Skip to main content

Current Therapeutic Strategies for P23H RHO-Linked RP

  • Conference paper
  • First Online:
Retinal Degenerative Diseases

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 801))

  • 4368 Accesses

Abstract

The first autosomal dominant mutation identified to cause retinitis pigmentosa in the North American population was the substitution of proline to histidine at position 23 of the rhodopsin gene (P23H RHO). Many biochemical studies have demonstrated that P23H mutation induces rhodopsin (RHO) misfolding leading to endoplasmic reticulum stress. Herein, we review current thinking of this topic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Finland)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 245.03
Price includes VAT (Finland)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 329.99
Price includes VAT (Finland)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
EUR 329.99
Price includes VAT (Finland)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hargrave PA (2001) Rhodopsin structure, function, and topography the Friedenwald lecture. Invest Ophthalmol Vis Sci 42(1):3–9

    PubMed  CAS  Google Scholar 

  2. Fukuda MN, Papermaster DS, Hargrave PA (1979) Rhodopsin carbohydrate. Structure of small oligosaccharides attached at two sites near the NH2 terminus. J Biol Chem 254(17):8201–8207

    PubMed  CAS  Google Scholar 

  3. Kaushal S, Ridge KD, Khorana HG (1994) Structure and function in rhodopsin: the role of asparagine-linked glycosylation. Proc Natl Acad Sci U S A 91(9):4024–4028

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  4. Krebs MP, Noorwez SM, Malhotra R, Kaushal S (2004) Quality control of integral membrane proteins. Trends Biochem Sci 29(12):648–655

    Article  PubMed  CAS  Google Scholar 

  5. Liang CJ, Yamashita K, Muellenberg CG, Shichi H, Kobata A (1979) Structure of the carbohydrate moieties of bovine rhodopsin. J Biol Chem 254(14):6414–6418

    PubMed  CAS  Google Scholar 

  6. Dryja TP, McEvoy JA, McGee TL, Berson EL (2000) Novel rhodopsin mutations Gly114Val and Gln184Pro in dominant retinitis pigmentosa. Invest Ophthalmol Vis Sci 41(10):3124–3127

    PubMed  CAS  Google Scholar 

  7. Noorwez SM, Ostrov DA, McDowell JH, Krebs MP, Kaushal S (2008) A high-throughput screening method for small-molecule pharmacologic chaperones of misfolded rhodopsin. Invest Ophthalmol Vis Sci 49(7):3224–3230

    Article  PubMed  Google Scholar 

  8. Applebury ML, Hargrave PA (1986) Molecular biology of the visual pigments. Vision Res 26(12):1881–1895

    Article  PubMed  CAS  Google Scholar 

  9. Liu X, Garriga P, Khorana HG (1996) Structure and function in rhodopsin: correct folding and misfolding in two point mutants in the intradiscal domain of rhodopsin identified in retinitis pigmentosa. Proc Natl Acad Sci U S A 93(10):4554–4559

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  10. Noorwez SM, Malhotra R, McDowell JH, Smith KA, Krebs MP, Kaushal S (2004) Retinoids assist the cellular folding of the autosomal dominant retinitis pigmentosa opsin mutant P23H. J Biol Chem 279(16):16278–16284

    Article  PubMed  CAS  Google Scholar 

  11. Anukanth A, Khorana HG (1994) Structure and function in rhodopsin. Requirements of a specific structure for the intradiscal domain. J Biol Chem 269(31):19738–19744

    PubMed  CAS  Google Scholar 

  12. Tam BM, Moritz OL (2006) Characterization of rhodopsin P23H-induced retinal degeneration in a Xenopus laevis model of retinitis pigmentosa. Invest Ophthalmol Vis Sci 47(8):3234–3241

    Article  PubMed  Google Scholar 

  13. Saliba RS, Munro PM, Luthert PJ, Cheetham ME (2002) The cellular fate of mutant rhodopsin: quality control, degradation and aggresome formation. J Cell Sci 115(Pt 14):2907–2918

    PubMed  CAS  Google Scholar 

  14. Illing ME, Rajan RS, Bence NF, Kopito RR (2002) A rhodopsin mutant linked to autosomal dominant retinitis pigmentosa is prone to aggregate and interacts with the ubiquitin proteasome system. J Biol Chem 277(37):34150–34160

    Article  PubMed  CAS  Google Scholar 

  15. Rajan RS, Kopito RR (2005) Suppression of wild-type rhodopsin maturation by mutants linked to autosomal dominant retinitis pigmentosa. J Biol Chem 280(2):1284–1291

    Article  PubMed  CAS  Google Scholar 

  16. Chapple JP, Grayson C, Hardcastle AJ, Saliba RS, van der Spuy J, Cheetham ME (2001) Unfolding retinal dystrophies: a role for molecular chaperones? Trends Mol Med 7(9):414–421

    Article  PubMed  CAS  Google Scholar 

  17. Mendes HF, van der Spuy J, Chapple JP, Cheetham ME (2005) Mechanisms of cell death in rhodopsin retinitis pigmentosa: implications for therapy. Trends Mol Med 11(4):177–185

    Article  PubMed  CAS  Google Scholar 

  18. Reimold AM, Iwakoshi NN, Manis J, Vallabhajosyula P, Szomolanyi-Tsuda E, Gravallese EM et al (2001) Plasma cell differentiation requires the transcription factor XBP-1. Nature 412(6844):300–307

    Article  PubMed  CAS  Google Scholar 

  19. Nakanishi K, Sudo T, Morishima N (2005) Endoplasmic reticulum stress signaling transmitted by ATF6 mediates apoptosis during muscle development. J Cell Biol 169(4):555–560

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  20. Benali-Furet NL, Chami M, Houel L, De Giorgi F, Vernejoul F, Lagorce D et al (2005) Hepatitis C virus core triggers apoptosis in liver cells by inducing ER stress and ER calcium depletion. Oncogene 24(31):4921–4933

    Article  PubMed  CAS  Google Scholar 

  21. Haeri M, Knox BE (2012) Endoplasmic reticulum stress and unfolded protein response pathways: potential for treating age-related retinal degeneration. J Ophthal Vision Res 7(1):45–59

    CAS  Google Scholar 

  22. Krebs MP, Holden DC, Joshi P, Clark CL 3rd, Lee AH, Kaushal S (2010) Molecular mechanisms of rhodopsin retinitis pigmentosa and the efficacy of pharmacological rescue. J Mol Biol 395(5):1063–1078

    Article  PubMed  CAS  Google Scholar 

  23. Noorwez SM, Kuksa V, Imanishi Y, Zhu L, Filipek S, Palczewski K et al (2003) Pharmacological chaperone-mediated in vivo folding and stabilization of the P23H-opsin mutant associated with autosomal dominant retinitis pigmentosa. J Biol Chem 278(16):14442–14450

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  24. Shintani K, Shechtman DL, Gurwood AS (2009) Review and update: current treatment trends for patients with retinitis pigmentosa. Optometry 80(7):384–401

    Article  PubMed  Google Scholar 

  25. Berson EL, Rosner B, Sandberg MA, Hayes KC, Nicholson BW, Weigel-DiFrano C et al (1993) Vitamin A supplementation for retinitis pigmentosa. Arch Ophthalmol 111(11):1456–1459

    Article  PubMed  CAS  Google Scholar 

  26. Ohgane K, Dodo K, Hashimoto Y (2010) Retinobenzaldehydes as proper-trafficking inducers of folding-defective P23H rhodopsin mutant responsible for retinitis pigmentosa. Bioorg Med Chem 18(19):7022–7028

    Article  PubMed  CAS  Google Scholar 

  27. Fernandez-Sanchez L, Lax P, Esquiva G, Martin-Nieto J, Pinilla I, Cuenca N (2012) Safranal, a saffron constituent, attenuates retinal degeneration in P23H rats. PLoS One 7(8):e43074

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  28. Vasireddy V, Chavali VR, Joseph VT, Kadam R, Lin JH, Jamison JA et al (2011) Rescue of photoreceptor degeneration by curcumin in transgenic rats with P23H rhodopsin mutation. PLoS One 6(6):e21193

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  29. Mendes HF, Cheetham ME (2008) Pharmacological manipulation of gain-of-function and dominant-negative mechanisms in rhodopsin retinitis pigmentosa. Hum Mol Genet 17(19):3043–3054

    Article  PubMed  CAS  Google Scholar 

  30. Farrar GJ, Kenna PF, Humphries P (2002) On the genetics of retinitis pigmentosa and on mutation-independent approaches to therapeutic intervention. EMBO J 21(5):857–864

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  31. O’Reilly M, Palfi A, Chadderton N, Millington-Ward S, Ader M, Cronin T et al (2007) RNA interference-mediated suppression and replacement of human rhodopsin in vivo. Am J Hum Genet 81(1):127–135

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  32. Mao H, James T Jr, Schwein A, Shabashvili AE, Hauswirth WW, Gorbatyuk MS et al (2011) AAV delivery of wild-type rhodopsin preserves retinal function in a mouse model of autosomal dominant retinitis pigmentosa. Hum Gene Ther 22(5):567–575

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  33. Lin JH, Li H, Yasumura D, Cohen HR, Zhang C, Panning B et al (2007) IRE1 signaling affects cell fate during the unfolded protein response. Science 318(5852):944–949

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  34. Gorbatyuk MS, Knox T, LaVail MM, Gorbatyuk OS, Noorwez SM, Hauswirth WW et al (2010) Restoration of visual function in P23H rhodopsin transgenic rats by gene delivery of BiP/Grp78. Proc Nat Acad Sci U S A 107(13):5961–5966

    Article  Google Scholar 

  35. Sun H, Wang Y, Pang IH, Shen J, Tang X, Li Y et al (2011) Protective effect of a JNK inhibitor against retinal ganglion cell loss induced by acute moderate ocular hypertension. Mol Vis 17:864–875

    PubMed Central  PubMed  CAS  Google Scholar 

  36. Kaushal S (2006) Effect of rapamycin on the fate of P23H opsin associated with retinitis pigmentosa (an American Ophthalmological Society thesis). Trans Am Ophthalmol Soc 104:517–529

    PubMed Central  PubMed  Google Scholar 

  37. Aherne A, Kennan A, Kenna PF, McNally N, Lloyd DG, Alberts IL et al (2004) On the molecular pathology of neurodegeneration in IMPDH1-based retinitis pigmentosa. Hum Mol Genet 13(6):641–650

    Article  PubMed  CAS  Google Scholar 

  38. Vasireddy V, Vijayasarathy C, Huang J, Wang XF, Jablonski MM, Petty HR et al (2005) Stargardt-like macular dystrophy protein ELOVL4 exerts a dominant negative effect by recruiting wild-type protein into aggresomes. Mol Vis 11:665–676

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anh T. H. Nguyen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this paper

Cite this paper

Nguyen, A., Campbell, M., Kiang, AS., Humphries, M., Humphries, P. (2014). Current Therapeutic Strategies for P23H RHO-Linked RP. In: Ash, J., Grimm, C., Hollyfield, J., Anderson, R., LaVail, M., Bowes Rickman, C. (eds) Retinal Degenerative Diseases. Advances in Experimental Medicine and Biology, vol 801. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3209-8_60

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-3209-8_60

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-3208-1

  • Online ISBN: 978-1-4614-3209-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics