Skip to main content

Impairment of the Ubiquitin-Proteasome Pathway in RPE Alters the Expression of Inflammation Related Genes

  • Conference paper
  • First Online:
Retinal Degenerative Diseases

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 801))

Abstract

The ubiquitin-proteasome pathway (UPP) plays an important role in regulating gene expression. Retinal pigment epithelial cells (RPE) are a major source of ocular inflammatory cytokines. In this work we determined the relationship between impairment of the UPP and expression of inflammation-related factors. The UPP could be impaired by oxidative stress or chemical inhibition. Impairment of the UPP in RPE increased the expression of several inflammatory cytokines, such as IL-6 and IL-8. However, the expression of monocyte chemoattractant protein-1 (MCP-1) and complement factor H (CFH) and was reduced upon impairment of the UPP. These data suggest that impairment of the UPP in RPE may be one of the causes of retinal inflammation and abnormal functions of monocyte and the complement system during the pathogenesis of age-related macular degeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Landrum JT, Bone RA (2001) Lutein, zeaxanthin, and the macular pigment. Arch Biochem Biophys 385(1):28–40

    Article  PubMed  CAS  Google Scholar 

  2. Ambati J, Ambati BK, Yoo SH, Ianchulev S, Adamis AP (2003) Age-related macular degeneration: etiology, pathogenesis, and therapeutic strategies. Surv Ophthalmol 48(3):257–293

    Article  PubMed  Google Scholar 

  3. Rattner A, Nathans J (2006) Macular degeneration: recent advances and therapeutic opportunities. Nat Rev Neurosci 7(11):860–872

    Article  PubMed  CAS  Google Scholar 

  4. Patel M, Chan CC (2008) Immunopathological aspects of age-related macular degeneration. Semin Immunopathol 30(2):97–110

    Article  PubMed Central  PubMed  Google Scholar 

  5. Khandhadia S, Lotery A (2010) Oxidation and age-related macular degeneration: insights from molecular biology. Expert Rev Mol Med 12:e34

    Article  PubMed  CAS  Google Scholar 

  6. Chiu CJ, Taylor A (2007) Nutritional antioxidants and age-related cataract and maculopathy. Exp Eye Res 84(2):229–245

    Article  PubMed  CAS  Google Scholar 

  7. Chiu CJ, Taylor A (ed) (2010) Nutritional antioxidants, dietary carbohydrates, and age-related maculopathy and cataract, In: Preventive Nutrition, Bendich, A and Deckelbaum, R (eds.) 501–543 4 ed. Humana Press

    Google Scholar 

  8. Sparrow JR, Boulton M (2005) RPE lipofuscin and its role in retinal pathobiology. Exp Eye Res 80(5):595–606

    Article  PubMed  CAS  Google Scholar 

  9. Zarbin MA (2004) Current concepts in the pathogenesis of age-related macular degeneration. Arch Ophthalmol 122(4):598–614

    Article  PubMed  Google Scholar 

  10. Anderson DH, Radeke MJ, Gallo NB, Chapin EA, Johnson PT, Curletti CR et al (2010) The pivotal role of the complement system in aging and age-related macular degeneration: hypothesis re-visited. Prog Retin Eye Res 29(2):95–112

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  11. Umeda S, Suzuki MT, Okamoto H, Ono F, Mizota A, Terao K et al (2005) Molecular composition of drusen and possible involvement of anti-retinal autoimmunity in two different forms of macular degeneration in cynomolgus monkey (Macaca fascicularis). Faseb J 19(12):1683–1685

    PubMed  CAS  Google Scholar 

  12. Crabb JW, Miyagi M, Gu X, Shadrach K, West KA, Sakaguchi H et al (2002) Drusen proteome analysis: an approach to the etiology of age-related macular degeneration. Proc Natl Acad Sci USA 99(23):14682–14687

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  13. Donoso LA, Kim D, Frost A, Callahan A, Hageman G (2006) The role of inflammation in the pathogenesis of age-related macular degeneration. Surv Ophthalmol 51(2):137–152

    Article  PubMed  Google Scholar 

  14. Souied EH, Leveziel N, Richard F, Dragon-Durey MA, Coscas G, Soubrane G et al (2005) Y402H complement factor H polymorphism associated with exudative age-related macular degeneration in the French population. Mol Vis 11:1135–1140

    PubMed  CAS  Google Scholar 

  15. Klein RJ, Zeiss C, Chew EY, Tsai JY, Sackler RS, Haynes C et al (2005) Complement factor H polymorphism in age-related macular degeneration. Science 308(5720):385–389

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  16. Edwards AO, Ritter R 3rd, Abel KJ, Manning A, Panhuysen C, Farrer LA (2005) Complement factor H polymorphism and age-related macular degeneration. Science 308(5720):421–424

    Article  PubMed  CAS  Google Scholar 

  17. Haines JL, Hauser MA, Schmidt S, Scott WK, Olson LM, Gallins P et al (2005) Complement factor H variant increases the risk of age-related macular degeneration. Science 308(5720):419–421

    Article  PubMed  CAS  Google Scholar 

  18. Postel EA, Agarwal A, Caldwell J, Gallins P, Toth C, Schmidt S et al (2006) Complement factor H increases risk for atrophic age-related macular degeneration. Ophthalmology 113(9):1504–1507

    Article  PubMed  Google Scholar 

  19. Despriet DD, Klaver CC, Witteman JC, Bergen AA, Kardys I, de Maat MP et al (2006) Complement factor H polymorphism, complement activators, and risk of age-related macular degeneration. Jama 296(3):301–309

    Article  PubMed  Google Scholar 

  20. Simonelli F, Frisso G, Testa F, di Fiore R, Vitale DF, Manitto MP et al (2006) Polymorphism p.402Y > H in the complement factor H protein is a risk factor for age related macular degeneration in an Italian population. Br J Ophthalmol 90(9):1142–1145

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  21. Lau LI, Chen SJ, Cheng CY, Yen MY, Lee FL, Lin MW et al (2006) Association of the Y402H polymorphism in complement factor H gene and neovascular age-related macular degeneration in Chinese patients. Invest Ophthalmol Vis Sci 47(8):3242–3246

    Article  PubMed  Google Scholar 

  22. Gold B, Merriam JE, Zernant J, Hancox LS, Taiber AJ, Gehrs K et al (2006) Variation in factor B (BF) and complement component 2 (C2) genes is associated with age-related macular degeneration. Nat Genet 38(4):458–462

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  23. Schaumberg DA, Christen WG, Buring JE, Glynn RJ, Rifai N, Ridker PM (2007) High-sensitivity C-reactive protein, other markers of inflammation, and the incidence of macular degeneration in women. Arch Ophthalmol 125(3):300–305

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  24. Seddon JM, Gensler G, Milton RC, Klein ML, Rifai N (2004) Association between C-reactive protein and age-related macular degeneration. Jama 291(6):704–710

    Article  PubMed  CAS  Google Scholar 

  25. Seddon JM, George S, Rosner B, Rifai N (2005) Progression of age-related macular degeneration: prospective assessment of C-reactive protein, interleukin 6, and other cardiovascular biomarkers. Arch Ophthalmol 123(6):774–782

    Article  PubMed  Google Scholar 

  26. Zhou J, Jang YP, Kim SR, Sparrow JR (2006) Complement activation by photooxidation products of A2E, a lipofuscin constituent of the retinal pigment epithelium. Proc Natl Acad Sci USA 103(44):16182–16187

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  27. Hollyfield JG, Bonilha VL, Rayborn ME, Yang X, Shadrach KG, Lu L et al (2008) Oxidative damage-induced inflammation initiates age-related macular degeneration. Nat Med 14(2):194–198

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  28. Ciechanover A (2003) The ubiquitin proteolytic system and pathogenesis of human diseases: a novel platform for mechanism-based drug targeting. Biochem Soc Trans 31(2):474–481

    Article  PubMed  CAS  Google Scholar 

  29. Glickman MH, Ciechanover A (2002) The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev 82(2):373–428

    PubMed  CAS  Google Scholar 

  30. Shang F, Taylor A (2011) Ubiquitin-proteasome pathway and cellular responses to oxidative stress. Free Radic Biol Med 51(1):5–16

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  31. Shang F, Taylor A (2012) Roles for the ubiquitin-proteasome pathway in protein quality control and signaling in the retina: Implications in the pathogenesis of age-related macular degeneration. Mol Aspects Med 33(4):446–466

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  32. Pickart CM (2001) Mechanisms underlying ubiquitination. Annu Rev Biochem 70:503–533

    Article  PubMed  CAS  Google Scholar 

  33. Welchman RL, Gordon C, Mayer RJ (2005) Ubiquitin and ubiquitin-like proteins as multifunctional signals. Nat Rev Mol Cell Biol 6(8):599–609

    Article  PubMed  CAS  Google Scholar 

  34. Qureshi N, Vogel SN, Van Way C 3rd, Papasian CJ, Qureshi AA, Morrison DC (2005) The proteasome: a central regulator of inflammation and macrophage function. Immunol Res 31(3):243–260

    Article  PubMed  CAS  Google Scholar 

  35. Kloetzel PM (2004) Generation of major histocompatibility complex class I antigens: functional interplay between proteasomes and TPPII. Nat Immunol 5(7):661–669

    Article  PubMed  CAS  Google Scholar 

  36. Hope AD, de Silva R, Fischer DF, Hol EM, van Leeuwen FW, Lees AJ (2003) Alzheimer’s associated variant ubiquitin causes inhibition of the 26S proteasome and chaperone expression. J Neurochem 86(2):394–404

    Article  PubMed  CAS  Google Scholar 

  37. Dawson TM, Dawson VL (2003) Molecular pathways of neurodegeneration in Parkinson’s disease. Science 302(5646):819–822

    Article  PubMed  CAS  Google Scholar 

  38. Fernandes R, Ramalho J, Pereira P (2006) Oxidative stress upregulates ubiquitin proteasome pathway in retinal endothelial cells. Mol Vis 12:1526–1535

    PubMed  CAS  Google Scholar 

  39. Dudek EJ, Shang F, Valverde P, Liu Q, Hobbs M, Taylor A (2005) Selectivity of the ubiquitin pathway for oxidatively modified proteins: relevance to protein precipitation diseases. Faseb J 19(12):1707–1709

    PubMed  CAS  Google Scholar 

  40. Shang F, Nowell TR Jr, Taylor A (2001) Removal of oxidatively damaged proteins from lens cells by the ubiquitin-proteasome pathway. Exp Eye Res 73(2):229–238

    Article  PubMed  CAS  Google Scholar 

  41. Shang F, Deng G, Liu Q, Guo W, Haas AL, Crosas B et al (2005) Lys6-modified ubiquitin inhibits ubiquitin-dependent protein degradation. J Biol Chem 280(21):20365–20374

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  42. Jahngen-Hodge J, Obin M, Gong X, Shang F, Nowell T, Gong J et al (1997) Regulation of ubiquitin conjugating enzymes by glutathione following oxidative stress. J Biol Chem 272:28218–28226

    Article  PubMed  CAS  Google Scholar 

  43. Obin M, Shang F, Gong X, Handelman G, Blumberg J, Taylor A (1998) Redox regulation of ubiquitin-conjugating enzymes: mechanistic insights using the thiol-specific oxidant diamide. FASEB J 12(7):561–569

    PubMed  CAS  Google Scholar 

  44. Yao D, Gu Z, Nakamura T, Shi ZQ, Ma Y, Gaston B et al (2004) Nitrosative stress linked to sporadic Parkinson’s disease: S-nitrosylation of parkin regulates its E3 ubiquitin ligase activity. Proc Natl Acad Sci USA 101(29):10810–10814

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  45. Ishii T, Sakurai T, Usami H, Uchida K (2005) Oxidative modification of proteasome: identification of an oxidation-sensitive subunit in 26 s proteasome. BioChemistry 44(42):13893–13901

    Article  PubMed  CAS  Google Scholar 

  46. Caballero M, Liton PB, Epstein DL, Gonzalez P (2003) Proteasome inhibition by chronic oxidative stress in human trabecular meshwork cells. Biochem Biophys Res Commun 308(2):346–352

    Article  PubMed  CAS  Google Scholar 

  47. Zhang X, Zhou J, Fernandes AF, Sparrow JR, Pereira P, Taylor A et al (2008) The proteasome: a target of oxidative damage in cultured human retina pigment epithelial cells. Invest Ophthalmol Vis Sci 49(8):3622–3630

    Article  PubMed Central  PubMed  Google Scholar 

  48. Wu M, Bian Q, Liu Y, Fernandes AF, Taylor A, Pereira P et al (2009) Sustained oxidative stress inhibits NF-kappaB activation partially via inactivating the proteasome. Free Radic Biol Med 46(1):62–69

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  49. Fernandes AF, Bian Q, Jiang JK, Thomas CJ, Taylor A, Pereira P et al (2009) Proteasome inactivation promotes p38 mitogen-activated protein kinase-dependent phosphatidylinositol 3-kinase activation and increases interleukin-8 production in retinal pigment epithelial cells. Mol Biol Cell 20(16):3690–3699

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  50. Fernandes AF, Zhou J, Zhang X, Bian Q, Sparrow J, Taylor A et al (2008) Oxidative inactivation of the proteasome in retinal pigment epithelial cells. A potential link between oxidative stress and up-regulation of interleukin-8. J Biol Chem 283(30):20745–20753

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  51. Bulteau AL, Lundberg KC, Humphries KM, Sadek HA, Szweda PA, Friguet B et al (2001) Oxidative modification and inactivation of the proteasome during coronary occlusion/reperfusion. J Biol Chem 276(32):30057–30063

    Article  PubMed  CAS  Google Scholar 

  52. Sparrow JR, Parish CA, Hashimoto M, Nakanishi K (1999) A2E, a lipofuscin fluorophore, in human retinal pigmented epithelial cells in culture. Invest Ophthalmol Vis Sci 40(12):2988–2995

    PubMed  CAS  Google Scholar 

  53. Zhou J, Cai B, Jang YP, Pachydaki S, Schmidt AM, Sparrow JR (2005) Mechanisms for the induction of HNE- MDA- and AGE-adducts, RAGE and VEGF in retinal pigment epithelial cells. Exp Eye Res 80(4):567–580

    Article  PubMed  CAS  Google Scholar 

  54. Nicholls SJ (2008) The complex intersection of inflammation and oxidation: implications for atheroprotection. J Am Coll Cardiol 52(17):1379–1380

    Article  PubMed  Google Scholar 

  55. Gill R, Tsung A, Billiar T (2010) Linking oxidative stress to inflammation: toll-like receptors. Free Radic Biol Med 48(9):1121–1132

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  56. Khaper N, Bryan S, Dhingra S, Singal R, Bajaj A, Pathak CM et al (2010) Targeting the vicious inflammation-oxidative stress cycle for the management of heart failure. Antioxid Redox Signal 13(7):1033–1049

    Article  PubMed  CAS  Google Scholar 

  57. Larrayoz IM, Huang JD, Lee JW, Pascual I (2010) Rodriguez IR. 7-ketocholesterol-induced inflammation: involvement of multiple kinase signaling pathways via NFkappaB but independently of reactive oxygen species formation. Invest Ophthalmol Vis Sci 51(10):4942–4955

    Article  PubMed Central  PubMed  Google Scholar 

  58. Anderson DH, Mullins RF, Hageman GS, Johnson LV (2002) A role for local inflammation in the formation of drusen in the aging eye. Am J Ophthalmol 134(3):411–431

    Article  PubMed  CAS  Google Scholar 

  59. Fernandes AF, Guo W, Zhang X, Gallagher M, Ivan M, Taylor A et al (2006) Proteasome-dependent regulation of signal transduction in retinal pigment epithelial cells. Exp Eye Res 83(6):1472–1481

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  60. Palombella VJ, Rando OJ, Goldberg AL, Maniatis T (1994) The ubiquitin-proteasome pathway is required for processing of NF-kB procursor protein and the activation of NF-kB. Cell 78:773–785

    Article  PubMed  CAS  Google Scholar 

  61. Wang C, Deng L, Hong M, Akkaraju GR, Inoue J, Chen ZJ (2001) TAK1 is a ubiquitin-dependent kinase of MKK and IKK. Nature 412(6844):346–351

    Article  PubMed  CAS  Google Scholar 

  62. Yaron A, Gonen H, Alkalay I, Hatzubai A, Jung S, Beyth S et al (1997) Inhibition of NF-kappa-B cellular function via specific targeting of the I-kappa-B-ubiquitin ligase. Embo J 16(21):6486–6494

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  63. Ambati J, Anand A, Fernandez S, Sakurai E, Lynn BC, Kuziel WA et al (2003) An animal model of age-related macular degeneration in senescent Ccl-2- or Ccr-2-deficient mice. Nat Med 9(11):1390–1397

    Article  PubMed  CAS  Google Scholar 

  64. Simonini A, Moscucci M, Muller DW, Bates ER, Pagani FD, Burdick MD et al (2000) IL-8 is an angiogenic factor in human coronary atherectomy tissue. Circulation 101(13):1519–1526

    Article  PubMed  CAS  Google Scholar 

  65. Yoshida S, Ono M, Shono T, Izumi H, Ishibashi T, Suzuki H et al (1997) Involvement of interleukin-8, vascular endothelial growth factor, and basic fibroblast growth factor in tumor necrosis factor alpha-dependent angiogenesis. Mol Cell Biol 17(7):4015–4023

    PubMed Central  PubMed  CAS  Google Scholar 

  66. Li A, Dubey S, Varney ML, Dave BJ, Singh RK (2003) IL-8 directly enhanced endothelial cell survival, proliferation, and matrix metalloproteinases production and regulated angiogenesis. J Immunol 170(6):3369–3376

    Article  PubMed  CAS  Google Scholar 

  67. Heidemann J, Ogawa H, Dwinell MB, Rafiee P, Maaser C, Gockel HR et al (2003) Angiogenic effects of interleukin 8 (CXCL8) in human intestinal microvascular endothelial cells are mediated by CXCR2. J Biol Chem 278(10):8508–8515

    Article  PubMed  CAS  Google Scholar 

  68. Thurman JM, Renner B, Kunchithapautham K, Ferreira VP, Pangburn MK, Ablonczy Z et al (2009) Oxidative stress renders retinal pigment epithelial cells susceptible to complement-mediated injury. J Biol Chem 284(25):16939–16947

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work is supported by USDA AFRI Award 2009–35200-05014, NIH grant EY 011717, USDA contract 1950-510000-060-01A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fu Shang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this paper

Cite this paper

Liu, Z., Qin, T., Zhou, J., Taylor, A., Sparrow, J., Shang, F. (2014). Impairment of the Ubiquitin-Proteasome Pathway in RPE Alters the Expression of Inflammation Related Genes. In: Ash, J., Grimm, C., Hollyfield, J., Anderson, R., LaVail, M., Bowes Rickman, C. (eds) Retinal Degenerative Diseases. Advances in Experimental Medicine and Biology, vol 801. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3209-8_31

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-3209-8_31

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-3208-1

  • Online ISBN: 978-1-4614-3209-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics