Mathematics Education

Chapter

Abstract

The chapter documents the emergence of mathematics education as a field in its own right, with its own distinctive theories, methodologies, and preoccupations. We present four widely differing examples of theoretical/practical programs of work that illustrate the rich diversity that now characterizes the field. These examples reflect a considerable maturation of the field, in terms of disciplinary influences, methodologies, philosophical and epistemological analyses, and broader considerations of the roles and purposes of mathematics education as embedded in historical, cultural, and societal contexts.

Keywords

Mathematics education Design science Social constructivism Realistic mathematics education Critical mathematics education 

References

  1. Apple, M. W. (2000). Mathematics reform through conservative modernization? Standards, markets, and inequality in education. In J. Boaler (Ed.), Multiple perspectives on mathematics teaching and learning (pp. 243–259). Westport, CT: Ablex.Google Scholar
  2. Atweh, B. (2012). Mathematics education and democratic participation between empowerment and ethics: A socially response-able approach. In O. Skovsmose & B. Greer (Eds.), Opening the cage: Critique and politics of mathematics education (pp. 325–342). Rotterdam, The Netherlands: Sense Publishers.Google Scholar
  3. Becker, J. P., & Selter, C. (1996). Elementary school practices. In A. J. Bishop, K. Clements, C. Keitel, J. Kilpatrick, & C. Laborde (Eds.), International handbook of mathematics education (pp. 511–564). Dordrecht, The Netherlands: Kluwer.Google Scholar
  4. Bishop, A. (1992). International perspectives on research in mathematics education. In D. A. Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 710–723). New York, NY: Macmillan.Google Scholar
  5. Blum, W., Galbraith, P. L., Henn, H.-W., & Niss, M. (Eds.). (2007). Modelling and applications in mathematics education: The 14th ICMI study. New York, NY: Springer.Google Scholar
  6. Brown, A. L. (1992). Design experiments: Theoretical and methodological challenges in creating complex interventions in classroom settings. The Journal of the Learning Sciences, 2(2), 141–178.CrossRefGoogle Scholar
  7. Cobb, P. (2011). Introduction to Part I. In E. Yackel, K. Gravemeijer, & A. Sfard (Eds.), A journey in mathematics education research: Insights from the work of Paul Cobb (pp. 9–17). Dordrecht, The Netherlands: Springer.Google Scholar
  8. Cobb, P., & Bauersfeld, H. (1995). Emergence of mathematical meaning: Interaction in classroom cultures. Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
  9. *Cobb, P., Confrey, J., diSessa, A., Lehrer, R., & Schauble, L. (2003). Design experiments in education research. Educational Researcher, 32(1), 9–13.Google Scholar
  10. Cobb, P., & Jackson, K. (2008). The consequences of experimentalism in formulating recommendations for policy and practice in mathematics education. Educational Researcher, 37, 573–581.CrossRefGoogle Scholar
  11. Cobb, P., & McClain, K. (2006). The collective mediation of a high-stakes accountability program: Communities and networks of practice. Mind, Culture, and Activity, 13, 80–100.CrossRefGoogle Scholar
  12. Cobb, P., Stephan, M., McClain, K., & Gravemeijer, K. (2001). Participating in classroom mathematical practices. The Journal of the Learning Sciences, 10, 113–163.CrossRefGoogle Scholar
  13. Cobb, P., Yackel, E., & McClain, K. (Eds.). (2000). Symbolizing and communicating in mathematics classrooms. Mahwah, NJ: Lawrence Erlbaum.Google Scholar
  14. Cole, M. (1998). Cultural psychology: A once and future discipline. Cambridge, MA: Harvard University Press.Google Scholar
  15. *De Corte, E., Greer, B., & Verschaffel, L. (1996). Learning and teaching mathematics. In D. Berliner & R. Calfee (Eds.), Handbook of educational psychology (pp. 491–549). New York, NY: Macmillan.Google Scholar
  16. De Corte, E., Verschaffel, L., & Masui, C. (2004). The CLIA-model: A framework for designing powerful learning environments for thinking and problem solving. European Journal of Psychology of Education, 19, 365–384.CrossRefGoogle Scholar
  17. Dillon, D. R. (1993). The wider social context of innovation in mathematics education. In T. Wood, P. Cobb, E. Yackel, & D. Dillon (Eds.), Rethinking elementary school mathematics: Insights and issues. Sixth Monograph of National Council for Teachers of Mathematics (pp. 71–96). Reston, VA: National Council of Teachers of Mathematics.Google Scholar
  18. Ernest, P. (1991). The philosophy of mathematics education. London: Falmer.Google Scholar
  19. Fischbein, E. (1990). Introduction. In P. Nesher & J. Kilpatrick (Eds.), Mathematics and cognition: A research synthesis by the International Group for the Psychology of Mathematics Education (pp. 1–13). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  20. *Freudenthal, H. (1983). Didactical phenomenology of mathematical structures. Dordrecht: Kluwer.Google Scholar
  21. Freudenthal, H. (1991). Revisiting mathematics education: The China lectures. Dordrecht, The Netherlands: Kluwer.Google Scholar
  22. Gravemeijer, K. (1994). Developing realistic mathematics education. Utrecht, The Netherlands: Freudenthal Institute, University of Utrecht.Google Scholar
  23. Gravemeijer, K. (1999). How emergent models may foster the constitution of formal mathematics. Mathematical Thinking and Learning, 1, 155–177.CrossRefGoogle Scholar
  24. *Gravemeijer, K. (2004). Local instruction theories as means of support for teachers in reform mathematics education. Mathematical Thinking and Learning, 6, 105–128.Google Scholar
  25. Gravemeijer, K., Doorman, M., & Drijvers, P. (2010). Symbolizing and the development of meaning in computer-supported algebra education. In L. Verschaffel, E. De Corte, T. de Jong, & J. Elen (Eds.), Use of representations in reasoning and problem solving: Analysis and improvement (pp. 191–208). Oxford: Routledge.Google Scholar
  26. Greer, B. (2012). The USA Mathematics Advisory Panel. In O. Skovsmose & B. Greer (Eds.), Opening the cage: Critique and politics of mathematics education (pp. 107–124). Rotterdam, The Netherlands: Sense Publishers.Google Scholar
  27. Gutstein, E. (2006). Reading and writing the world with mathematics: Toward a pedagogy for social justice. New York, NY: Routledge.Google Scholar
  28. Gutstein, E. (2012a). Mathematics as a weapon in the struggle. In O. Skovsmose & B. Greer (Eds.), Critique and politics of mathematics education (pp. 23–48). Rotterdam, The Netherlands: Sense Publishers.Google Scholar
  29. Gutstein, E. (2012b). Reflections on teaching and learning mathematics for social justice in urban schools. In A. A. Wager & D. W. Stinson (Eds.), Teaching mathematics for social justice: Conversations with educators (pp. 63–80). Reston, VA: National Council of Teachers of Mathematics.Google Scholar
  30. Hersh, R. (Ed.). (2006). 18 unconventional essays on the nature of mathematics. New York, NY: Springer.Google Scholar
  31. Hess, K. (2003). Lehren—zwischen Belehrung und Lernbegleitung. Einstellungen, Umsetzungen und Wirkungen im mathematischen Anfangsunterricht. Bern, Switzerland: h.e.p. Verlag.Google Scholar
  32. *Kelly, A. E., & Lesh, R. (Eds.). (2000). Handbook of research design in mathematics and science education. Mahwah, NJ: Lawrence Erlbaum.Google Scholar
  33. Kilpatrick, J. (2010). Preface to Part I. In B. Sriraman & L. English (Eds.), Theories of mathematics education (pp. 3–5). Berlin: Springer.CrossRefGoogle Scholar
  34. Kilpatrick, J., Swafford, J., & Findell, B. (2001). Adding it up. Helping children learn mathematics. Washington, DC: National Academy Press.Google Scholar
  35. Koninklijke Nederlandse Akademie van Wetenschappen. (2009). Rekenonderwijs op de basisschool. Analyse en sleutels tot verbetering [Mathematics education in the elementary school. Analysis and keys for improvement]. Amsterdam: Authors.Google Scholar
  36. Lave, J. (1988). Cognition in practice: Mind, mathematics, and culture in everyday life. New York, NY: Cambridge University Press.Google Scholar
  37. Lesh, D., & Sriraman, B. (2010). Re-conceptualizing mathematics education as a design science. In B. Sriraman & L. English (Eds.), Theories of mathematics education (pp. 123–146). Berlin: Springer.CrossRefGoogle Scholar
  38. Moser Opitz, E. (2002). Zählen, Zahlbegriff, Rechnen. Theoretische Grundlagen und eine empirische Untersuchung zum mathematischen Erstunterricht in Sonderschulklassen (2nd ed.). Bern, Switzerland: Verlag Paul Haupt.Google Scholar
  39. Mukhopadhyay, S., & Greer, B. (2001). Modeling with purpose: Mathematics as a critical tool. In W. Atweh, H. Forgasz, & B. Nebres (Eds.), Socio-cultural aspects in mathematics education: An international perspective (pp. 295–311). Mahwah, NJ: Lawrence Erlbaum.Google Scholar
  40. Nasir, N. S., & Cobb, P. (Eds.). (2007). Improving access to mathematics: Diversity and equity in the classroom. New York, NY: Teachers College Press.Google Scholar
  41. National Council of Teachers of Mathematics. (1989). Curriculum and evaluation standards for school mathematics. Reston, VA: Authors.Google Scholar
  42. Nickerson, S. D., & Whitacre, I. (2010). A local instruction theory for the development of number sense. Mathematical Thinking and Learning, 12, 227–252.CrossRefGoogle Scholar
  43. Powell, A. B., & Frankenstein, M. (Eds.). (1997). Ethnomathematics: Challenging eurocentrism in mathematics education. Albany, NY: SUNY Press.Google Scholar
  44. Schoenfeld, A. H. (2004). The math wars. Educational Policy, 18(1), 253–286.CrossRefGoogle Scholar
  45. Selter, C. (1998). Building on children’s mathematics. A teaching experiment in Grade 3. Educational Studies in Mathematics, 36, 1–27.CrossRefGoogle Scholar
  46. *Sierpinska, A., & Kilpatrick, J. (Eds.). (1999). Mathematics education as a research domain: A search for identity. Dordrecht, The Netherlands: Kluwer.Google Scholar
  47. Skovsmose, O. (2005). Travelling through education: Uncertainty, mathematics, responsibility. Rotterdam, The Netherlands: Sense Publishers.Google Scholar
  48. Skovsmose, O. (2012). Towards a critical mathematics education research programme? In O. Skovsmose & B. Greer (Eds.), Opening the cage: Critique and politics of mathematics education (pp. 343–368). Rotterdam, The Netherlands: Sense Publishers.Google Scholar
  49. *Sriraman, B., & English, L. (Eds.). (2010). Theories of mathematics education. (Advances in Mathematics Education Series). Berlin: Springer.Google Scholar
  50. Steen, L. A. (1999). Theories that gyre and gimble in the wabe. Journal for Research in Mathematics Education, 30, 235–241.CrossRefGoogle Scholar
  51. Streefland, L. (1991). Fractions in realistic mathematics education. A paradigm of developmental research. Dordrecht, The Netherlands: Kluwer.CrossRefGoogle Scholar
  52. Treffers, A. (1987). Three dimensions. A model of goal and theory description in mathematics education. Dordrecht, The Netherlands: Kluwer.Google Scholar
  53. United States Department of Education. (2008). Foundations for success. The final report of the National Mathematics Advisory Panel. Retrieved January 17, 2009, from http://www.ed.gov/about/bdscomm/list/mathpanel/index.html
  54. Valero, P., & Zevenberger, R. (Eds.). (2004). Researching the sociopolitical dimensions of mathematics education. Boston, MA: Kluwer.Google Scholar
  55. Van den Heuvel-Panhuizen, M. (1998, June). What is realistic mathematics education? Plenary lecture, The Nordic Research Conference on Mathematics Education, Kristiansand, Norway.Google Scholar
  56. Van den Heuvel-Panhuizen, M. (2010). Reform under attack—Forty years of working on better mathematics education thrown on the scrapheap? No way! In L. Sparrow, B. Kissane, & C. Hurst (Eds.), Shaping the future of mathematics education: Proceedings of the 33rd annual conference of the Mathematics Education Research Group of Australasia (pp. 1–25). Fremantle, WA: MERGA.Google Scholar
  57. Verschaffel, L., Greer, B., & De Corte, E. (2007). Whole number concepts and operations. In F. K. Lester (Ed.), Second handbook of research on mathematics teaching and learning (pp. 557–628). Greenwich, CT: Information Age Publishing.Google Scholar
  58. *Wittmann, E. Ch. (1995). Mathematics education as a design science. Educational Studies in Mathematics, 29, 355–374.Google Scholar
  59. Wittmann, E. C., & Müller, G. N. (2004). Das Zahlenbuch. Mathematik im 1. Schuljahr. [The book of numbers Mathematics in grade 1]. Stuttgart, Germany: Klett Verlag.Google Scholar
  60. Wittmann, E. C., & Müller, G. N. (2010). Die Grundidee des Mathe 2000-Frühförderkonzepts. In E. C. Wittmann & G. N. Müller (Eds.), Das Zahlenbuch. Handbuch zum Frühförderprogramm (pp. 1–23). Stuttgart, Germany: Klett.Google Scholar
  61. Yackel, E., Gravemeijer, K., & Sfard, A. (Eds.). (2011). A journey in mathematics education research: Insights from the work of Paul Cobb. Dordrecht, The Netherlands: Springer.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Center for Instructional Psychology and Technology, Education and TrainingVan den Heuvel-Instituut, Katholieke Universiteit LeuvenLeuvenBelgium
  2. 2.Graduate School of EducationPortland State UniversityPortlandUSA

Personalised recommendations