Skip to main content

Detection, Identification, and Analysis of Foodborne Pathogens

  • Chapter
  • First Online:
Book cover Microarray Detection and Characterization of Bacterial Foodborne Pathogens

Abstract

The detection and enumeration of microorganisms in food are an essential part of any quality control or food safety plan. Traditional methods of detecting foodborne pathogenic bacteria are often time-consuming because of the need for growth in culture media, followed by isolation, biochemical and/or serological identification, and in some cases, subspecific characterization. Advances in technology have made detection and identification faster, more sensitive, more specific, and more convenient than traditional assays. These new methods include for the most part antibody- and DNA-based tests, and modifications of conventional tests made to speed up analysis and reduce handling. With few exceptions, almost all assays used to detect specific pathogens in foods are qualitative assays, as they still lack sufficient sensitivity for direct testing and require some growth in an enrichment medium before analysis. One of the most challenging problems to circumvent with these assays is sample preparation. The possibilities of combining different rapid methods, including improved technologies for separation and concentration of specific bacteria, and for DNA extraction and purification, will facilitate the direct detection of pathogens in food. The goal is to avoid the enrichment, providing rapid alternatives to conventional quantitative culture methods. Further improvements, especially in genetic methods, can be expected, including the use of DNA microarray technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abubakar I, Irvine L, Aldus CF, Wyatt GM, Fordham R, Schelenz S, Shepstone L, Howe A, Peck M, Hunter PR (2007) A systematic review of the clinical, public health and cost-effectiveness of rapid diagnostic tests for the detection and identification of bacterial intestinal pathogens in faeces and food. Health Technol Assess 11:1–216.

    CAS  Google Scholar 

  • Aldus CF, van Amerongen A, Ariens RMC, Peck MW, Wichers JH, Wyatt GM (2003) Principles of some novel rapid dipstick methods for detection and characterization of verotoxigenic Escherichia coli. J Appl Microbiol 95:380–389.

    Article  CAS  Google Scholar 

  • Aminul Islam M, Heuvelink AE, Talukder KA, de Boer E (2006) Immunoconcentration of Shiga toxin-producing Escherichia coli O157 from animal faeces and raw meats by using Dynabeads anti-E. coli O157 and the VIDAS system. Int J Food Microbiol 109:151–156.

    Article  CAS  Google Scholar 

  • AOAC INTERNATIONAL (2011) Performance Tested Methodssm Validated Methods. http://www.aoac.org/testkits/testedmethods.html. Last updated: October 2011. Accessed 18 November 2011.

  • Betts R, Blackburn CW (2009) Detecting pathogens in food. In: Foodborne pathogens: hazards, risk analysis and control, 2nd edn. Edited by: Blackburn CW, McClure PJ. Woodhead Publishing, Oxford, UK. pp. 17–65.

    Chapter  Google Scholar 

  • Bhunia AK (2008) Biosensors and bio-based methods for the separation and detection of foodborne pathogens. Adv Food Nutr Res 54:1–44.

    Article  CAS  Google Scholar 

  • Bisha B, Brehm-Stecher BF (2010) Combination of adhesive-tape-based sampling and fluorescence in situ hybridization for rapid detection of Salmonella on fresh produce. J Vis Exp 44 pii:2308.

    Google Scholar 

  • Blodgett R (2010) Most probable number from serial dilutions. Bacteriological Analytical Manual Appendix2. http://www.fda.gov/Food/ScienceResearch/LaboratoryMethods/BacteriologicalAnalyticalManualBAM/ucm109656.htm. Accessed 10 November 2011.

  • Bohaychuk VM, Gensler GE, King RK, Wu JT, McMullen LM (2005) Evaluation of detection methods for screening meat and poultry products for the presence of foodborne pathogens. J Food Prot 68:2637–2647.

    Google Scholar 

  • Bolton FJ, Crozier L, Williamson JK (1996) Isolation of Escherichia coli O157 from raw meat products. Lett Appl Microbiol 23:317–321.

    Article  CAS  Google Scholar 

  • Bosilevac JM, Shackelford SD, Brichta DM, Koohmaraie M (2005) Efficacy of ozonated and electrolyzed oxidative waters to decontaminate hides of cattle before slaughter. J Food Prot 68:1393–1398.

    Google Scholar 

  • Bottari B, Ercolini D, Gatti M, Neviani E (2006) Application of FISH technology for microbiological analysis: current state and prospects. Appl Microbiol Biotechnol 73:485–494.

    Article  CAS  Google Scholar 

  • Bugarel M, Beutin L, Martin A, Gill A, Fach P (2010) Micro-array for the identification of Shiga toxin-producing Escherichia coli (STEC) seropathotypes associated with Hemorrhagic Colitis and Hemolytic Uremic Syndrome in humans. Int J Food Microbiol 142:318–329.

    Article  Google Scholar 

  • Chain VS, Fung DYC (1991) Comparison of Redigel, Petrifilm, spiral plate system, Isogrid, and aerobic plate count for determining the numbers of aerobic bacteria in selected foods. J Food Prot 54:208–211.

    Google Scholar 

  • Chen WT, Hendrickson RL, Huang CP, Sherman D, Geng T, Bhunia AK, Ladisch MR (2005) Mechanistic study of membrane concentration and recovery of Listeria monocytogenes. Biotechnol Bioeng 89:263–273.

    Article  CAS  Google Scholar 

  • Cohen AE, Kerdahi KF (1996) Evaluation of a rapid and automated enzyme-linked fluorescent immunoassay say for detecting Escherichia coli serogroup O157 in cheese. J AOAC Int 79:858–860.

    CAS  Google Scholar 

  • Comas-Riu J, Rius N (2009) Flow cytometry applications in the food industry. J Ind Microbiol Biotechnol 36:999–1011.

    Article  CAS  Google Scholar 

  • Cools I, D’Haese E, Uyttendaele M, Storms E, Nelis HJ, Debevere J (2005) Solid phase cytometry as a tool to detect viable but non-culturable cells of Campylobacter jejuni. J Microbiol Methods 63:107–114.

    Article  CAS  Google Scholar 

  • Cunningham AE, Rajagopal R, Lauer J, Allwood P (2011) Assessment of hygienic quality of surfaces in retail food service establishments based on microbial counts and real-time detection of ATP. J Food Prot 74:686–690.

    Article  Google Scholar 

  • D’Aoust J-Y, Sewell AM, Greco P (1991) Commercial latex agglutination kits for the detection of foodborne Salmonella. J Food Prot 54:725–730.

    Google Scholar 

  • D’Haese E, Nelis HJ (2002) Rapid detection of single cell bacteria as a novel approach in food microbiology. J AOAC Int 85:979–983.

    Google Scholar 

  • Favrin SJ, Jassim SA, Griffiths MW (2003) Application of a novel immunomagnetic separation-bacteriophage assay for the detection of Salmonella Enteritidis and Escherichia coli O157: H7 in food. Int J Food Microbiol 85:63–71.

    Article  Google Scholar 

  • Fedio WM, Jinneman KC, Yoshitomi KJ, Zapata R, Wendakoon CN, Browning P, Weagant SD (2011) Detection of E. coli O157:H7 in raw ground beef by Pathatrix™ immunomagnetic-separation, real-time PCR and cultural methods. Int J Food Microbiol 148:87–92.

    Article  CAS  Google Scholar 

  • Feng P (2007) Rapid methods for the detection of foodborne pathogens: current and next-generation technologies. In: Food microbiology, fundamentals and frontiers, 3rd edn. Edited by: Doyle MP, Beuchat LR. ASM Press, Washington, D.C. pp 911–934.

    Google Scholar 

  • Feng P, Weagant SD (2011) Diarrheagenic Escherichia coli. Bacteriological Analytical Manual, Chapter 4A. http://www.fda.gov/food/scienceresearch/laboratorymethods/bacteriologicalanalyticalmanualbam/ucm070080.htm. Accessed 10 November 2011.

  • Foley SL, Lynne AM, Nayak R (2009) Molecular typing methodologies for microbial source tracking and epidemiological investigations of Gram-negative bacterial foodborne pathogens. Infect Genet Evol 9:430–440.

    Article  CAS  Google Scholar 

  • Fratamico PM, Bagi LK, Cray WC Jr, Narang N, Yan X, Medina M, Liu Y (2011) Detection by multiplex real-time polymerase chain reaction assays and isolation of Shiga toxin-producing Escherichia coli serogroups O26, O45, O103, O111, O121, and O145 in ground beef. Foodborne Pathog Dis 8:601–607.

    Article  CAS  Google Scholar 

  • Friedrich AW (2011) Enterohaemorrhagic Escherichia coli O104:H4: are we prepared now? Euro Surveill 16 pii:19938.

    Google Scholar 

  • Fu Z, Rogelj S, Kieft TL (2005) Rapid detection of Escherichia coli O157: H7 by immunomagnetic separation and real-time PCR. Int J Food Microbiol 99:47–57.

    Article  CAS  Google Scholar 

  • Fung DYC, Cox NA, Bailey JS (1988) Rapid methods and automation in the microbiological examination of food. Dairy Food Sanit 8:292–296.

    Google Scholar 

  • Gonzales TK, Kulow M, Park DJ, Kaspar CW, Anklam KS, Pertzborn KM, Kerrish KD, Ivanek R, Döpfer D (2011) A high-throughput open-array qPCR gene panel to identify, virulotype, and subtype O157 and non-O157 enterohemorrhagic Escherichia coli. Mol Cell Probes 25:222–230.

    Article  CAS  Google Scholar 

  • Hanna SE, Connor CJ, Wang HH (2005) Real-time polymerase chain reaction for the food microbiologist: technologies, applications, and limitations. J Food Sci 70:R49–R53.

    Article  CAS  Google Scholar 

  • Hermida M, Taboada M, Menéndez S, Rodríguez-Otero JL (2000) Semi-automated direct epifluorescent filter technique for total bacterial count in raw milk. J AOAC Int 83:1345–1348.

    CAS  Google Scholar 

  • Hill WE (1996) The polymerase chain reaction: application for the detection of foodborne pathogens. CRC Crit Rev Food Sci Nutrit 36:123–173.

    Article  CAS  Google Scholar 

  • Hunter DM, Leskinen SD, Magaña S, Schlemmer SM, Lim DV (2011) Dead-end ultrafiltration concentration and IMS/ATP-bioluminescence detection of Escherichia coli O157:H7 in recreational water and produce wash. J Microbiol Methods 87:338–342.

    Article  Google Scholar 

  • International Standards Organization (2001) Microbiology of food and animal feeding stuffs – horizontal method for the detection of Escherichia coli O157. ISO 16654.

    Google Scholar 

  • Jantzen MM, Navas J, Corujo A, Moreno R, Lopez V, Martinez-Suarez JV (2006a) Review. Specific detection of Listeria monocytogenes in foods using commercial methods: from chromogenic media to real-time PCR. Span J Agric Res 4:235–247.

    Google Scholar 

  • Jantzen MM, Navas J, de Paz M, Rodríguez B, da Silva WP, Nuñez M, Martínez-Suárez JV (2006b) Evaluation of ALOA plating medium for its suitability to recover high pressure-injured Listeria monocytogenes from ground chicken meat. Lett Appl Microbiol 43:313–317.

    Article  CAS  Google Scholar 

  • Jasson V, Jacxsens L, Luning P, Rajkovic A, Uyttendaele M (2010) Review. Alternative microbial methods: An overview and selection criteria. Food Microbiol 27:710–730.

    Article  Google Scholar 

  • Kannan P, Yong HY, Reiman L, Cleaver C, Patel P, Bhagwat AA (2010) Bacteriophage-based rapid and sensitive detection of Escherichia coli O157:H7 isolates from ground beef. Foodborne Pathog Dis 7:1551–1558.

    Article  CAS  Google Scholar 

  • Kawasaki S, Fratamico PM, Horikoshi N, Okada Y, Takeshita K, Sameshima T, Kawamoto S (2009) Evaluation of a multiplex PCR system for simultaneous detection of Salmonella spp., Listeria monocytogenes, and Escherichia coli O157:H7 in foods and in food subjected to freezing. Foodborne Pathog Dis 6:81–89.

    Article  CAS  Google Scholar 

  • Leon-Velarde CG, Zosherafatein L, Odumeru JA (2009) Application of an automated immunomagnetic separation-enzyme immunoassay for the detection of Salmonella enterica subspecies enterica from poultry environmental swabs. J Microbiol Methods 79:13–17.

    Article  CAS  Google Scholar 

  • Lin A, Sultan O, Lau HK, Wong E, Hartman G, Lauzon CR (2011) O serogroup specific real time PCR assays for the detection and identification of nine clinically relevant non-O157 STECs. Food Microbiol 28:478–483.

    Article  CAS  Google Scholar 

  • López V, Suárez M, Chico-Calero I, Navas J, Martínez-Suárez JV (2006) Foodborne Listeria monocytogenes: are all the isolates equally virulent? Rev Argent Microbiol 38:224–234.

    Google Scholar 

  • Manafi M (2000) New developments in chromogenic and fluorogenic culture media. Int J Food Microbiol 60:205–218.

    Article  CAS  Google Scholar 

  • Mandal PK, Biswas AK, Choi K, Pal UK (2011) Methods for rapid detection of foodborne pathogens: an overview. Am J Food Technol 6:87–102.

    Article  Google Scholar 

  • Mathusa EC, Chen Y, Enache E, Hontz L (2010) Non-O157 Shiga toxin-producing Escherichia coli in foods. J Food Prot 73:1721–1736.

    Google Scholar 

  • Miller JM, Rhoden DL (1991) Preliminary evaluation of Biolog, a carbon source utilization method for bacterial identification. J Clin Microbiol 29:1143–1147.

    CAS  Google Scholar 

  • Navas J, Ortiz S, Lopez P, Jantzen MM, Lopez V, Martinez-Suarez JV (2006) Evaluation of effects of primary and secondary enrichment for the detection of Listeria monocytogenes by real-time PCR in retail ground chicken meat. Foodborne Pathog Dis 3:347–354.

    Article  CAS  Google Scholar 

  • Neupane M, Abu-Ali GS, Mitra A, Lacher DW, Manning SD, Riordan JT (2011) Shiga toxin 2 overexpression in Escherichia coli O157:H7 strains associated with severe human disease. Microb Pathog 51:466–470.

    Article  CAS  Google Scholar 

  • O’Sullivan J, Bolton DJ, Duffy G, Baylis C, Tozzoli R, Wasteson Y, Lofdahl S (2007) Methods for detection and molecular characterisation of pathogenic Escherichia coli. Co-ordination action FOOD-CT-2006-036256. Pathogenic Escherichia coli network. Editors O’Sullivan J, Bolton DJ, Duffy G, Baylis C, Tozzoli R, Wasteson Y, Lofdahl S. http://www.antimicrobialresistance.dk/data/images/protocols/e%20coli%20methods.pdf. Accessed 15 November 2011.

  • Olsvik O, Popovic T, Skjerve E, Cudjoe KS, Hornes E, Ugelstad J, Uhlen M (1994) Magnetic separation techniques in diagnostic microbiology. Clin Microbiol Rev 7:43–54.

    CAS  Google Scholar 

  • Pavlic M, Griffiths MW (2009) Principles, applications, and limitations of automated ribotyping as a rapid method in food safety. Foodborne Pathog Dis 6:1047–1055.

    Article  CAS  Google Scholar 

  • Pettipher GL, Watts YB, Langford SA, Kroll RG (1992) Preliminary evaluation of COBRA, an automated DEFT instrument, for the rapid enumeration of microorganisms in cultures, raw-milk, meat and fish. Lett Appl. Microbiol 14:206–209.

    Article  Google Scholar 

  • Posthuma-Trumpie GA, Korf J, van Amerongen A (2009) Lateral flow (immuno) assay: its strengths, weaknesses, opportunities and threats; a literature survey. Anal Bioanal Chem 393:569–582.

    Article  CAS  Google Scholar 

  • Pyle BH, Broadaway SC, McFeters GA (1999) Sensitive detection of Escherichia coli O157:H7 in food and water by immunomagnetic separation and solid-phase laser cytometry. Appl Environ Microbiol 65:1966–1972.

    CAS  Google Scholar 

  • Rodriguez-Lazaro D, Hernandez M (2006) Isolation of Listeria monocytogenes DNA from meat products for quantitative detection by real-time PCR. J Rapid Method Automat Microbiol 14:395–404.

    Article  CAS  Google Scholar 

  • Samkutty PJ, Gough RH, Adkinson RW, McGrew P (2001) Rapid assessment of the bacteriological quality of raw milk using ATP bioluminescence. J Food Prot 64:208–212.

    CAS  Google Scholar 

  • Savoye F, Feng P, Rozand C, Bouvier M, Gleizal A, Thevenot D (2011) Comparative evaluation of a phage protein ligand assay with real-time PCR and a reference method for the detection of Escherichia coli O157:H7 in raw ground beef and trimmings. J Food Prot 74:6–12.

    Article  CAS  Google Scholar 

  • Scheutz F, Nielsen EM, Frimodt-Møller J, Boisen N, Morabito S, Tozzoli R, Nataro JP, Caprioli A (2011) Characteristics of the enteroaggregative Shiga toxin/verotoxin-producing Escherichia coli O104:H4 strain causing the outbreak of haemolytic uraemic syndrome in Germany, May to June 2011. Euro Surveill 16 pii:19889.

    Google Scholar 

  • Seo KH, Brackett RE, Frank JF, Hilliard S (1998) Immunomagnetic separation and flow cytometry for rapid detection of Escherichia coli O157:H7. J Food Prot 61:812–816.

    CAS  Google Scholar 

  • Stager CE, Davis JR (1992) Automated systems for identification of microorganisms. Clin Microbiol Rev 5:302–327.

    CAS  Google Scholar 

  • Stannard C (1997) Development and use of microbiological criteria for foods. Food Sci Technol Today 11:137–177.

    Google Scholar 

  • Stevens KA, Jaykus LA (2004) Bacterial separation and concentration from complex sample matrices: A review. Crit Rev Microbiol 30:7–24.

    Article  Google Scholar 

  • Thacker JD, Casale ES, Tucker CM (1996) Immunoassays (ELISA) for rapid, quantitative analysis in the food-processing industry. J Agric Food Chem 44:2680–2685.

    Article  Google Scholar 

  • Torlak E, Akan IM, Gokmen M (2008) Comparison of TEMPO EC and TBX medium for the enumeration of Escherichia coli in cheese. Lett Appl Microbiol 47:566–570.

    Article  CAS  Google Scholar 

  • United States Department of Agriculture Food Safety And Inspection Service (2010a) Detection, isolation and identification of Escherichia coli O157:H7 from meat products, MLG 5.05, 10/01/10. http://www.fsis.usda.gov/PDF/MLG_5_05.pdf. Accessed 22 November 2011.

  • United States Department of Agriculture Food Safety And Inspection Service (2010b) FSIS procedure for the use of Escherichia coli O157:H7 screening tests, MLG 5A.02, 10/01/10. http://www.fsis.usda.gov/PDF/MLG_5A_02.pdf. Accessed 22 November 2011.

  • United States Department of Agriculture Food Safety And Inspection Service (2010c) Detection and isolation of non-O157 Shiga-toxin producing Escherichia coli strains (STEC) from meat products, MLG 5B.00, 10/01/10. http://www.fsis.usda.gov/PDF/MLG_5B_00.pdf. Accessed 7 November 2011.

  • Valadez AM, Debroy C, Dudley E, Cutter CN (2011) Multiplex PCR detection of Shiga toxin-producing Escherichia coli strains belonging to serogroups O157, O103, O91, O113, O145, O111, and O26 experimentally inoculated in beef carcass swabs, beef trim, and ground beef. J Food Prot 74:228–239.

    Article  CAS  Google Scholar 

  • van Griethuysen A, Bes M, Etienne J, Zbinden R, Kluytmans J (2001) International multicenter evaluation of latex agglutination tests for identification of Staphylococcus aureus. J Clin Microbiol 39:86–89.

    Article  Google Scholar 

  • Veal DA, Deere D, Ferrari B, Piper J, Attfield PV (2000) Fluorescence staining and flow cytometry for monitoring microbial cells. J Immunol Method 243:191–210.

    Article  CAS  Google Scholar 

  • Verstraete K, Robyn J, Del-Favero J, De Rijk P, Joris MA, Herman L, Heyndrickx M, De Zutter L, De Reu K (2012) Evaluation of a multiplex-PCR detection in combination with an isolation method for STEC O26, O103, O111, O145 and sorbitol fermenting O157 in food. Food Microbiol 29:49–55.

    Article  CAS  Google Scholar 

  • Wagner M, Horn M, Daims H (2003) Fluorescence in situ hybridisation for the identification and characterisation of prokaryotes. Curr Opin Microbiol 6:302–309.

    Article  CAS  Google Scholar 

  • Wawerla M, Stolle A, Schalch B, Eisgruber H (1999) Impedance microbiology: applications in food hygiene. J Food Prot 62:1488–1496.

    CAS  Google Scholar 

  • Wu VCH (2008) A review of microbial injury and recovery methods in food. Food Microbiol 25:735–744.

    Article  CAS  Google Scholar 

  • Yang L, Bashir R (2008) Electrical/electrochemical impedance for rapid detection of foodborne pathogenic bacteria. Biotechnol Adv 26:135–150.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Guillermo Lopez-Campos; Joaquin V. Martinez-Suarez; Mónica Aguado-Urda; Victoria Lopez Alonso

About this chapter

Cite this chapter

López-Campos, G., Martínez-Suárez, J.V., Aguado-Urda, M., López-Alonso, V. (2012). Detection, Identification, and Analysis of Foodborne Pathogens. In: Microarray Detection and Characterization of Bacterial Foodborne Pathogens. SpringerBriefs in Food, Health, and Nutrition. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-3250-0_2

Download citation

Publish with us

Policies and ethics