From Artificial Antibodies to Nanosprings

The Biophysical Properties of Repeat Proteins
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 747)


In this chapter we review recent studies of repeat proteins, a class of proteins consisting of tandem arrays of small structural motifs that stack approximately linearly to produce elongated structures. We discuss the observation that, despite lacking the long-range tertiary interactions that are thought to be the hallmark of globular protein stability, repeat proteins can be as stable and as co-orperatively folded as their globular counterparts. The symmetry inherent in the structures of repeat arrays, however, means there can be many partly folded species (whether it be intermediates or transition states) that have similar stabilities. Consequently they do have distinct folding properties compared with globular proteins and these are manifest in their behaviour both at equilibrium and under kinetic conditions. Thus, when studying repeat proteins one appears to be probing a moving target: a relatively small perturbation, by mutation for example, can result in a shift to a different intermediate or transition state. The growing literature on these proteins illustrates how their modular architecture can be adapted to a remarkable array of biological and physical roles, both in vivo and in vitro. Further, their simple architecture makes them uniquely amenable to redesign—of their stability, folding and function—promising exciting possibilities for future research.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bennett V, Stenbuck PJ. Identification and partial purification of ankyrin, the high affinity membrane attachment site for human erythrocyte spectrin. J Biol Chem 1979; 254(7):2533–41.PubMedGoogle Scholar
  2. 2.
    Hirano T, Kinoshita N, Morikawa K et al. Snap helix with knob and hole: essential repeats in S. pombe nuclear protein nuc2+. Cell 1990; 60(2):319–28.PubMedCrossRefGoogle Scholar
  3. 3.
    Sikorski RS, Boguski MS, Goebl M et al. A repeating amino acid motif in CDC23 defines a family of proteins and a new relationship among genes required for mitosis and RNA synthesis. Cell 1990; 60(2):307–17.PubMedCrossRefGoogle Scholar
  4. 4.
    Das AK, Cohen PW, Barford D. The structure of the tetratricopeptide repeats of protein phosphatase 5: implications for TPR-mediated protein-protein interactions. EMBO J 1998; 17(5):1192–9.PubMedCrossRefGoogle Scholar
  5. 5.
    Kobe B, Deisenhofer J. Crystal structure of porcine ribonuclease inhibitor, a protein with leucine-rich repeats. Nature 1993; 366(6457):751–6.PubMedCrossRefGoogle Scholar
  6. 6.
    Wilson CG, Kajander T, Regan L. The crystal structure of NlpI. A prokaryotic tetratricopeptide repeat protein with a globular fold. Febs J 2005; 272(1):166–79.PubMedCrossRefGoogle Scholar
  7. 7.
    Jawad Z, Paoli M. Novel sequences propel familiar folds. Structure 2002; 10(4): 447–454.PubMedCrossRefGoogle Scholar
  8. 8.
    Willems AR, Goh T, Taylor L et al. SCF ubiquitin protein ligases and phosphorylation-dependent proteolysis. Philos Trans R Soc Lond B Biol Sci 1999; 354(1389):1533–50.PubMedCrossRefGoogle Scholar
  9. 9.
    Croy CH, Bergqvist S, Huxford T et al. Biophysical characterization of the free IkappaBalpha ankyrin repeat domain in solution. Protein Sci 2004; 13(7):1767–77.PubMedCrossRefGoogle Scholar
  10. 10.
    Bergqvist S, Croy CH, Kjaergaard M et al. Thermodynamics reveal that helix four in the NLS of NF-kappaB p65 anchors IkappaBalpha, forming a very stable complex. J Mol Biol 2006; 360(2):421–34.PubMedCrossRefGoogle Scholar
  11. 11.
    Truhlar SM, Torpey JW, Komives EA. Regions of IkappaBalpha that are critical for its inhibition of NF-kappaB. DNA interaction fold upon binding to NF-kappaB. Proc Natl Acad Sci USA 2006; 103(50):18951–6.PubMedCrossRefGoogle Scholar
  12. 12.
    Conti E, Muller CW, Stewart M. Karyopherin flexibility in nucleocytoplasmic transport. Curr Opin Struct Biol 2006; 16(2):237–44.PubMedCrossRefGoogle Scholar
  13. 13.
    Stewart M, Molecular mechanism of the nuclear protein import cycle. Nat Rev Mol Cell Biol 2007; 8(3):195–208.CrossRefGoogle Scholar
  14. 14.
    Riggleman B, Wieschaus E, Schedl P. Molecular analysis of the armadillo locus: uniformly distributed transcripts and a protein with novel internal repeats are associated with a Drosophila segment polarity gene. Genes Dev 1989; 3(1):96–113.PubMedCrossRefGoogle Scholar
  15. 15.
    Andrade MA, Bork P. HEAT repeats in the Huntington’s disease protein. Nat Genet 1995; 11(2):115–6.PubMedCrossRefGoogle Scholar
  16. 16.
    Chi NC, Adam EJH, Adam SA. Sequence and characterization of cytoplasmic nuclear-protein import factor P97. J Cell Biol 1995; 130(2):265–274.PubMedCrossRefGoogle Scholar
  17. 17.
    Gorlich D, Kostka S, Kraft R. et al. 2 Different subunits of importin cooperate to recognize nuclear-localization signals and bind them to the nuclear-envelope. Curr Biol 1995; 5(4):383–392.PubMedCrossRefGoogle Scholar
  18. 18.
    Imamoto N, Shimamoto T, Kose S et al. The nuclear pore-targeting complex binds to nuclear-pores after association with a karyophile. FEBS Lett 1995; 368(3):415–419.PubMedCrossRefGoogle Scholar
  19. 19.
    Radu A, Blobel G, Moore MS. Identification of a protein complex that is required for nuclear-protein import and mediates docking of import substrate to distinct nucleoporins. Proc Natl Acad Sci U S A 1995; 92(5):1769–1773.PubMedCrossRefGoogle Scholar
  20. 20.
    Andrade MA, Petosa C, O’Donoghue SI et al. Comparison of ARM and HEAT protein repeats. J Mol Biol 2001; 309(1):1–18.PubMedCrossRefGoogle Scholar
  21. 21.
    Cingolani G, Petosa C, Weis K et al. Structure of importin-beta bound to the IBB domain of importin-alpha. Nature 1999; 399(6733):221–229.PubMedCrossRefGoogle Scholar
  22. 22.
    Liou YC, Tocilj A, Davies PL et al. Mimicry of ice structure by surface hydroxyls and water of a beta-helix antifreeze protein. Nature 2000; 406(6793):322–4.PubMedCrossRefGoogle Scholar
  23. 23.
    Desjarlais JR, Berg JM. Use of a zinc-finger consensus sequence framework and specificity rules to design specific DNA binding proteins. Proc Natl Acad Sci USA 1993; 90(6):2256–60.PubMedCrossRefGoogle Scholar
  24. 24.
    Magliery TJ, Regan L. Beyond consensus: statistical free energies reveal hidden interactions in the design of a TPR motif. J Mol Biol 2004; 343(3):731–45.PubMedCrossRefGoogle Scholar
  25. 25.
    Binz HK, Stumpp MT, Forrer P et al. Designing repeat proteins: well-expressed, soluble and stable proteins from combinatorial libraries of consensus ankyrin repeat proteins. J Mol Biol 2003; 332(2):489–503.PubMedCrossRefGoogle Scholar
  26. 26.
    Forrer P, Stumpp MT, Binz HK et al. A novel strategy to design binding molecules harnessing the modular nature of repeat proteins. FEBS Lett 2003; 539(1–3):2–6.CrossRefGoogle Scholar
  27. 27.
    Kohl A, Binz HK, Forrer P et al. Designed to be stable: crystal structure of a consensus ankyrin repeat protein. Proc Natl Acad Sci USA 2003; 100(4):1700–5.PubMedCrossRefGoogle Scholar
  28. 28.
    Binz HK, Amstutz P, Kohl A et al. High-affinity binders selected from designed ankyrin repeat protein libraries. Nat Biotechnol 2004; 22(5):575–82.PubMedCrossRefGoogle Scholar
  29. 29.
    Binz HK, Kohl A, Pluckthun A et al. Crystal structure of a consensus-designed ankyrin repeat protein: implications for stability. Proteins 2006; 65(2):280–4.PubMedCrossRefGoogle Scholar
  30. 30.
    Stumpp MT, Forrer P, Binz HK et al. Designing repeat proteins: modular leucine-rich repeat protein libraries based on the mammalian ribonuclease inhibitor family. J Mol Biol 2003; 332(2):471–87.PubMedCrossRefGoogle Scholar
  31. 31.
    Mosavi LK, Minor DL Jr, Peng ZY. Consensus-derived structural determinants of the ankyrin repeat motif. Proc Natl Acad Sci USA 2002; 99(25):16029–34.PubMedCrossRefGoogle Scholar
  32. 32.
    Zahnd C, Pecorari F, Straumann N et al. Selection and characterization of Her2 binding-designed ankyrin repeat proteins. J Biol Chem 2006; 281(46):35167–75.PubMedCrossRefGoogle Scholar
  33. 33.
    Zahnd C, Wyler E, Schwenk JM et al. A designed ankyrin repeat protein evolved to picomolar affinity to Her2. J Mol Biol 2007; 369(4):1015–28.PubMedCrossRefGoogle Scholar
  34. 34.
    Main ER, Xiong Y, Cocco MJ et al. Design of stable alpha-helical arrays from an idealized TPR motif. Structure 2003; 11(5):497–508.PubMedCrossRefGoogle Scholar
  35. 35.
    Main ER, Stott K, Jackson SE et al. Local and long-range stability in tandemly arrayed tetratricopeptide repeats. Proc Natl Acad Sci USA 2005; 102(16):5721–6.PubMedCrossRefGoogle Scholar
  36. 36.
    Cortajarena AL, Kajander T, Pan W et al. Protein design to understand peptide ligand recognition by tetratricopeptide repeat proteins. Protein Eng Des Sel 2004; 17(4):399–409.PubMedCrossRefGoogle Scholar
  37. 37.
    Ferreiro DU, Cervantes CF, Truhlar SM et al. Stabilizing IkappaBalpha by “consensus” design. J Mol Biol 2007; 365(4):1201–16.PubMedCrossRefGoogle Scholar
  38. 38.
    Tripp KW, Barrick D. Enhancing the stability and folding rate of a repeat protein through the addition of consensus repeats. J Mol Biol 2007; 365(4):1187–]ReferencesPubMedCrossRefGoogle Scholar
  39. 39.
    Lowe AR, Itzhaki LS. Rational redesign of the folding pathway of a modular protein. Proc Natl Acad Sci USA 2007; 104(8):2679–84.PubMedCrossRefGoogle Scholar
  40. 40.
    Plaxco KW, Simons KT, Baker D. Contact order, transition state placement and the refolding rates of single domain proteins. J Mol Biol 1998; 277(4):985–94.PubMedCrossRefGoogle Scholar
  41. 41.
    Zhang B, Peng Z. A minimum folding unit in the ankyrin repeat protein p16(INK4). J Mol Biol 2000; 299(4):1121–32.PubMedCrossRefGoogle Scholar
  42. 42.
    Tripp KW, Barrick D. The tolerance of a modular protein to duplication and deletion of internal repeats. J Mol Biol 2004; 344(1):169–78.PubMedCrossRefGoogle Scholar
  43. 43.
    Main ER, Jackson SE, Regan L. The folding and design of repeat proteins: reaching a consensus. Curr Opin Struct Biol 2003; 13(4):482–9.PubMedCrossRefGoogle Scholar
  44. 44.
    Mello CC, Barrick D. An experimentally determined protein folding energy landscape. Proc Natl Acad Sci USA 2004; 101(39):14102–7.PubMedCrossRefGoogle Scholar
  45. 45.
    Freiberg A, Machner MP, Pfeil W et al. Folding and stability of the leucine-rich repeat domain of internalin B from Listeri monocytogenes. J Mol Biol 2004; 337(2):453–61.PubMedCrossRefGoogle Scholar
  46. 46.
    Junker M, Schuster CC, McDonnell AV et al. Pertactin beta-helix folding mechanism suggests common themes for the secretion and folding of autotransporter proteins. Proc Natl Acad Sci USA 2006; 103(13):4918–23.PubMedCrossRefGoogle Scholar
  47. 47.
    Street TO, Bradley CM, Barrick D. Predicting coupling limits from an experimentally determined energy landscape. Proc Natl Acad Sci USA 2007; 104(12):4907–12.PubMedCrossRefGoogle Scholar
  48. 48.
    Bradley CM, Barrick D. Limits of cooperativity in a structurally modular protein: response of the Notch ankyrin domain to analogous alanine substitutions in each repeat. J Mol Biol 2002; 324(2):373–86.PubMedCrossRefGoogle Scholar
  49. 49.
    Zimm BH, Bragg JK. Theory of the phase transition between helix and random coil in polypeptide chains. J Chem Phys 1959; 31(2):526–535.CrossRefGoogle Scholar
  50. 50.
    Kajander T, Cortajarena AL, Main ERG et al. A new folding paradigm for repeat proteins. J Am Chem Soc 2005; 127(29):10188–10190.PubMedCrossRefGoogle Scholar
  51. 51.
    Low C, Weininger U, Zeeb M et al. Folding mechanism of an ankyrin repeat protein: scaffold and active site formation of human CDK inhibitor p19(INK4d). J Mol Biol 2007; 373(1):219–31.PubMedCrossRefGoogle Scholar
  52. 52.
    Ferreiro DU, Cho SS, Komives EA et al. The energy landscape of modular repeat proteins: Topology determines folding mechanism in the ankyrin family. J Mol Biol 2005; 354(3):679–692.PubMedCrossRefGoogle Scholar
  53. 53.
    Werbeck ND, Itzhaki LS. Probing a moving target with a plastic unfolding intermediate of an ankyrin-repeat protein. Proc Natl Acad Sci USA 2007; 104(19):7863–8.PubMedCrossRefGoogle Scholar
  54. 54.
    Lowe AR, Itzhaki LS. Biophysical characterisation of the small ankyrin repeat protein myotrophin. J Mol Biol 2007; 365(4):1245–55.PubMedCrossRefGoogle Scholar
  55. 55.
    Tang KS, Guralnick BJ, Wang WK et al. Stability and folding of the tumour suppressor protein p16. J Mol Biol 1999; 285(4):1869–1886.PubMedCrossRefGoogle Scholar
  56. 56.
    Tang KS, Fersht AR, Itzhaki LS. Sequential unfolding of ankyrin repeats in tumor suppressor p16. Structure 2003; 11(1):67–73.PubMedCrossRefGoogle Scholar
  57. 57.
    Mello CC, Bradley CM, Tripp KW et al. Experimental characterization of the folding kinetics of the notch ankyrin domain. J Mol Biol 2005; 352(2):266–81.PubMedCrossRefGoogle Scholar
  58. 58.
    Zeeb M, Rosner H, Zeslawski W et al. Protein folding and stability of human CDK inhibitor p19(INK4d). J Mol Biol 2002; 315(3):447–457.PubMedCrossRefGoogle Scholar
  59. 59.
    Devi VS, Binz HK, Stumpp MT et al. Folding of a designed simple ankyrin repeat protein. Protein Sci 2004; 13(11):2864–70.PubMedCrossRefGoogle Scholar
  60. 60.
    Bradley CM, Barrick D. The notch ankyrin domain folds via a discrete, centralized pathway. Structure 2006; 14(8):1303–12.PubMedCrossRefGoogle Scholar
  61. 61.
    Ferreiro DU, Cho SS, Komives EA et al. P versus Q: The energy landscape of modular repeat proteins: topology determines folding mechanism in the ankyrin family. J Mol Biol 2005; 354: 679–92.PubMedCrossRefGoogle Scholar
  62. 62.
    Howard J, Bechstedt S. Hypothesis: A helix of ankyrin repeats of the NOMPIC-TRP ion channel is the gating spring of mechanoreceptors. Curr Biol 2004; 14(6):R224–R226.PubMedCrossRefGoogle Scholar
  63. 63.
    Gillespie PG, Dumont RA, Kachar B. Have we found the tip link, transduction channel and gating spring of the hair cell? Curr Opin Neurobiol, 2005; 15(4):389–396.PubMedCrossRefGoogle Scholar
  64. 64.
    Sotomayor M, Corey DP, Schulten K. In search of the hair-cell gating spring: Elastic properties of ankyrin and cadherin repeats. Structure 2005; 13(4):669–682.PubMedCrossRefGoogle Scholar
  65. 65.
    Lee G, Abdi K, Jiang Y et al. Nanospring behaviour of ankyrin repeats. Nature 2006; 440(7081):246–249.PubMedCrossRefGoogle Scholar
  66. 66.
    Li LW, Wetzel S, Pluckthun A et al. Stepwise unfolding of ankyrin repeats in a single protein revealed by atomic force microscopy. Biophys J 2006; 90(4):L30–L32.PubMedCrossRefGoogle Scholar
  67. 67.
    Crookes WJ, Ding LL, Huang QL et al. Reflectins: The unusual proteins of squid reflective tissues. Science 2004; 303(5655):235–238.PubMedCrossRefGoogle Scholar
  68. 68.
    Kramer RM, Crookes-Goodson WJ, Naik RR. The self-organizing properties of squid reflectin protein. Nat Mater 2007; 6(7):533–8.PubMedCrossRefGoogle Scholar
  69. 69.
    Coleman ML, McDonough MA, Hewitson KS et al. Asparaginyl hydroxylation of the Notch ankyrin repeat domain by factor inhibiting hypoxia-inducible factor. J Biol Chem 2007; 282(33): 24027–38.PubMedCrossRefGoogle Scholar
  70. 70.
    Wetzel SK, Settanni G, Kenig M, et al. Folding and unfolding mechanism of highly stable full-consensus ankyrin repeat proteins. J Mol Biol 2008; 376: 241–57.PubMedCrossRefGoogle Scholar
  71. 71.
    Werbeck ND, Rowling PJ, Chellamuthu VR et al. Shifting transition states in the unfolding of a large ankyrin repeat protein. Proc Natl Acad Sci USA 2008; 105: 9982–7.PubMedCrossRefGoogle Scholar
  72. 72.
    Evans MS, Sander IM, Clark PL. Cotranslational folding promotes beta-helix formation and avoids aggregation in vivo. J Mol Biol 2008; 383(3): 683–92.PubMedCrossRefGoogle Scholar
  73. 73.
    Truhlar SM, Mathes E, Cervantes CF, et al. Pre-folding IkappaBalpha alters control of NF-kappaB signaling. J Mol Biol 2008; 380: 67–82.PubMedCrossRefGoogle Scholar
  74. 74.
    Javadi Y, Main ER. Exploring the folding energy landscape of a series of designed consensus tetratricopeptide repeat proteins. Proc Natl Acad Sci U S A 2009; 106: 17383–8.PubMedCrossRefGoogle Scholar
  75. 75.
    Kloss E, Barrick D. C-terminal deletion of leucine-rich repeats from YopM reveals a heterogeneous distribution of stability in a cooperatively folded protein. Protein Sci 2009; 18: 1948–60.PubMedCrossRefGoogle Scholar
  76. 76.
    Forwood JK, Lange A, Zachariae U et al Quantitative structural analysis of importin-beta flexibility: Paradigm for solenoid protein structures. Structure 2010; 18: 1171–1183.PubMedCrossRefGoogle Scholar
  77. 77.
    Low C, Homeyer N, Weininger U et al. Conformational switch upon phosphorylation: human CDK inhibitor p19INK4d between the native and partially folded state. ACS Chem Biol 2009; 4: 53–63.PubMedCrossRefGoogle Scholar
  78. 78.
    Wetzel SK, Ewald C, Settani G et al. Residue-resolved stability of full-consensus ankyrin repeat proteins probed by NMR. J Mol Biol 2010; 402: 241–258.PubMedCrossRefGoogle Scholar
  79. 79.
    Kim M, Abdi K, Lee G et al. Fast and forceful refolding of stretched alpha-helical solenoid proteins. Biophys J 2010; 98(12): 3086–92.PubMedCrossRefGoogle Scholar
  80. 80.
    Serquera D, Lee W, Settanni G et al. Mechanical unfolding of an ankyrin repeat protein. Biophys J 2010; 98(7): 1294–301.PubMedCrossRefGoogle Scholar
  81. 81.
    Ferreiro DU, Wolynes PG. The capillarity picture and the kinetics of one-dimensional protein folding. Proc Natl Acad Sci U S A 2008; 105: 9853–4.PubMedCrossRefGoogle Scholar
  82. 82.
    Ferreiro DU, Walczak AM, Komives EA et al. The energy landscapes of repeat-containing proteins: topology, cooperativity, and the folding funnels of one-dimensional architectures. PLoS Comput Biol 2008; 4, e1000070.PubMedCrossRefGoogle Scholar
  83. 83.
    Hagai T, Levy Y. Folding of elongated proteins: conventional or anomalous? J Am Chem Soc 2008; 130: 14253–62.PubMedCrossRefGoogle Scholar
  84. 84.
    Grinthal A, Adamovic I, Weiner B et al. PR65, the HEAT-repeat scaffold of phosphatase PP2A, is an elastic connector that links force and catalysis. Proc Natl Acad Sci U S A 2010; 107: 2467–72.PubMedCrossRefGoogle Scholar
  85. 85.
    Zahnd C, Kawe M, Stumpp MT et al. Efficient targeting with high affinity designed ankyrin repeat proteins: effects of affinity and molecular size. Cancer Res 2010; 70: 1595–1605.PubMedCrossRefGoogle Scholar
  86. 86.
    Patricia MK, Stefan N, Rothschild S et al. A novel fusion toxin derived from an EpCAM-specific designed ankyrin repeat protien has potent antitumor activity. Clin Cancer Res 2011; 17: 100–110.PubMedCrossRefGoogle Scholar
  87. 87.
    Cortajarena AL, Liu TY, Hochstrasser M et al. Designed proteins to modulate cellular networks. ACS Chem Biol 2010; 5: 545–552.PubMedCrossRefGoogle Scholar
  88. 88.
    Grove TZ, Osuji CO, Forster JD, et al. Stimuli-responsive smart gels realized via modular protein design. J Am Chem Soc 2010; 132(40): 14024–6.PubMedCrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2012

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of CambridgeCambridgeUK
  2. 2.Department of PhysicsUniversity of California-BerkeleyBerkeleyUSA

Personalised recommendations