Skip to main content

Lymph and Lymphatic Capillaries in Cancer

  • Chapter
  • First Online:
Immunology of the Lymphatic System

Abstract

Lymph forms from the fluid that is forced out of capillaries and ­postcapillary venules by hydrostatic pressures, into the interstitium around the vessel. This protein-rich fluid flows through the extracellular matrix and between cells bathing them in nutrients and oxygen and carrying away cellular metabolites and waste products where it is collected by lymphatic capillaries and on to lymph nodes. As with the physiological situation, interstitial fluid and lymph also form within and around tumors, which are collected from cancer-associated tissues. What does change in this situation, however, is the surroundings in which lymph is generated and the tissues exposed to the resulting fluid. The environment in which lymph is formed and transported via can modify its composition and have drastic effects on cells and tissues downstream. This chapter explores the roles of lymphatic function, lymph transport, and their far-reaching implications in cancer development and progression. We pay particular attention to the mechanisms of lymph formation and composition, lymph clearance and resulting cellular effects, the impact on potential antitumour immune responses, methods to identify and measure lymphatic function, and new approaches to exploit or target lymphatics for therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abengozar MA et al (2012) Blocking ephrin-B2 with highly specific antibodies inhibits angiogenesis, lymphangiogenesis, and tumor growth. Blood 119:4565–4576

    Article  PubMed  CAS  Google Scholar 

  • Batchelor TT et al (2007) AZD2171, a pan-VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients. Cancer Cell 11:83–95

    Article  PubMed  CAS  Google Scholar 

  • Batchelor TT et al (2010) Phase II study of cediranib, an oral pan-vascular endothelial growth factor receptor tyrosine kinase inhibitor, in patients with recurrent glioblastoma. J Clin Oncol 28:2817–2823

    Article  PubMed  CAS  Google Scholar 

  • Berk DA, Swartz MA, Leu AJ, Jain RK (1996) Transport in lymphatic capillaries. II. Microscopic velocity measurement with fluorescence photobleaching. Am J Physiol 270:H330–H337

    PubMed  CAS  Google Scholar 

  • Boucher Y, Baxter LT, Jain RK (1990) Interstitial pressure gradients in tissue-isolated and subcutaneous tumors: implications for therapy. Cancer Res 50:4478–4484

    PubMed  CAS  Google Scholar 

  • Butler TP, Gullino PM (1975) Quantitation of cell shedding into efferent blood of mammary adenocarcinoma. Cancer Res 35:512–516

    PubMed  CAS  Google Scholar 

  • Byers SW, Sommers CL, Hoxter B, Mercurio AM, Tozeren A (1995) Role of E-cadherin in the response of tumor cell aggregates to lymphatic, venous and arterial flow: measurement of cell-­cell adhesion strength. J Cell Sci 108(Pt 5):2053–2064

    PubMed  CAS  Google Scholar 

  • Carmeliet P, Jain RK (2011) Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases. Nat Rev Drug Discov 10:417–427

    Article  PubMed  CAS  Google Scholar 

  • Celis JE et al (2004) Proteomic characterization of the interstitial fluid perfusing the breast tumor microenvironment: a novel resource for biomarker and therapeutic target discovery. Mol Cell Proteomics 3:327–344

    Article  PubMed  CAS  Google Scholar 

  • Celis JE et al (2005) Identification of extracellular and intracellular signaling components of the mammary adipose tissue and its interstitial fluid in high risk breast cancer patients: toward dissecting the molecular circuitry of epithelial-adipocyte stromal cell interactions. Mol Cell Proteomics 4:492–522

    Article  PubMed  CAS  Google Scholar 

  • Chary SR, Jain RK (1989) Direct measurement of interstitial convection and diffusion of albumin in normal and neoplastic tissues by fluorescence photobleaching. Proc Natl Acad Sci USA 86:5385–5389

    Article  PubMed  CAS  Google Scholar 

  • Choi I et al (2011) Visualization of lymphatic vessels by Prox1-promoter directed GFP reporter in a bacterial artificial chromosome-based transgenic mouse. Blood 117:362–365

    Article  PubMed  CAS  Google Scholar 

  • Clement CC et al (2010) An expanded self-antigen peptidome is carried by the human lymph as compared to the plasma. PLoS One 5:e9863

    Article  PubMed  CAS  Google Scholar 

  • Clement CC, Rotzschke O, Santambrogio L (2011) The lymph as a pool of self-antigens. Trends Immunol 32:6–11

    Article  PubMed  CAS  Google Scholar 

  • Cohen JN et al (2010) Lymph node-resident lymphatic endothelial cells mediate peripheral tolerance via Aire-independent direct antigen presentation. J Exp Med 207:681–688

    Article  PubMed  CAS  Google Scholar 

  • Cohen SM, Fishinghawk BG, Cohen MS (2011) Translational imaging of lymphatics in cancer. Adv Drug Deliv Rev 63:956–962

    Article  PubMed  CAS  Google Scholar 

  • Condeelis J, Segall JE (2003) Intravital imaging of cell movement in tumours. Nat Rev Cancer 3:921–930

    Article  PubMed  CAS  Google Scholar 

  • Dafni H, Israely T, Bhujwalla ZM, Benjamin LE, Neeman M (2002) Overexpression of vascular endothelial growth factor 165 drives peritumor interstitial convection and induces lymphatic drain: magnetic resonance imaging, confocal microscopy, and histological tracking of triple-­labeled albumin. Cancer Res 62:6731–6739

    PubMed  CAS  Google Scholar 

  • de Rezende LF, Pedras FV, Ramos CD, Gurgel MS (2011) Evaluation of lymphatic compensation by lymphoscintigraphy in the postoperative period of breast cancer surgery with axillary dissection. Tumori 97:309–315

    PubMed  Google Scholar 

  • Emmett MS et al (2010) Prediction of melanoma metastasis by the Shields index based on lymphatic vessel density. BMC Cancer 10:208

    Article  PubMed  Google Scholar 

  • Emmett MS, Lanati S, Dunn DB, Stone OA, Bates DO (2011) CCR7 mediates directed growth of melanomas towards lymphatics. Microcirculation 18:172–182

    Article  PubMed  CAS  Google Scholar 

  • Fletcher AL et al (2010) Lymph node fibroblastic reticular cells directly present peripheral tissue antigen under steady-state and inflammatory conditions. J Exp Med 207:689–697

    Article  PubMed  CAS  Google Scholar 

  • Fleury ME, Boardman KC, Swartz MA (2006) Autologous morphogen gradients by subtle interstitial flow and matrix interactions. Biophys J 91:113–121

    Article  PubMed  CAS  Google Scholar 

  • Gaggioli C et al (2007) Fibroblast-led collective invasion of carcinoma cells with differing roles for RhoGTPases in leading and following cells. Nat Cell Biol 9:1392–1400

    Article  PubMed  CAS  Google Scholar 

  • Gallego E et al (2011) Stromal expression of vascular endothelial growth factor C is relevant to predict sentinel lymph node status in melanomas. Virchows Arch 458:621–630

    Article  PubMed  CAS  Google Scholar 

  • Grepin R et al (2012) Acceleration of clear cell renal cell carcinoma growth in mice following bevacizumab/Avastin treatment: the role of CXCL cytokines. Oncogene 31:1683–1694

    Article  PubMed  CAS  Google Scholar 

  • Gretz JE, Norbury CC, Anderson AO, Proudfoot AE, Shaw S (2000) Lymph-borne chemokines and other low molecular weight molecules reach high endothelial venules via specialized conduits while a functional barrier limits access to the lymphocyte microenvironments in lymph node cortex. J Exp Med 192:1425–1440

    Article  PubMed  CAS  Google Scholar 

  • Gullino PM, Clark SH, Grantham FH (1964) The interstitial fluid of solid tumors. Cancer Res 24:780–794

    PubMed  CAS  Google Scholar 

  • Gutmann R et al (1992) Interstitial hypertension in head and neck tumors in patients: correlation with tumor size. Cancer Res 52:1993–1995

    PubMed  CAS  Google Scholar 

  • Haessler U, Teo JC, Foretay D, Renaud P, Swartz MA (2012) Migration dynamics of breast cancer cells in a tunable 3D interstitial flow chamber. Integr Biol (Camb) 4:401–409

    Article  CAS  Google Scholar 

  • Hagendoorn J et al (2006) Onset of abnormal blood and lymphatic vessel function and interstitial hypertension in early stages of carcinogenesis. Cancer Res 66:3360–3364

    Article  PubMed  CAS  Google Scholar 

  • Hagerling R, Pollmann C, Kremer L, Andresen V, Kiefer F (2011) Intravital two-photon microscopy of lymphatic vessel development and function using a transgenic Prox1 promoter-directed mOrange2 reporter mouse. Biochem Soc Trans 39:1674–1681

    Article  PubMed  CAS  Google Scholar 

  • Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  PubMed  CAS  Google Scholar 

  • Harrell M, Iritani B, Ruddell A (2007) Tumor-induced sentinel lymph node lymphangiogenesis and increased lymph flow precede melanoma metastasis. Am J Pathol 170:774–786

    Article  PubMed  Google Scholar 

  • Hashizume H et al (2000) Openings between defective endothelial cells explain tumor vessel leakiness. Am J Pathol 156:1363–1380

    Article  PubMed  CAS  Google Scholar 

  • Haslene-Hox H et al (2011) A new method for isolation of interstitial fluid from human solid tumors applied to proteomic analysis of ovarian carcinoma tissue. PLoS One 6:e19217

    Article  PubMed  CAS  Google Scholar 

  • Heldin CH, Rubin K, Pietras K, Ostman A (2004) High interstitial fluid pressure—an obstacle in cancer therapy. Nat Rev Cancer 4:806–813

    Article  PubMed  CAS  Google Scholar 

  • Helm CL, Fleury ME, Zisch AH, Boschetti F, Swartz MA (2005) Synergy between interstitial flow and VEGF directs capillary morphogenesis in vitro through a gradient amplification mechanism. Proc Natl Acad Sci USA 102:15779–15784

    Article  PubMed  CAS  Google Scholar 

  • Hirakawa S et al (2005) VEGF-A induces tumor and sentinel lymph node lymphangiogenesis and promotes lymphatic metastasis. J Exp Med 201:1089–1099

    Article  PubMed  CAS  Google Scholar 

  • Hirakawa S et al (2007) VEGF-C-induced lymphangiogenesis in sentinel lymph nodes promotes tumor metastasis to distant sites. Blood 109:1010–1017

    Article  PubMed  CAS  Google Scholar 

  • Hofmann M et al (2006) Lowering of tumor interstitial fluid pressure reduces tumor cell proliferation in a xenograft tumor model. Neoplasia 8:89–95

    Article  PubMed  Google Scholar 

  • Holopainen T et al (2012) Effects of angiopoietin-2-blocking antibody on endothelial cell-cell junctions and lung metastasis. J Natl Cancer Inst 104:461–475

    Article  PubMed  CAS  Google Scholar 

  • Hoshida T et al (2006) Imaging steps of lymphatic metastasis reveals that vascular endothelial growth factor-C increases metastasis by increasing delivery of cancer cells to lymph nodes: therapeutic implications. Cancer Res 66:8065–8075

    Article  PubMed  CAS  Google Scholar 

  • Hwang-Bo J, Hyun Yoo K, Park JH, Jeong HS, Chung IS (2012) Recombinant canstatin inhibits angiopoietin-1-induced angiogenesis and lymphangiogenesis. Int J Cancer 131:298–309

    Article  PubMed  CAS  Google Scholar 

  • Isaka N, Padera TP, Hagendoorn J, Fukumura D, Jain RK (2004) Peritumor lymphatics induced by vascular endothelial growth factor-C exhibit abnormal function. Cancer Res 64:4400–4404

    Article  PubMed  CAS  Google Scholar 

  • Issa A, Le TX, Shoushtari AN, Shields JD, Swartz MA (2009) Vascular endothelial growth factor-­C and C-C chemokine receptor 7 in tumor cell-lymphatic cross-talk promote invasive phenotype. Cancer Res 69:349–357

    Article  PubMed  CAS  Google Scholar 

  • Jain RK, Fenton BT (2002) Intratumoral lymphatic vessels: a case of mistaken identity or malfunction? J Natl Cancer Inst 94:417–421

    Article  PubMed  Google Scholar 

  • Jakob C et al (2011) Lymphangiogenesis in regional lymph nodes is an independent prognostic marker in rectal cancer patients after neoadjuvant treatment. PLoS One 6:e27402

    Article  PubMed  CAS  Google Scholar 

  • Jeon BH et al (2008) Profound but dysfunctional lymphangiogenesis via vascular endothelial growth factor ligands from CD11b+ macrophages in advanced ovarian cancer. Cancer Res 68:1100–1109

    Article  PubMed  CAS  Google Scholar 

  • Juarranz A, Jaen P, Sanz-Rodriguez F, Cuevas J, Gonzalez S (2008) Photodynamic therapy of cancer. Basic principles and applications. Clin Transl Oncol 10:148–154

    Article  PubMed  CAS  Google Scholar 

  • Karlsen TV, McCormack E, Mujic M, Tenstad O, Wiig H (2012) Minimally invasive quantification of lymph flow in mice and rats by imaging depot clearance of near-infrared albumin. Am J Physiol Heart Circ Physiol 302:H391–H401

    Article  PubMed  CAS  Google Scholar 

  • Karnezis T et al (2012) VEGF-D promotes tumor metastasis by regulating prostaglandins produced by the collecting lymphatic endothelium. Cancer Cell 21:181–195

    Article  PubMed  CAS  Google Scholar 

  • Kodera Y et al (2011) Sunitinib inhibits lymphatic endothelial cell functions and lymph node metastasis in a breast cancer model through inhibition of vascular endothelial growth factor receptor 3. Breast Cancer Res 13:R66

    Article  PubMed  CAS  Google Scholar 

  • Kurahara H et al (2010) Significance of lymphangiogenesis in primary tumor and draining lymph nodes during lymphatic metastasis of pancreatic head cancer. J Surg Oncol 102:809–815

    Article  PubMed  Google Scholar 

  • Kwon S, Sevick-Muraca EM (2007) Noninvasive quantitative imaging of lymph function in mice. Lymphat Res Biol 5:219–231

    Article  PubMed  Google Scholar 

  • Lai G, Rockall AG (2010) Lymph node imaging in gynecologic malignancy. Semin Ultrasound CT MR 31:363–376

    Article  PubMed  Google Scholar 

  • Leak LV et al (2004) Proteomic analysis of lymph. Proteomics 4:753–765

    Article  PubMed  CAS  Google Scholar 

  • Lee JW et al (2007) Peripheral antigen display by lymph node stroma promotes T cell tolerance to intestinal self. Nat Immunol 8:181–190

    Article  PubMed  CAS  Google Scholar 

  • Leu AJ, Berk DA, Yuan F, Jain RK (1994a) Flow velocity in the superficial lymphatic network of the mouse tail. Am J Physiol 267:H1507–H1513

    PubMed  CAS  Google Scholar 

  • Leu AJ et al (1994b) Microvascular dynamics in normal skin versus skin overlying Kaposi’s sarcoma. Microvasc Res 47:140–144

    Article  PubMed  CAS  Google Scholar 

  • Leu AJ, Berk DA, Lymboussaki A, Alitalo K, Jain RK (2000) Absence of functional lymphatics within a murine sarcoma: a molecular and functional evaluation. Cancer Res 60:4324–4327

    PubMed  CAS  Google Scholar 

  • Liao S et al (2011) Impaired lymphatic contraction associated with immunosuppression. Proc Natl Acad Sci USA 108:18784–18789

    Article  PubMed  CAS  Google Scholar 

  • Liotta LA, Kleinerman J, Saidel GM (1974) Quantitative relationships of intravascular tumor cells, tumor vessels, and pulmonary metastases following tumor implantation. Cancer Res 34:997–1004

    PubMed  CAS  Google Scholar 

  • Liu J et al (2011) PDGF-D improves drug delivery and efficacy via vascular normalization, but promotes lymphatic metastasis by activating CXCR4 in breast cancer. Clin Cancer Res 17:3638–3648

    Article  PubMed  CAS  Google Scholar 

  • Lukacs-Kornek V et al (2011) Regulated release of nitric oxide by nonhematopoietic stroma controls expansion of the activated T cell pool in lymph nodes. Nat Immunol 12:1096–1104

    Article  PubMed  CAS  Google Scholar 

  • Lund A, Duares FV, Hirosue S, Raghavan VR, Nembrini C, Thomas SN, Issa A, Hugues S, Swartz MA (2012) VEGF-C promotes immune tolerance in B16 melanomas and cross-presentation of tumor antigen by lymph node lymphatics. Cell Rep 1:191–199

    Article  PubMed  CAS  Google Scholar 

  • Lunt SJ et al (2008) Interstitial fluid pressure, vascularity and metastasis in ectopic, orthotopic and spontaneous tumours. BMC Cancer 8:2

    Article  PubMed  Google Scholar 

  • Mandriota SJ et al (2001) Vascular endothelial growth factor-C-mediated lymphangiogenesis promotes tumour metastasis. EMBO J 20:672–682

    Article  PubMed  CAS  Google Scholar 

  • Mannello F, Medda V, Tonti GA (2009) Protein profile analysis of the breast microenvironment to differentiate healthy women from breast cancer patients. Expert Rev Proteomics 6:43–60

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Corral I et al (2012) In vivo imaging of lymphatic vessels in development, wound healing, inflammation, and tumor metastasis. Proc Natl Acad Sci USA 109:6223–6228

    Article  PubMed  CAS  Google Scholar 

  • Matsui J et al (2008) Multi-kinase inhibitor E7080 suppresses lymph node and lung metastases of human mammary breast tumor MDA-MB-231 via inhibition of vascular endothelial growth factor-receptor (VEGF-R) 2 and VEGF-R3 kinase. Clin Cancer Res 14:5459–5465

    Article  PubMed  CAS  Google Scholar 

  • Mattila MM et al (2002) VEGF-C induced lymphangiogenesis is associated with lymph node metastasis in orthotopic MCF-7 tumors. Int J Cancer 98:946–951

    Article  PubMed  CAS  Google Scholar 

  • Maus EA et al (2012) Near-infrared fluorescence imaging of lymphatics in head and neck lymphedema. Head Neck 34:448–453

    Article  PubMed  Google Scholar 

  • Mazzone M et al (2009) Heterozygous deficiency of PHD2 restores tumor oxygenation and inhibits metastasis via endothelial normalization. Cell 136:839–851

    Article  PubMed  CAS  Google Scholar 

  • McDonald DM, Baluk P (2002) Significance of blood vessel leakiness in cancer. Cancer Res 62:5381–5385

    PubMed  CAS  Google Scholar 

  • Miteva DO et al (2010) Transmural flow modulates cell and fluid transport functions of lymphatic endothelium. Circ Res 106:920–931

    Article  PubMed  CAS  Google Scholar 

  • Mittal A et al (2009) The proteome of mesenteric lymph during acute pancreatitis and implications for treatment. JOP 10:130–142

    PubMed  Google Scholar 

  • Modi S, Stanton AW, Mortimer PS, Levick JR (2007a) Clinical assessment of human lymph flow using removal rate constants of interstitial macromolecules: a critical review of lymphoscintigraphy. Lymphat Res Biol 5:183–202

    Article  PubMed  CAS  Google Scholar 

  • Modi S et al (2007b) Human lymphatic pumping measured in healthy and lymphoedematous arms by lymphatic congestion lymphoscintigraphy. J Physiol 583:271–285

    Article  PubMed  CAS  Google Scholar 

  • Mouli SK, Zhao LC, Omary RA, Thaxton CS (2010) Lymphotropic nanoparticle enhanced MRI for the staging of genitourinary tumors. Nat Rev Urol 7:84–93

    Article  PubMed  Google Scholar 

  • Moussai D et al (2011) The human cutaneous squamous cell carcinoma microenvironment is characterized by increased lymphatic density and enhanced expression of macrophage-derived VEGF-C. J Invest Dermatol 131:229–236

    Article  PubMed  CAS  Google Scholar 

  • Mumprecht V et al (2010) In vivo imaging of inflammation- and tumor-induced lymph node ­lymphangiogenesis by immuno-positron emission tomography. Cancer Res 70:8842–8851

    Article  PubMed  CAS  Google Scholar 

  • Nakamura Y et al (2005) Lymph vessel density correlates with nodal status, VEGF-C expression, and prognosis in breast cancer. Breast Cancer Res Treat 91:125–132

    Article  PubMed  CAS  Google Scholar 

  • Nathan SS et al (2009) Tumour interstitial fluid pressure may regulate angiogenic factors in osteosarcoma. Ann Acad Med Singapore 38:1041–1047

    PubMed  Google Scholar 

  • Ng CP, Swartz MA (2003) Fibroblast alignment under interstitial fluid flow using a novel 3-D tissue culture model. Am J Physiol Heart Circ Physiol 284:H1771–H1777

    PubMed  CAS  Google Scholar 

  • Ng CP, Swartz MA (2006) Mechanisms of interstitial flow-induced remodeling of fibroblast-­collagen cultures. Ann Biomed Eng 34:446–454

    Article  PubMed  Google Scholar 

  • Ng CP, Helm CL, Swartz MA (2004) Interstitial flow differentially stimulates blood and lymphatic endothelial cell morphogenesis in vitro. Microvasc Res 68:258–264

    Article  PubMed  Google Scholar 

  • Ng CP, Hinz B, Swartz MA (2005) Interstitial fluid flow induces myofibroblast differentiation and collagen alignment in vitro. J Cell Sci 118:4731–4739

    Article  PubMed  CAS  Google Scholar 

  • Niedbala W et al (2007) Nitric oxide induces CD4+CD25+ Foxp3 regulatory T cells from CD4+CD25 T cells via p53, IL-2, and OX40. Proc Natl Acad Sci USA 104:15478–15483

    Article  PubMed  CAS  Google Scholar 

  • Padera TP et al (2002) Lymphatic metastasis in the absence of functional intratumor lymphatics. Science 296:1883–1886

    Article  PubMed  CAS  Google Scholar 

  • Patel DD et al (2001) Chemokines have diverse abilities to form solid phase gradients. Clin Immunol 99:43–52

    Article  PubMed  CAS  Google Scholar 

  • Patel V et al (2011) Decreased lymphangiogenesis and lymph node metastasis by mTOR inhibition in head and neck cancer. Cancer Res 71:7103–7112

    Article  PubMed  CAS  Google Scholar 

  • Pathak AP et al (2005) Characterizing extravascular fluid transport of macromolecules in the tumor interstitium by magnetic resonance imaging. Cancer Res 65:1425–1432

    Article  PubMed  CAS  Google Scholar 

  • Peinado H, Lavotshkin S, Lyden D (2011) The secreted factors responsible for pre-metastatic niche formation: old sayings and new thoughts. Semin Cancer Biol 21:139–146

    Article  PubMed  CAS  Google Scholar 

  • Polacheck WJ, Charest JL, Kamm RD (2011) Interstitial flow influences direction of tumor cell migration through competing mechanisms. Proc Natl Acad Sci USA 108:11115–11120

    Article  PubMed  CAS  Google Scholar 

  • Psaila B, Lyden D (2009) The metastatic niche: adapting the foreign soil. Nat Rev Cancer 9:285–293

    Article  PubMed  CAS  Google Scholar 

  • Rasmussen JC, Tan IC, Marshall MV, Fife CE, Sevick-Muraca EM (2009) Lymphatic imaging in humans with near-infrared fluorescence. Curr Opin Biotechnol 20:74–82

    Article  PubMed  CAS  Google Scholar 

  • Rinderknecht M, Villa A, Ballmer-Hofer K, Neri D, Detmar M (2010) Phage-derived fully human monoclonal antibody fragments to human vascular endothelial growth factor-C block its interaction with VEGF receptor-2 and 3. PLoS One 5:e11941

    Article  PubMed  CAS  Google Scholar 

  • Roberts N et al (2006) Inhibition of VEGFR-3 activation with the antagonistic antibody more potently suppresses lymph node and distant metastases than inactivation of VEGFR-2. Cancer Res 66:2650–2657

    Article  PubMed  CAS  Google Scholar 

  • Roozendaal R, Mebius RE, Kraal G (2008) The conduit system of the lymph node. Int Immunol 20:1483–1487

    Article  PubMed  CAS  Google Scholar 

  • Roozendaal R et al (2009) Conduits mediate transport of low-molecular-weight antigen to lymph node follicles. Immunity 30:264–276

    Article  PubMed  CAS  Google Scholar 

  • Ruddell A et al (2008) Dynamic contrast-enhanced magnetic resonance imaging of tumor-induced lymph flow. Neoplasia 10:706–713, 701 p following 713

    Google Scholar 

  • Schomber T et al (2009) Differential effects of the vascular endothelial growth factor receptor inhibitor PTK787/ZK222584 on tumor angiogenesis and tumor lymphangiogenesis. Mol Cancer Ther 8:55–63

    Article  PubMed  CAS  Google Scholar 

  • Schoppmann SF et al (2006) VEGF-C expressing tumor-associated macrophages in lymph node positive breast cancer: impact on lymphangiogenesis and survival. Surgery 139:839–846

    Article  PubMed  Google Scholar 

  • Sevick-Muraca EM (2012) Translation of near-infrared fluorescence imaging technologies: emerging clinical applications. Annu Rev Med 63:217–231

    Article  PubMed  CAS  Google Scholar 

  • Sevick-Muraca EM et al (2008) Imaging of lymph flow in breast cancer patients after microdose administration of a near-infrared fluorophore: feasibility study. Radiology 246:734–741

    Article  PubMed  Google Scholar 

  • Shieh AC, Rozansky HA, Hinz B, Swartz MA (2011) Tumor cell invasion is promoted by ­interstitial flow-induced matrix priming by stromal fibroblasts. Cancer Res 71:790–800

    Article  PubMed  CAS  Google Scholar 

  • Shields JD et al (2004) Lymphatic density and metastatic spread in human malignant melanoma. Br J Cancer 90:693–700

    Article  PubMed  CAS  Google Scholar 

  • Shields J et al (2007a) Autologous chemotaxis as a mechanism of tumor cell homing to lymphatics via interstitial flow and autocrine CCR7 signaling. Cancer Cell 11:526–538

    Article  PubMed  CAS  Google Scholar 

  • Shields JD et al (2007b) Chemokine-mediated migration of melanoma cells towards lymphatics—a mechanism contributing to metastasis. Oncogene 26:2997–3005

    Article  PubMed  CAS  Google Scholar 

  • Shields JD et al (2010) Induction of lymphoid-like stroma and immune escape by tumors that express the chemokine CCL21. Science 328:749–752

    Article  PubMed  CAS  Google Scholar 

  • Sixt M et al (2005) The conduit system transports soluble antigens from the afferent lymph to resident dendritic cells in the T cell area of the lymph node. Immunity 22:19–29

    Article  PubMed  CAS  Google Scholar 

  • Skobe M et al (2001) Induction of tumor lymphangiogenesis by VEGF-C promotes breast cancer metastasis. Nat Med 7:192–198

    Article  PubMed  CAS  Google Scholar 

  • Stacker SA et al (2001) VEGF-D promotes the metastatic spread of tumor cells via the lymphatics. Nat Med 7:186–191

    Article  PubMed  CAS  Google Scholar 

  • Stanton AW et al (2006) A quantitative lymphoscintigraphic evaluation of lymphatic function in the swollen hands of women with lymphoedema following breast cancer treatment. Clin Sci (Lond) 110:553–561

    Article  Google Scholar 

  • Stohrer M, Boucher Y, Stangassinger M, Jain RK (2000) Oncotic pressure in solid tumors is elevated. Cancer Res 60:4251–4255

    PubMed  CAS  Google Scholar 

  • Swartz MA, Berk DA, Jain RK (1996) Transport in lymphatic capillaries. I. Macroscopic measurements using residence time distribution theory. Am J Physiol 270:H324–H329

    PubMed  CAS  Google Scholar 

  • Szuba A, Pyszel A, Jedrzejuk D, Janczak D, Andrzejak R (2007) Presence of functional axillary lymph nodes and lymph drainage within arms in women with and without breast cancer-related lymphedema. Lymphology 40:81–86

    PubMed  CAS  Google Scholar 

  • Tammela T et al (2011) Photodynamic ablation of lymphatic vessels and intralymphatic cancer cells prevents metastasis. Sci Transl Med 3:69ra11

    Article  PubMed  CAS  Google Scholar 

  • Teng PN et al (2010) Assessment of buffer systems for harvesting proteins from tissue interstitial fluid for proteomic analysis. J Proteome Res 9:4161–4169

    Article  PubMed  CAS  Google Scholar 

  • Tong RT et al (2004) Vascular normalization by vascular endothelial growth factor receptor 2 blockade induces a pressure gradient across the vasculature and improves drug penetration in tumors. Cancer Res 64:3731–3736

    Article  PubMed  CAS  Google Scholar 

  • Truman LA et al (2012) ProxTom lymphatic vessel reporter mice reveal Prox1 expression in the adrenal medulla, megakaryocytes, and platelets. Am J Pathol 180:1715–1725

    Article  PubMed  CAS  Google Scholar 

  • Tvorogov D et al (2010) Effective suppression of vascular network formation by combination of antibodies blocking VEGFR ligand binding and receptor dimerization. Cancer Cell 18:630–640

    Article  PubMed  CAS  Google Scholar 

  • Vakoc BJ et al (2009) Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging. Nat Med 15:1219–1223

    Article  PubMed  CAS  Google Scholar 

  • Wiig H, Tveit E, Hultborn R, Reed RK, Weiss L (1982) Interstitial fluid pressure in DMBA-­induced rat mammary tumours. Scand J Clin Lab Invest 42:159–164

    Article  PubMed  CAS  Google Scholar 

  • Wiig H, Aukland K, Tenstad O (2003) Isolation of interstitial fluid from rat mammary tumors by a centrifugation method. Am J Physiol Heart Circ Physiol 284:H416–H424

    PubMed  CAS  Google Scholar 

  • Wiig H, Tenstad O, Iversen PO, Kalluri R, Bjerkvig R (2010) Interstitial fluid: the overlooked component of the tumor microenvironment? Fibrogenesis Tissue Repair 3:12

    Article  PubMed  CAS  Google Scholar 

  • Willett CG et al (2004) Direct evidence that the VEGF-specific antibody bevacizumab has antivascular effects in human rectal cancer. Nat Med 10:145–147

    Article  PubMed  CAS  Google Scholar 

  • Winkler F et al (2004) Kinetics of vascular normalization by VEGFR2 blockade governs brain tumor response to radiation: role of oxygenation, angiopoietin-1, and matrix metalloproteinases. Cancer Cell 6:553–563

    PubMed  CAS  Google Scholar 

  • Yang H et al (2011) Soluble vascular endothelial growth factor receptor-3 suppresses lymphangiogenesis and lymphatic metastasis in bladder cancer. Mol Cancer 10:36

    Article  PubMed  CAS  Google Scholar 

  • Yuan F et al (1996) Time-dependent vascular regression and permeability changes in established human tumor xenografts induced by an anti-vascular endothelial growth factor/vascular permeability factor antibody. Proc Natl Acad Sci USA 93:14765–14770

    Article  PubMed  CAS  Google Scholar 

  • Zhao J et al (2010) Towards characteristics of photodynamic drugs specifically aimed at microvascular diseases. Mini Rev Med Chem 10:332–341

    Article  PubMed  CAS  Google Scholar 

  • Zilberberg L et al (2012) Specificity of latent TGF-β binding protein (LTBP) incorporation into matrix: role of fibrillins and fibronectin. J Cell Physiol 227:3828–3836

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacqueline Shields .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Shields, J. (2013). Lymph and Lymphatic Capillaries in Cancer. In: Santambrogio, L. (eds) Immunology of the Lymphatic System. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3235-7_7

Download citation

Publish with us

Policies and ethics