Skip to main content

Lung Cancer Stem Cells

  • Chapter
  • First Online:
Molecular Pathology of Lung Cancer

Part of the book series: Molecular Pathology Library ((MPLB,volume 6))

  • 1833 Accesses

Abstract

Two theories describe the development of cancer. The clonal evolution theory posits that cancer arises from a single cell of origin, and hat progression of the cancer occurs due to the acquisition of genetic abnormalities within the original clone, allowing the sequential selection of more and more aggressive sublines; whereas the cancer stem cell theory posits that cancer cells are heterogeneous, and that only the cancer stem cell subset of tumor cells is able to extensively proliferate and metastasize. Stem cells occur normally in human beings. Adult somatic stem cells, lacking sufficient telomerase activity to prevent telomere loss, do not have the capacity to replicate indefinitely. Pluripotent adult somatic stem cells, with their limited ability to self-renew, have been found in many mature tissues, including lung. These cells are thought to be responsible for tissue regeneration and repair. Adult stem cells are believed to localize in their respective tissues in a special microenvironment—the so-called stem cell niche. These adult somatic stem cells are considered to have an increased risk for malignant transformation. The concept of cancer arising from hypothetical rare cells, with the stem cell properties of self-renewal and differentiation into progenitors, that exclusively maintain neoplastic clones—so called cancer stem cells—has already been acknowledged for hematologic malignancies. Many solid tumors are also thought to arise from cancer stem cells; specifically, originating from organ-specific stem cells. The concept of cancer stem cells is based on the principle that, in the multistep process of undergoing malignant transformation, a cell must be able to self-renew in order to accumulate enough mutations to transform into a malignant cell. These cancer stem cells allow for the propagation of cancer cells that retain the primary tumor’s diverse marker profile.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rivera C, Rivera S, Loriot Y, Vozenin MC, Deutsch E. Lung cancer stem cell: new insights on experimental models and preclinical data. J Oncol. 2011;2011: 549181.

    Article  PubMed  Google Scholar 

  2. Campbell LL, Polyak K. Breast tumor heterogeneity: cancer stem cells or clonal evolution? Cell Cycle. 2007;6:2332–8.

    Article  PubMed  CAS  Google Scholar 

  3. Nowell PC. The clonal evolution of tumor cell populations. Science. 1976;194:23–8.

    Article  PubMed  CAS  Google Scholar 

  4. Wicha MS, Liu S, Dontu G. Cancer stem cells: an old idea—a paradigm shift. Cancer Res. 2006;66:1883–90; discussion 1895–6.

    Google Scholar 

  5. Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature. 2001;414: 105–11.

    Article  PubMed  CAS  Google Scholar 

  6. Reyes M, Lund T, Lenvik T, Aguiar D, Koodie L, Verfaillie CM. Purification and ex vivo expansion of postnatal human marrow mesodermal progenitor cells. Blood. 2001;98:2615–25.

    Article  PubMed  CAS  Google Scholar 

  7. Soltysova A, Altanerova V, Altaner C. Cancer stem cells. Neoplasma. 2005;52:435–40.

    PubMed  CAS  Google Scholar 

  8. Pathak S, Multani AS. Aneuploidy, stem cells and cancer. EXS. 2006;96:49–64.

    PubMed  CAS  Google Scholar 

  9. Guo W, Lasky III JL, Wu H. Cancer stem cells. Pediatr Res. 2006;59:59R–64.

    Article  PubMed  Google Scholar 

  10. Schwarz-Cruz-y-Celis A, Melendez-Zajgla J. Cancer stem cells. Rev Invest Clin. 2011;63:179–86.

    PubMed  CAS  Google Scholar 

  11. Snyder EY, Hinman LM, Kalichman MW. Can science resolve the ethical impasse in stem cell research? Nat Biotechnol. 2006;24:397–400.

    Article  PubMed  CAS  Google Scholar 

  12. Brown M. No ethical bypass of moral status in stem cell research. Bioethics 2011, Jul 4 [EPub ahead of print].

    Google Scholar 

  13. Sherley JL. Asymmetric cell kinetics genes: the key to expansion of adult stem cells in culture. ScientificWorldJournal. 2002;2:1906–21.

    Article  PubMed  Google Scholar 

  14. Sotiropoulou PA, Candi A, Blanpain C. The majority of multipotent epidermal stem cells do not protect their genome by asymmetrical chromosome segregation. Stem Cells. 2008;26:2964–73.

    Article  PubMed  CAS  Google Scholar 

  15. Mattis VB, Svendsen CN. Induced pluripotent stem cells: a new revolution for clinical neurology? Lancet Neurol. 2011;10:383–94.

    Article  PubMed  Google Scholar 

  16. Romano G. Stem cell transplantation therapy: controversy over ethical issues and clinical relevance. Drug News Perspect. 2004;17:637–45.

    Article  PubMed  Google Scholar 

  17. Singbrant S, Askmyr M, Purton LE, Walkley CR. Defining the hematopoietic stem cell niche: the chicken and the egg conundrum. J Cell Biochem. 2011;112:1486–90.

    Article  PubMed  CAS  Google Scholar 

  18. Kiefer JC. Primer and interviews: the dynamic stem cell niche. Dev Dyn. 2011;240:737–43.

    Article  PubMed  Google Scholar 

  19. Okamoto OK. Cancer stem cell genomics: the quest for early markers of malignant progression. Expert Rev Mol Diagn. 2009;9:545–54.

    Article  PubMed  CAS  Google Scholar 

  20. Mohseny AB, Hogendoorn PC. Concise review: mesenchymal tumors: when stem cells go mad. Stem Cells. 2011;29:397–403.

    Article  PubMed  CAS  Google Scholar 

  21. Wang JC, Dick JE. Cancer stem cells: lessons from leukemia. Trends Cell Biol. 2005;15:494–501.

    Article  PubMed  CAS  Google Scholar 

  22. Cooper LJ, Shannon KM, Loken MR, Weaver M, Stephens K, Sievers EL. Evidence that juvenile myelomonocytic leukemia can arise from a pluripotential stem cell. Blood. 2000;96:2310–3.

    PubMed  CAS  Google Scholar 

  23. Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med. 1997;3:730–7.

    Article  PubMed  CAS  Google Scholar 

  24. Guan Y, Gerhard B, Hogge DE. Detection, isolation, and stimulation of quiescent primitive leukemic progenitor cells from patients with acute myeloid leukemia (AML). Blood. 2003;101:3142–9.

    Article  PubMed  CAS  Google Scholar 

  25. Simonsson B, Hjorth-Hansen H, Bjerrum OW, Porkka K. Interferon alpha for treatment of chronic myeloid leukemia. Curr Drug Targets. 2011;12:420–8.

    PubMed  CAS  Google Scholar 

  26. Berns A. Stem cells for lung cancer? Cell. 2005;121:811–3.

    Article  PubMed  CAS  Google Scholar 

  27. Fabrizi E, di Martino S, Pelacchi F, Ricci-Vitiani L. Therapeutic implications of colon cancer stem cells. World J Gastroenterol. 2010;16:3871–7.

    Article  PubMed  CAS  Google Scholar 

  28. Welte Y, Adjaye J, Lehrach HR, Regenbrecht CR. Cancer stem cells in solid tumors: elusive or illusive? Cell Commun Signal. 2010;8:6.

    Article  PubMed  Google Scholar 

  29. D’Angelo RC, Wicha MS. Stem cells in normal development and cancer. Prog Mol Biol Transl Sci. 2010;95:113–58.

    Article  PubMed  Google Scholar 

  30. Nguyen PK, Nag D, Wu JC. Methods to assess stem cell lineage, fate and function. Adv Drug Deliv Rev. 2010;62:1175–86.

    Article  PubMed  CAS  Google Scholar 

  31. Houghton J, Stoicov C, Nomura S, et al. Gastric cancer originating from bone marrow-derived cells. Science. 2004;306:1568–71.

    Article  PubMed  CAS  Google Scholar 

  32. Singh SK, Hawkins C, Clarke ID, et al. Identification of human brain tumour initiating cells. Nature. 2004;432:396–401.

    Article  PubMed  CAS  Google Scholar 

  33. Federici G, Espina V, Liotta L, Edmiston KH. Breast cancer stem cells: a new target for therapy. Oncology (Williston Park). 2011;25:25–8, 30.

    Google Scholar 

  34. Soltanian S, Matin MM. Cancer stem cells and cancer therapy. Tumour Biol. 2011;32:425–40.

    Article  PubMed  Google Scholar 

  35. Pardal R, Clarke MF, Morrison SJ. Applying the principles of stem-cell biology to cancer. Nat Rev Cancer. 2003;3:895–902.

    Article  PubMed  CAS  Google Scholar 

  36. Perona R, Lopez-Ayllon BD, de Castro Carpeno J, Belda-Iniesta C. A role for cancer stem cells in drug resistance and metastasis in non-small-cell lung cancer. Clin Transl Oncol. 2011;13:289–93.

    Article  PubMed  CAS  Google Scholar 

  37. Zhao Z, Zuber J, Diaz-Flores E, et al. p53 loss promotes acute myeloid leukemia by enabling aberrant self-renewal. Genes Dev. 2010;24:1389–402.

    Article  PubMed  CAS  Google Scholar 

  38. Nakagawara A, Ohira M. Comprehensive genomics linking between neural development and cancer: neuroblastoma as a model. Cancer Lett. 2004;204:213–24.

    Article  PubMed  CAS  Google Scholar 

  39. Trumpp A, Wiestler OD. Mechanisms of disease: ­cancer stem cells—targeting the evil twin. Nat Clin Pract Oncol. 2008;5:337–47.

    PubMed  CAS  Google Scholar 

  40. Florian IS, Tomuleasa C, Soritau O, et al. Cancer stem cells and malignant gliomas. From pathophysiology to targeted molecular therapy. J BUON. 2011;16:16–23.

    PubMed  CAS  Google Scholar 

  41. Li X, Lewis MT, Huang J, et al. Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. J Natl Cancer Inst. 2008;100:672–9.

    Article  PubMed  CAS  Google Scholar 

  42. Tu SM, Lin SH, Logothetis CJ. Stem-cell origin of metastasis and heterogeneity in solid tumours. Lancet Oncol. 2002;3:508–13.

    Article  PubMed  CAS  Google Scholar 

  43. van Klaveren RJ, van’t Westeinde SC, de Hoop BJ, Hoogsteden HC. Stem cells and the natural history of lung cancer: implications for lung cancer screening. Clin Cancer Res. 2009;15:2215–8.

    Article  PubMed  Google Scholar 

  44. Chen Y, Peng C, Sullivan C, Li D, Li S. Critical molecular pathways in cancer stem cells of chronic myeloid leukemia. Leukemia. 2010;24:1545–54.

    Article  PubMed  CAS  Google Scholar 

  45. Miller SJ, Lavker RM, Sun TT. Interpreting epithelial cancer biology in the context of stem cells: tumor properties and therapeutic implications. Biochim Biophys Acta. 2005;1756:25–52.

    PubMed  CAS  Google Scholar 

  46. Woodward WA, Chen MS, Behbod F, Rosen JM. On mammary stem cells. J Cell Sci. 2005;118:3585–94.

    Article  PubMed  CAS  Google Scholar 

  47. Reya T, Clevers H. Wnt signalling in stem cells and cancer. Nature. 2005;434:843–50.

    Article  PubMed  CAS  Google Scholar 

  48. Tai MH, Chang CC, Kiupel M, Webster JD, Olson LK, Trosko JE. Oct4 expression in adult human stem cells: evidence in support of the stem cell theory of carcinogenesis. Carcinogenesis. 2005;26:495–502.

    Article  PubMed  CAS  Google Scholar 

  49. Bhardwaj G, Murdoch B, Wu D, et al. Sonic hedgehog induces the proliferation of primitive human hematopoietic cells via BMP regulation. Nat Immunol. 2001;2:172–80.

    Article  PubMed  CAS  Google Scholar 

  50. Willert K, Brown JD, Danenberg E, et al. Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature. 2003;423:448–52.

    Article  PubMed  CAS  Google Scholar 

  51. Taipale J, Beachy PA. The Hedgehog and Wnt signalling pathways in cancer. Nature. 2001;411:349–54.

    Article  PubMed  CAS  Google Scholar 

  52. Lahad JP, Mills GB, Coombes KR. Stem cell-ness: a “magic marker” for cancer. J Clin Invest. 2005;115: 1463–7.

    Article  PubMed  CAS  Google Scholar 

  53. Jamora C, DasGupta R, Kocieniewski P, Fuchs E. Links between signal transduction, transcription and adhesion in epithelial bud development. Nature. 2003;422:317–22.

    Article  PubMed  CAS  Google Scholar 

  54. Beachy PA, Karhadkar SS, Berman DM. Tissue repair and stem cell renewal in carcinogenesis. Nature. 2004;432:324–31.

    Article  PubMed  CAS  Google Scholar 

  55. Nichols J, Zevnik B, Anastassiadis K, et al. Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell. 1998;95:379–91.

    Article  PubMed  CAS  Google Scholar 

  56. Donovan PJ. High Oct-ane fuel powers the stem cell. Nat Genet. 2001;29:246–7.

    Article  PubMed  CAS  Google Scholar 

  57. Hochedlinger K, Yamada Y, Beard C, Jaenisch R. Ectopic expression of Oct-4 blocks progenitor-cell differentiation and causes dysplasia in epithelial tissues. Cell. 2005;121:465–77.

    Article  PubMed  CAS  Google Scholar 

  58. Park IK, Qian D, Kiel M, et al. Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells. Nature. 2003;423:302–5.

    Article  PubMed  CAS  Google Scholar 

  59. Valk-Lingbeek ME, Bruggeman SW, van Lohuizen M. Stem cells and cancer; the polycomb connection. Cell. 2004;118:409–18.

    Article  PubMed  CAS  Google Scholar 

  60. Glinsky GV, Berezovska O, Glinskii AB. Microarray analysis identifies a death-from-cancer signature predicting therapy failure in patients with multiple types of cancer. J Clin Invest. 2005;115:1503–21.

    Article  PubMed  CAS  Google Scholar 

  61. Perkins AS, Mercer JA, Jenkins NA, Copeland NG. Patterns of Evi-1 expression in embryonic and adult tissues suggest that Evi-1 plays an important regulatory role in mouse development. Development. 1991;111:479–87.

    PubMed  CAS  Google Scholar 

  62. Yuasa H, Oike Y, Iwama A, et al. Oncogenic transcription factor Evi1 regulates hematopoietic stem cell proliferation through GATA-2 expression. EMBO J. 2005;24:1976–87.

    Article  PubMed  CAS  Google Scholar 

  63. Park IK, He Y, Lin F, et al. Differential gene expression profiling of adult murine hematopoietic stem cells. Blood. 2002;99:488–98.

    Article  PubMed  CAS  Google Scholar 

  64. Shimizu S, Nagasawa T, Katoh O, Komatsu N, Yokota J, Morishita K. EVI1 is expressed in megakaryocyte cell lineage and enforced expression of EVI1 in UT-7/GM cells induces megakaryocyte ­differentiation. Biochem Biophys Res Commun. 2002;292:609–16.

    Article  PubMed  CAS  Google Scholar 

  65. Galmozzi E, Facchetti F, La Porta CA. Cancer stem cells and therapeutic perspectives. Curr Med Chem. 2006;13:603–7.

    Article  PubMed  CAS  Google Scholar 

  66. Jamieson CH, Ailles LE, Dylla SJ, et al. Granulocyte-macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. N Engl J Med. 2004;351: 657–67.

    Article  PubMed  CAS  Google Scholar 

  67. Molofsky AV, He S, Bydon M, Morrison SJ, Pardal R. Bmi-1 promotes neural stem cell self-renewal and neural development but not mouse growth and survival by repressing the p16Ink4a and p19Arf senescence pathways. Genes Dev. 2005;19:1432–7.

    Article  PubMed  CAS  Google Scholar 

  68. Reya T, Duncan AW, Ailles L, et al. A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature. 2003;423:409–14.

    Article  PubMed  CAS  Google Scholar 

  69. Brabletz T, Jung A, Reu S, et al. Variable beta-catenin expression in colorectal cancers indicates tumor progression driven by the tumor environment. Proc Natl Acad Sci U S A. 2001;98:10356–61.

    Article  PubMed  CAS  Google Scholar 

  70. Brabletz T, Jung A, Spaderna S, Hlubek F, Kirchner T. Opinion: migrating cancer stem cells—an integrated concept of malignant tumour progression. Nat Rev Cancer. 2005;5:744–9.

    Article  PubMed  CAS  Google Scholar 

  71. Kondo T, Setoguchi T, Taga T. Persistence of a small subpopulation of cancer stem-like cells in the C6 glioma cell line. Proc Natl Acad Sci U S A. 2004;101:781–6.

    Article  PubMed  CAS  Google Scholar 

  72. Dick JE. Breast cancer stem cells revealed. Proc Natl Acad Sci U S A. 2003;100:3547–9.

    Article  PubMed  CAS  Google Scholar 

  73. Kim CF, Jackson EL, Woolfenden AE, et al. Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell. 2005;121:823–35.

    Article  PubMed  CAS  Google Scholar 

  74. Hemmati HD, Nakano I, Lazareff JA, et al. Cancerous stem cells can arise from pediatric brain tumors. Proc Natl Acad Sci U S A. 2003;100:15178–83.

    Article  PubMed  CAS  Google Scholar 

  75. Singh SK, Clarke ID, Terasaki M, et al. Identification of a cancer stem cell in human brain tumors. Cancer Res. 2003;63:5821–8.

    PubMed  CAS  Google Scholar 

  76. Pitt BR, Ortiz LA. Stem cells in lung biology. Am J Physiol Lung Cell Mol Physiol. 2004;286:L621–3.

    Article  PubMed  CAS  Google Scholar 

  77. Haura EB. Is repetitive wounding and bone marrow-derived stem cell mediated-repair an etiology of lung cancer development and dissemination? Med Hypotheses. 2006;67:951–6.

    Article  PubMed  Google Scholar 

  78. Cockburn MG, Wu AH, Bernstein L. Etiologic clues from the similarity of histology-specific trends in esophageal and lung cancers. Cancer Causes Control. 2005;16:1065–74.

    Article  PubMed  Google Scholar 

  79. Brooks DR, Austin JH, Heelan RT, et al. Influence of type of cigarette on peripheral versus central lung cancer. Cancer Epidemiol Biomarkers Prev. 2005;14:576–81.

    Article  PubMed  CAS  Google Scholar 

  80. Popper HH. Bronchiolitis, an update. Virchows Arch. 2000;437:471–81.

    Article  PubMed  CAS  Google Scholar 

  81. Ullmann R, Bongiovanni M, Halbwedl I, et al. Bronchiolar columnar cell dysplasia—genetic analysis of a novel preneoplastic lesion of peripheral lung. Virchows Arch. 2003;442:429–36.

    PubMed  Google Scholar 

  82. Borczuk AC, Gorenstein L, Walter KL, Assaad AA, Wang L, Powell CA. Non-small-cell lung cancer molecular signatures recapitulate lung developmental pathways. Am J Pathol. 2003;163:1949–60.

    Article  PubMed  CAS  Google Scholar 

  83. Eramo A, Haas TL, De Maria R. Lung cancer stem cells: tools and targets to fight lung cancer. Oncogene. 2010;29:4625–35.

    Article  PubMed  CAS  Google Scholar 

  84. Jiang F, Qiu Q, Khanna A, et al. Aldehyde dehydrogenase 1 is a tumor stem cell-associated marker in lung cancer. Mol Cancer Res. 2009;7:330–8.

    Article  PubMed  CAS  Google Scholar 

  85. Sholl LM, Long KB, Hornick JL. Sox2 expression in pulmonary non-small cell and neuroendocrine carcinomas. Appl Immunohistochem Mol Morphol. 2010;18:55–61.

    Article  PubMed  CAS  Google Scholar 

  86. Pantel K, Alix-Panabieres C, Riethdorf S. Cancer micrometastases. Nat Rev Clin Oncol. 2009;6:339–51.

    Article  PubMed  CAS  Google Scholar 

  87. Aktas B, Tewes M, Fehm T, Hauch S, Kimmig R, Kasimir-Bauer S. Stem cell and epithelial-mesenchymal transition markers are frequently overexpressed in circulating tumor cells of metastatic breast cancer patients. Breast Cancer Res. 2009;11:R46.

    Article  PubMed  Google Scholar 

  88. Song W, Li H, Tao K, et al. Expression and clinical significance of the stem cell marker CD133 in ­hepatocellular carcinoma. Int J Clin Pract. 2008;62:1212–8.

    Article  PubMed  CAS  Google Scholar 

  89. Pallini R, Ricci-Vitiani L, Banna GL, et al. Cancer stem cell analysis and clinical outcome in patients with glioblastoma multiforme. Clin Cancer Res. 2008;14:8205–12.

    Article  PubMed  CAS  Google Scholar 

  90. Bao S, Wu Q, McLendon RE, et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature. 2006;444:756–60.

    Article  PubMed  CAS  Google Scholar 

  91. Ishikawa F, Yoshida S, Saito Y, et al. Chemotherapy-resistant human AML stem cells home to and engraft within the bone-marrow endosteal region. Nat Biotechnol. 2007;25:1315–21.

    Article  PubMed  CAS  Google Scholar 

  92. Kajstura J, Rota M, Hall SR, et al. Evidence for human lung stem cells. N Engl J Med. 2011;364:1795–806.

    Article  PubMed  CAS  Google Scholar 

  93. Lung stem cells: looking beyond the hype. Nat Med. 2011;17:788–9.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy Craig Allen MD, JD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Allen, T.C. (2012). Lung Cancer Stem Cells. In: Cagle, P., et al. Molecular Pathology of Lung Cancer. Molecular Pathology Library, vol 6. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3197-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-3197-8_4

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-3196-1

  • Online ISBN: 978-1-4614-3197-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics