Skip to main content

New Techniques for Optical and Molecular Visualization of Lung Cancer

  • Chapter
  • First Online:
Molecular Pathology of Lung Cancer

Part of the book series: Molecular Pathology Library ((MPLB,volume 6))

  • 1759 Accesses

Abstract

Current imaging techniques do not allow visualization of the histology of pulmonary lesions prior to biopsy and, thus, sampling errors may lead to incorrect diagnoses, optimal areas of a tumor may not be sampled for diagnosis and heterogeneous patterns within a single cancer having an impact on treatment may not be sampled. Several imaging modalities are under investigation to provide real-time in vivo histologic images with subcellular resolution, equivalent to traditional histologic sections, and potential identification of molecular targets in vivo, greatly enhancing biopsy procurement and possibly replacing traditional biopsy with “optical biopsy” in the future. Potential benefits of these investigational techniques include avoiding sampling errors that necessitate repeat biopsies, significantly shortening the time for diagnosis and treatment of lung cancers, permit sampling of differing histologic patterns within a single lung cancer which may expand options for biomarker testing and therapy selection, and permit diagnosis of earlier cancers which is likely to improve outcome. These new techniques would be able to visualize specific receptors or other molecular targets on neoplastic cells in vivo using tagged ligands or probes specific to the receptor or other target. The identification of specific molecular targets in vivo could enhance time to treatment. These modalities include optical coherence tomography, endoscopic confocal microscopy, and coherent anti-Stokes Raman scattering microscopy. Image-guided multimodality theranostic systems could provide in vivo therapy as well as in vivo diagnosis in real-time with minimal invasion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Travis WD, Brambilla E, Noguchi M, et al. IASLC/ATS/ERS International Multidisciplinary Classification of Lung Adenocarcinoma. J Thorac Oncol. 2011;6:244–85.

    Article  PubMed  Google Scholar 

  2. Lindeman N, Cagle PT, Dacic S, Beasley MB, Jenkins R, Giaconne G, Kwiatkowski D, Thunnissen E, Squire J, Saldivar JS, Chitale D, Ladanyi M. College of American Pathologists/International Association for the Study of Lung Cancer/Association for Molecular Pathology Lung Cancer Biomarker Guidelines. Arch Pathol Lab Med (in press).

    Google Scholar 

  3. Raparia K, Wong K, Wong S, Li KC, Cagle PT. Multimodality theranostics and molecular imaging in the diagnosis and treatment of lung cancer (Chapter 20). In: Cagle PT, Allen TC, Dacic S, Kerr KM, Beasley MB, editors. Advances in surgical pathology: lung cancer. New York: Lippincott, Williams & Wilkins; 2010.

    Google Scholar 

  4. Thiberville L, Salaün M. Bronchoscopic advances: on the way to the cells. Respiration. 2010;79:441–9.

    Article  PubMed  Google Scholar 

  5. Yasufuku K. Early diagnosis of lung cancer. Clin Chest Med. 2010;31(1):39–47.

    Article  PubMed  Google Scholar 

  6. Colt HG, Murgu SD. Interventional bronchoscopy from bench to bedside: new techniques for early lung cancer detection. Clin Chest Med. 2010;31(1):29–37.

    Article  PubMed  Google Scholar 

  7. Yarmus L, Feller-Kopman D. Bronchoscopes of the twenty-first century. Clin Chest Med. 2010;31(1):19–27.

    Article  PubMed  Google Scholar 

  8. Newton RC, Kemp SV, Shah PL, Elson D, Darzi A, Shibuya K, Mulgrew S, Yang GZ. Progress toward optical biopsy: bringing the microscope to the patient. Lung. 2011;189(2):111–9.

    Article  PubMed  Google Scholar 

  9. Boppart SA, Herrmann J, Pitris C, Stamper DL, Brezinski ME, Fujimoto JG. High-resolution optical coherence tomography-guided laser ablation of surgical tissue. J Surg Res. 1999;82(2):275–84.

    Article  PubMed  CAS  Google Scholar 

  10. Tsuboi M, Hayashi A, Ikeda N, Honda H, Kato Y, Ichinose S, Kato H. Optical coherence tomography in the diagnosis of bronchial lesions. Lung Cancer. 2005;49:387–94.

    Article  PubMed  Google Scholar 

  11. Whiteman SC, Yang Y, Gey van Pittius D, Stephens M, Parmer J, Spiteri MA. Optical coherence tomography: real-time imaging of bronchial airways microstructure and detection of inflammatory/neoplastic morphologic changes. Clin Cancer Res. 2006;12(3 Pt 1):813–8.

    Article  PubMed  Google Scholar 

  12. Williamson JP, McLaughlin RA, Phillips MJ, Armstrong JJ, Becker S, Walsh JH, Sampson DD, Hillman DR, Eastwood PR. Using optical coherence tomography to improve diagnostic and therapeutic bronchoscopy. Chest. 2009;136(1):272–6.

    Article  PubMed  Google Scholar 

  13. Xie T, Liu G, Kreuter K, Mahon S, Colt H, Mukai D, Peavy GM, Chen Z, Brenner M. In vivo three-­dimensional imaging of normal tissue and tumors in the rabbit pleural cavity using endoscopic swept source optical coherence tomography with thoracoscopic guidance. J Biomed Opt. 2009;14(6):064045.

    Article  PubMed  Google Scholar 

  14. Michel RG, Kinasewitz GT, Fung K-M, Keddissi JI. Optical coherence tomography as an adjunct to flexible bronchoscopy in the diagnosis of lung cancer: a pilot study. Chest. 2010;138:984–8.

    Article  PubMed  Google Scholar 

  15. Zhang Y, Hong H, Cai W. Imaging with Raman spectroscopy. Curr Pharm Biotechnol. 2010;11(6):654–61.

    Article  PubMed  CAS  Google Scholar 

  16. Delacretaz Y, Shaffer E, Pavillon N, Kuhn J, Lang F, Depeursinge C. Endoscopic low-coherence topography measurement for upper airways and hollow samples. J Biomed Opt. 2010;15(6):066014.

    Article  PubMed  Google Scholar 

  17. Lau B, McLaughlin RA, Curatolo A, Kirk RW, Gerstmann DK, Sampson DD. Imaging true 3D ­endoscopic anatomy by incorporating magnetic tracking with optical coherence tomography: proof-of-principle for airways. Opt Express. 2010;18(26):27173–80. doi:10.1364/OE.18.027173.

    Article  PubMed  Google Scholar 

  18. Thurber GM, Figueiredo JL, Weissleder R. Detection limits of intraoperative near infrared imaging for tumor resection. J Surg Oncol. 2010;102(7):758–64.

    Article  PubMed  Google Scholar 

  19. Coxson HO, Eastwood PR, Williamson JP, Sin DD. Phenotyping airway disease with optical coherence tomography. Respirology. 2011;16(1):34–43. doi:10.1111/j.1440-1843.2010.01888.x.

    Article  PubMed  Google Scholar 

  20. Quirk BC, McLaughlin RA, Curatolo A, Kirk RW, Noble PB, Sampson DD. In situ imaging of lung alveoli with an optical coherence tomography needle probe. J Biomed Opt. 2011;16(3):036009.

    Article  PubMed  Google Scholar 

  21. Jain M, Shukla N, Manzoor M, Nadolny S, Mukherjee S. Modified full-field optical coherence tomography: a novel tool for rapid histology of tissues. J Pathol Inform. 2011;2:28.

    Article  PubMed  CAS  Google Scholar 

  22. Thiberville L, Moreno-Swirc S, Vercauteren T, Peltier E, Cavé C, Bourg Heckly G. In vivo imaging of the bronchial wall microstructure using fibered confocal fluorescence microscopy. Am J Respir Crit Care Med. 2007;175(1):22–31.

    Article  PubMed  Google Scholar 

  23. Neumann H, Fuchs FS, Vieth M, Atreya R, Siebler J, Kiesslich R, Neurath MF. Review article: in vivo imaging by endocytoscopy. Aliment Pharmacol Ther. 2011;33(11):1183–93.

    Article  PubMed  CAS  Google Scholar 

  24. Shibuya K, Fujiwara T, Yasufuku K, Alaa M, Chiyo M, Nakajima T, Hoshino H, Hiroshima K, Nakatani Y, Yoshino I. In vivo microscopic imaging of the bronchial mucosa using an endo-cytoscopy system. Lung Cancer. 2011;72(2):184–90.

    Article  PubMed  Google Scholar 

  25. Fuchs FS, Zirlik S, Hildner K, Frieser M, Ganslmayer M, Schwarz S, Uder M, Neurath MF. Fluorescein-aided confocal laser endomicroscopy of the lung. Respiration. 2011;81(1):32–8.

    Article  PubMed  Google Scholar 

  26. Yang Y, Li F, Gao L, Wang Z, Thrall MJ, Shen SS, Wong KK, Wong ST. Differential diagnosis of breast cancer using quantitative, label-free and molecular vibrational imaging. Biomed Opt Express. 2011;2(8):2160–74.

    Article  PubMed  Google Scholar 

  27. Gao L, Li F, Thrall MJ, Yang Y, Xing J, Hammoudi AA, Zhao H, Massoud Y, Cagle PT, Fan Y, Wong KK, Wang Z, Wong ST. On-the-spot lung cancer differential diagnosis by label-free, molecular vibrational imaging and knowledge-based classification. J Biomed Opt. 2011;16(9):096004.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip T. Cagle MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Cagle, P.T. (2012). New Techniques for Optical and Molecular Visualization of Lung Cancer. In: Cagle, P., et al. Molecular Pathology of Lung Cancer. Molecular Pathology Library, vol 6. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3197-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-3197-8_12

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-3196-1

  • Online ISBN: 978-1-4614-3197-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics