Skip to main content

The Relevance of Chemokine Signalling in Modulating Inherited and Age-Related Retinal Degenerations

  • Conference paper
  • First Online:
Retinal Degenerative Diseases

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 801))

Abstract

Systemic monocytes, tissue resident macrophages, dendritic cells and microglia have specific roles in immune surveillance and maintenance of tissue homeostasis and are key regulator and effector cells of the local immune response to acute and chronic tissue injury.

Two major signalling pathways that differentially define trafficking behaviour and activation of systemic and local myeloid cell populations in response to exogenous and endogenous inflammatory stimuli are the Ccl2-Ccr2 and the Cx3cl1-Cx3cr1 chemokine pathways.

Alterations in these pathways have been implicated in controlling myeloid cell activation during normal ageing and in age-related retinal degenerations, including age-related macular degeneration (AMD).

We review the evidence for how altered chemokine signalling in acute and chronic inflammatory conditions regulate local and systemic myeloid cell responses in the retina and how this may contribute to or attenuate pathology in inherited and age-related retinal diseases. We discuss the role of environmental factors (e.g. light exposure) and the influence of genetic factors on the manifestation of pathology in experimental models and in human patients and how we envisage harnessing this knowledge for the development of targeted, more broadly applicable anti-inflammatory treatment strategies for a wide range of retinal degenerations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Xu H, Chen M, Forrester JV (2009) Para-inflammation in the ageing retina. Prog Retin Eye Res 28:348–368

    Article  PubMed  CAS  Google Scholar 

  2. Jung S, Aliberti J, Graemmel P, Sunshine MJ, Kreutzberg GW et al (2000) Analysis of fractalkine receptor CX3CR1 function by targeted deletion and green fluorescent protein reporter gene insertion. Mol Cell Biol 20:4106–4114

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  3. Colton C (2009) Heterogeneity of microglial activation in the innate immune response in the brain. J Neuroimmune Pharmacol 4:399–418

    Article  PubMed Central  PubMed  Google Scholar 

  4. Tacke F, Randolph GJ (2006) Migratory fate and differentiation of blood monocyte subsets. Immunobiology 211:609–618

    Article  PubMed  CAS  Google Scholar 

  5. Lu B, Rutledge BJ, Gu L, Fiorillo J, Lukacs NW et al (1998) Abnormalities in monocyte recruitment and cytokine expression in monocyte chemoattractant protein 1-deficient mice. J Exp Med 187:601–608

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  6. Geissmann F, Jung S, Littman DR (2003) Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity 19:71–82

    Article  PubMed  CAS  Google Scholar 

  7. Silverman MD, Zamora DO, Pan Y, Texeira PV, Baek SH et al (2003) Constitutive and inflammatory mediator-regulated fractalkine expression in human ocular tissues and cultured cells. Invest Ophthalmol Vis Sci 44:1608–1615

    Article  PubMed  Google Scholar 

  8. Bazan JF, Bacon KB, Hardiman G, Wang W, Soo K et al (1997) A new class of membrane-bound chemokine with a CX3C motif. Nature 385:640–644

    Article  PubMed  CAS  Google Scholar 

  9. Xu H, Manivannan A, Dawson R, Crane IJ, Mack M et al (2005) Differentiation to the CCR2+ inflammatory phenotype in vivo is a constitutive, time-limited property of blood monocytes and is independent of local inflammatory mediators. J Immunol 175:6915–6923

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  10. Chen M, Copland DA, Zhao J, Liu J, Forrester JV et al (2012) Persistent inflammation subverts thrombospondin-1-induced regulation of retinal angiogenesis and is driven by CCR2 Ligation. Am J Pathol 180:235–245

    Article  PubMed  CAS  Google Scholar 

  11. Luhmann UFO, Robbie S, Munro PM, Barker SE, Duran Y et al (2009) The drusen-like phenotype in aging Ccl2 knockout mice is caused by an accelerated accumulation of swollen autofluorescent subretinal macrophages. Invest Ophthalmol Vis Sci 50:5934–5943

    Article  PubMed Central  PubMed  Google Scholar 

  12. Nakazawa T, Hisatomi T, Nakazawa C, Noda K, Maruyama K et al (2007) From the cover: monocyte chemoattractant protein 1 mediates retinal detachment-induced photoreceptor apoptosis. PNAS 104:2425–2430

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  13. Rutar M, Natoli R, Provis J (2012) Small interfering RNA-mediated suppression of Ccl2 in Muller cells attenuates microglial recruitment and photoreceptor death following retinal degeneration. J Neuroinflammation 9:221

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  14. Huang D, Tani M, Wang J, Han Y, He TT et al (2002) Pertussis toxin-induced reversible encephalopathy dependent on monocyte chemoattractant protein-1 overexpression in mice. J Neurosci 22:10633–10642

    PubMed  CAS  Google Scholar 

  15. Kezic J, McMenamin PG (2010) The monocyte chemokine receptor CX3CR1 does not play a significant role in the pathogenesis of experimental autoimmune uveoretinitis. Invest Ophthalmol Vis Sci 51:5121–5127

    Article  PubMed  Google Scholar 

  16. Combadiere C, Feumi C, Raoul W, Keller N, Rodero M et al (2007) CX3CR1-dependent subretinal microglia cell accumulation is associated with cardinal features of age-related macular degeneration. J Clin Invest 117:2920–2928

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  17. Zhang M, Xu G, Liu W, Ni Y, Zhou W (2012) Role of fractalkine/CX3CR1 interaction in light-induced photoreceptor degeneration through regulating retinal microglial activation and migration. PLoS ONE 7:e35446

    Google Scholar 

  18. Seidler S, Zimmermann H, Bartneck M, Trautwein C, Tacke F (2010) Age-dependent alterations of monocyte subsets and monocyte-related chemokine pathways in healthy adults. BMC Immunol 11:30

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  19. Grunin M, Burstyn-Cohen T, Hagbi-Levi S, Peled A, Chowers I (2012) Chemokine receptor expression in peripheral blood monocytes from patients with neovascular age-related macular degeneration. Invest Ophthalmol Vis Sci 53:5292–5300

    Article  PubMed  CAS  Google Scholar 

  20. Jonas JB, Tao Y, Neumaier M, Findeisen P (2012) Cytokine concentration in aqueous humour of eyes with exudative age-related macular degeneration. Acta Ophthalmol 90(5):e381–388

    Article  Google Scholar 

  21. Ambati J, Anand A, Fernandez S, Sakurai E, Lynn BC et al (2003) An animal model of age-related macular degeneration in senescent Ccl-2- or Ccr-2-deficient mice. Nat Med 9:1390–1397

    Article  PubMed  CAS  Google Scholar 

  22. Chen M, Forrester JV, Xu H (2011) Dysregulation in retinal para-inflammation and age-related retinal degeneration in CCL2 or CCR2 deficient mice. PLoS ONE 6:e22818

    Google Scholar 

  23. Luhmann UFO, Carvalho LS, Robbie SJ, Cowing JA, Duran Y et al (2013) Ccl2, Cx3cr1 and Ccl2/Cx3cr1 chemokine deficiencies are not sufficient to cause age-related retinal degeneration. Exp Eye Res 107:80–87

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  24. Chinnery HR, McLenachan S, Humphries T, Kezic JM, Chen X et al (2012) Accumulation of murine subretinal macrophages: effects of age, pigmentation and CX3CR1. Neurobiol Aging 33(8):1769–1776

    Article  PubMed  CAS  Google Scholar 

  25. Luhmann UFO, Lange CA, Robbie S, Munro PMG, Cowing JA et al (2012) Differential modulation of retinal degeneration by Ccl2 and Cx3cr1 chemokine signalling. PLoS ONE 7:e35551

    Article  CAS  Google Scholar 

  26. Ng TF, Streilein JW (2001) Light-induced migration of retinal microglia into the subretinal space. Invest Ophthalmol Vis Sci 42:3301–3310

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich FO Luhmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this paper

Cite this paper

Luhmann, U., Robbie, S., Bainbridge, J., Ali, R. (2014). The Relevance of Chemokine Signalling in Modulating Inherited and Age-Related Retinal Degenerations. In: Ash, J., Grimm, C., Hollyfield, J., Anderson, R., LaVail, M., Bowes Rickman, C. (eds) Retinal Degenerative Diseases. Advances in Experimental Medicine and Biology, vol 801. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3209-8_54

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-3209-8_54

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-3208-1

  • Online ISBN: 978-1-4614-3209-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics