1998) A fieldable modular biosensor for use in detection of foodborne pathogens. Field Anal. Chem Technol 2:371–377.CrossRefGoogle Scholar
  25. Luo Y, Nartker S, Miller H, Hochhalter D, Wiederoder M, Wiederoder S, Setterington E, Drzal LT, Alocilja EC (2010) Surface functionalization of electrospun nanofibers for detecting E. coli O157:H7 and BVDV cells in a direct-charge transfer biosensor. Biosens Bioelectron 26:1612–1617.CrossRefPubMedGoogle Scholar
  26. Lynch M, Mosher C, Huff J, Nettikadan S, Johnson J, Henderson E (2004) Functional protein nanoarrays for biomarker profiling. Proteomics 4(6):1695–1702.CrossRefPubMedGoogle Scholar
  27. MacLean D, Jones JDG, Studholme DJ (2009) Application of next-generation sequencing technologies to microbial genetics. Nat Rev Microbiol 7:287–296.PubMedGoogle Scholar
  28. Maraldo D, Mutharasan R (2007) 10-minute assay for detecting Escherichia coli O157:H7 in ground beef samples using piezoelectric-excited millimeter-size cantilever sensors. J Food Prot 70:1670–1677.PubMedGoogle Scholar
  29. Margulies M, Egholm M, Altman WE et al (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437:376–380.PubMedCentralPubMedGoogle Scholar
  30. Mellmann A, Harmsen D, Cummings CA, Zentz EB, Leopold SR, Rico A, Prior K, Szczepanowski R, Ji Y, Zhang W, McLaughlin SF, Henkhaus JK, Leopold B, Bielaszewska M, Prager R, Brzoska PM, Moore RL, Guenther S, Rothberg JM, Karch H (2011) Prospective genomic characterization of the German enterohemorrhagic Escherichia coli O104:H4 outbreak by rapid next generation sequencing technology. PLoS One 6:e22751.PubMedCentralCrossRefPubMedGoogle Scholar
  31. Mills DK, Entry JA, Voss JD, Gillevet PM, Mathee K (2006) An assessment of the hypervariable domains of the 16S rRNA genes for their value in determining microbial community diversity: the paradox of traditional ecological indices. FEMS Microbiol Ecol 57:496–503.PubMedCentralPubMedGoogle Scholar
  32. Rasko DA, Webster DR, Sahl JW, Bashir A, Boisen N, Scheutz F, Paxinos EE, Sebra R, Chin CS, Iliopoulos D, Klammer A, Peluso P, Lee L, Kislyuk AO, Bullard J, Kasarskis A, Wang S, Eid J, Rank D, Redman JC, Steyert SR, Frimodt-Moller J, Struve C, Petersen AM, Krogfelt KA, Nataro JP, Schadt EE, Waldor MK (2011) Origins of the E. coli strain causing an outbreak of hemolytic-uremic syndrome in Germany. N Engl J Med 365:709–717.PubMedCentralCrossRefPubMedGoogle Scholar
  33. Ray S, Chandra H, Srivastava S (2010) Nanotechniques in proteomics: current status promises and challenges. Biosens Bioelectron 25:2389–2401.CrossRefPubMedGoogle Scholar
  34. Rogers GB, Bruce KD (2010) Next-generation sequencing in the analysis of human microbiota: essential considerations for clinical application. Mol Diagn Ther 14:343–350.CrossRefPubMedGoogle Scholar
  35. Rohde H, Qin J, Cui Y, Li D, Loman NJ, Hentschke M, Chen W, Pu F, Peng Y, Li J, Xi F, Li S, Li Y, Zhang Z, Yang X, Zhao M, Wang P, Guan Y, Cen Z, Zhao X, Christner M, Kobbe R, Loos S, Oh J, Yang L, Danchin A, Gao GF, Song Y, Li Y, Yang H, Wang J, Xu J, Pallen MJ, Wang J, Aepfelbacher M, Yang R (2011) Open-source genomic analysis of Shiga-toxin-producing E. coli O104:H4. N Engl J Med 365:718–724.CrossRefPubMedGoogle Scholar
  36. Schadt EE, Turner S, Kasarskis A (2010) A window into third-generation sequencing. Hum Mol Genet 19:227–240.CrossRefGoogle Scholar
  37. Sin ML, Gao J, Liao JC, Wong PK (2011) System integration – a major Step toward Lab on a Chip. J Biol Eng 5:6–28.PubMedCentralCrossRefPubMedGoogle Scholar
  38. Su Z, Ning B, Fang H, Perkins R, Tong W, Shi L (2011) Next-generation sequencing and its applications in molecular diagnostics. Expert Rev Mol Diagn 11:333–343.PubMedCentralCrossRefPubMedGoogle Scholar
  39. Tang F, Barbacioru C, Wang Y, Nordman E, Lee C, Xu N, Wang X, Bodeau J, Tuch BB, Siddiqui A, Lao K, Surani MA (2009) mRNA-Seq whole transcriptome analysis of a single cell. Nat Methods 6: 377–382.CrossRefPubMedGoogle Scholar
  40. van Vliet AH, Wren BW (2009) New levels of sophistication in the transcriptional landscape of bacteria. Genome Biol 10:233.CrossRefPubMedGoogle Scholar
  41. Zhang W, Qi W, Albert TJ, Motiwala AS, Alland D, Hyytia-Trees EK, Ribot EM, Fields PI, Whittam TS, Swaminathan B (2006) Probing genomic diversity and evolution of Escherichia coli O157 by single nucleotide polymorphisms. Genome Res 16:757–767.PubMedCentralCrossRefPubMedGoogle Scholar
  42. Zhao W, Wang L, Tan W (2007) Fluorescent nanoparticle for bacteria and DNA detection. Adv Exp Med Biol 620:129–135.CrossRefPubMedGoogle Scholar

Copyright information

© Guillermo Lopez-Campos; Joaquin V. Martinez-Suarez; Mónica Aguado-Urda; Victoria Lopez Alonso 2012

Authors and Affiliations

  • Guillermo López-Campos
    • 1
  • Joaquín V. Martínez-Suárez
    • 2
  • Mónica Aguado-Urda
    • 3
  • Victoria López-Alonso
    • 1
  1. 1.Department of Bioinformatics and Public HealthSpanish National Institute of Health ‘Carlos III’MadridSpain
  2. 2.Department of Food TechnologySpanish National Institute for Agricultural and Food Research and Technology (INIA)MadridSpain
  3. 3.Department of Animal HealthComplutense UniversityMadridSpain

Personalised recommendations