Cousins but Not Twins: Instructional Design and Human Performance Technology in the Workplace

  • Wellesley R. Foshay
  • Steven W. Villachica
  • Donald A. Stepich

Abstract

Instructional design (ID) and human performance technology (HPT) stem from a common origin in systems thinking and behavioral psychology, but today the two fields employ different research bases, system foci, and methods. To contrast these fields, this chapter presents an idealized and abstracted discussion that examines the theoretical origins of the two fields, briefly describes their similarities, and focuses on their differences in terms of analytical frameworks and methods. We conclude that contemporary practice in most contexts combines elements of ID and HPT, particularly when working in cross-functional teams seeking to improve organizational performance. Practitioners of ID are likely to encounter HPT in their work, and they may be called upon to serve as part of a cross-functional team using HPT as a common conceptual framework.

Keywords

Educational technology Human performance technology Instructional design Instructional designer Performance-based training Training 

References

  1. Addison, R., Haig, C., & Kearny, L. (2009). Performance architecture: The art and science of improving organizations. San Francisco, CA: Pfeiffer.Google Scholar
  2. Aguinis, H., & Kraiger, K. (2009). Benefits of training and development for individuals and teams, organizations, and society. Annual Review of Psychology, 60, 451–474. doi: 10.1146/annurev.psych.60.110707.163505.CrossRefGoogle Scholar
  3. Anderson, V., & Johnson, L. (1997). Systems thinking basics: From concepts to causal loops. Waltham, MA: Pegasus Communications, Inc.Google Scholar
  4. ASTD. (2008). The ASTD WLP competency model. American Society for Training and Development. Alexandria, VA. Retrieved from http://www.astd.org/content/research/competency/AreasofExpertise.htm.
  5. ASTD. (n.d.). Mission and vision. Retrieved June 3, 2013 from http://www.org/ASTD/aboutus/missionAndVision/.
  6. *Baek, E.-O., Cagiltay, K., Boling, E., & Frick, T. (2007). User-centered design and development. In J. Michael Spector, M. David Merrill, Jeroen van Merriënboer, & M. P. Driscoll (Eds.), Handbook of research for educational communications and technology (pp. 660–668). New York, NY: Taylor & Francis.Google Scholar
  7. Beich, E. (Ed.). (2008). ASTD handbook for workplace learning ­professionals. Washington, DC: American Society for Training & Development.Google Scholar
  8. *Boling, E., & Smith, K. M. (2007). Artifacts as tools in the design process. In J. Michael Spector, M. David Merrill, Jeroen van Merriënboer, & M. P. Driscoll (Eds.), Handbook of research for educational communications and technology (pp. 685–690). New York: Taylor & Francis.Google Scholar
  9. *Brethower, D. M. (2006). Systemic issues. In J. A. Pershing (Ed.). Handbook of human performance technology (3rd ed., pp. 111–137). San Francisco: Pfeiffer.Google Scholar
  10. Brinkerhoff, R. O. (2006). Using evaluation to measure and improve the effectiveness of human performance technology initiatives. In J. A. Pershing (Ed.), Handbook of human performance technology: Principles, practices, and potential (3rd ed., pp. 287–311). San Francisco, CA: Pfeiffer.Google Scholar
  11. Broad, M. L., & Newstrom, J. W. (1992). Transfer of training: Action-packed strategies to ensure high payoff from training investments. Reading, MA: Addison-Wesley.Google Scholar
  12. Brown, T. (2008). Design thinking. Harvard Business Review, 86(6), 84–92.Google Scholar
  13. Chevalier, R. (2003). Updating the behavior engineering model. Performance Improvement, 42(5), 8–14. doi: 10.1002/pfi.4930420504.CrossRefGoogle Scholar
  14. Chevalier, R. (2006). Leadership in performance consulting. In J. A. Pershing (Ed.), Handbook of human performance technology: Principles, practices, and potential (3rd ed., pp. 964–985). San Francisco, CA: Pfeiffer.Google Scholar
  15. d.school. (2010). Bootcamp bootleg. Palo Alto, CA: Institute of Design at Stanford. Available at http://dschool.typepad.com/files/bootcampbootleg2010.pdf.
  16. Dean, P. J. (1997). Thomas F. Gilbert, Ph.D: Engineering performance improvement with or without training. In P. J. Dean, & D. E. Ripley (Eds.), Performance improvement series: Vol. 1. Performance improvement pathfinders: Models for organizational learning systems (pp. 45–64). Silver Spring, MD: International Society for Performance Improvement.Google Scholar
  17. Definition and Terminology Committee of AECT. (2007). Definition. In A. Januszewski & M. Molenda (Eds.), Educational technology: A definition with commentary (2nd ed., pp. 1–14). Oxford, England: Taylor & Francis.Google Scholar
  18. Dick, W., Carey, L., & Carey, J. O. (2009). The systematic design of instruction (7th ed.). Upper Saddle River, NJ: Pearson.Google Scholar
  19. Ertmer, P. A., Stepich, D. A., York, C. S., Stickman, A., Wu, X., Zurek, S., et al. (2008). How instructional design experts use knowledge and experience to solve ill-structured problems. Performance Improvement Quarterly, 21(1), 17–42.CrossRefGoogle Scholar
  20. *Gagne, R. M. (1985). The conditions of learning and theory of instruction (4th ed.). New York, NY: Holt, Rinehart and Winston.Google Scholar
  21. Gagne, R. M., Wager, W. W., Golas, K., & Keller, J. M. (2005). Principles of instructional design (5th ed.). Belmont, CA: Thomson/Wadsworth.Google Scholar
  22. *Gilbert, T. F. (1996a). Human competence: Engineering worthy performance (Tribute ed.). Washington, DC: International Society for Performance Improvement.Google Scholar
  23. Gilbert, T. F. (1996b). Human competence: Engineering worthy performance. New York: McGraw Hill.Google Scholar
  24. Harless, J. H. (1973). An analysis of front-end analysis. Improving Human Performance: A Research Quarterly, 4, 229–244.Google Scholar
  25. Hutchinson, C. S. (1990). A process model for performance technology. Performance and Instruction, 29(3), 1–5.CrossRefGoogle Scholar
  26. ISPI. (2002a). Code of ethics. Retrieved September 29, 2010, from http://www.ispi.org/uploadedFiles/ISPI_Site/About_ISPI/About/Code-of-Ethics.pdf.
  27. ISPI. (2002b). ISPI’s performance technology standards (p. 35). Silver Spring, MD: International Society for Performance Improvement.Google Scholar
  28. *Jonassen, D. H. (2004). Learning to solve problems. San Francisco: Wiley.Google Scholar
  29. *Kaufman, R. (1983). A holistic planning model: A system approach for improving organizational effectiveness and impact. Performance and Instruction, 22(8), 3–12.Google Scholar
  30. Kirkpatrick, D., & Kirkpatrick, J. (2006). Evaluating training programs: The four levels (3rd ed.). San Francisco: Barrett-Koehler.Google Scholar
  31. Langdon, D. (2000). Aligning performance: Improving people, systems, and organizations. San Francisco: Jossey-Bass.Google Scholar
  32. Lawson, B. (2006). How designers think: The design process demystified (4th ed.). Oxford, UK: Architectural Press.Google Scholar
  33. Mager, R. F. (1988). Making instruction work, or, skillbloomers. Belmont, CA: Lake.Google Scholar
  34. Mager, R. F. (1997). Preparing instructional objectives: A critical tool in the development of effective instruction (3rd ed.). Atlanta, GA: Center for Effective Performance.Google Scholar
  35. Mager, R. F., & Pipe, P. (1970). Analyzing performance problems: Or you really oughta wanna. Belmont, CA: Fearon.Google Scholar
  36. Marker, A. (2007). Synchronized analysis model: Linking Gilbert’s behavior engineering model with environmental analysis models. Performance Improvement, 46(1), 26–32. doi: 10.1002/pfi.036.CrossRefGoogle Scholar
  37. Martin, J. (1991). Rapid application development. New York: Macmillan.Google Scholar
  38. Meadows, D. H. (2008). Thinking in systems: A primer. White River Junction, VT: Chelsea Green.Google Scholar
  39. *Merrill, M. D. (2002). First principles of instruction. Educational Technology Research and Development, 50(3), 43–59.Google Scholar
  40. Molenda, M. (2003). In search of elusive ADDIE model. Performance Improvement, 42(5), 34–36.CrossRefGoogle Scholar
  41. *Molenda, M. (2010). Origins and evolution of instructional systems design. In K. H. Silber & W. R. Foshay (Eds.), Handbook of improving workplace performance (Vol. 1: Instructional design and training delivery, pp. 53–92). San Francisco, CA: Jossey-Bass/Pfeiffer.Google Scholar
  42. Molenda, M., & Pershing, J. A. (2007). Improving performance. In A. Januszewski & M. Molenda (Eds.), Educational technology: A definition with commentary (2nd ed., pp. 49–80). Oxford, England: Taylor & Francis.Google Scholar
  43. Morrison, G. R., Ross, S. R., & Kemp, J. E. (2007). Designing effective instruction (5th ed.). Hoboken, NJ: Wiley.Google Scholar
  44. Moseley, J. L., & Dessinger, J. C. (Eds.). (2010). Handbook of improving performance in the workplace, vol. 3: Measurement and evaluation. San Francisco: Jossey-Bass Pfeiffer.Google Scholar
  45. Myerson, J. (2001). IDEO: Masters of innovation. London, UK: Laurence King.Google Scholar
  46. *Pershing, J. A. (2006). Human performance technology fundamentals. In J. A. Pershing (Ed.), Handbook of human performance technology: Principles, practices, and potential (3rd ed., pp. 5–34). San Francisco, CA: Pfeiffer.Google Scholar
  47. Phillips, J. J., & Phillips, P. P. (2002). Eleven reasons why training and development fails … and what you can do about it. Training, 39(9), 79–85.Google Scholar
  48. Robinson, D. G., & Robinson, J. C. (1990). Training for impact: How to link training to business needs and measure the results. San Francisco, CA: Jossey-Bass.Google Scholar
  49. Robinson, D. G., & Robinson, J. C. (2006). Making the transition from a learning to a performance function. In J. A. Pershing (Ed.), Handbook of human performance technology: Principles, practices, and potential (3rd ed., pp. 903–923). San Francisco, CA: Pfeiffer.Google Scholar
  50. Rosenberg, M. J. (1990). Performance technology: Working the system. Training, 27(2), 42–48.Google Scholar
  51. Rosenberg, M. J., Coscarelli, W. C., & Hutchison, C. S. (1999). The origins and evolution of the field. In H. D. Stolovitch & E. J. Keeps (Eds.), Handbook of human performance technology: Improving individual and organizational performance worldwide (2nd ed., pp. 24–46). San Francisco: Jossey-Bass/Pfeiffer.Google Scholar
  52. Ross, S. M., Morrison, G. R., Hannafin, R. D., Young, M., Akker, J. V. D., Kuiper, W., et al. (2007). Research designs. In J. M. Spector, M. D. Merrill, J. V. Merriënboer, & M. P. Driscoll (Eds.), Handbook of research for educational communications and technology (pp. 715–761). New York, NY: Taylor & Francis Group.Google Scholar
  53. Rossett, A. (1987). Training needs assessment. Englewood Cliffs, NJ: Educational Technology.Google Scholar
  54. Rowland, G. (1993). Designing and instructional design. Educational Technology Research and Development, 41(1), 79–91. doi: 10.1007/BF02297094.CrossRefGoogle Scholar
  55. Rummler, G. A. (1972). Human performance problems and their solutions. Human Resource Management, 11(4), 2–10.CrossRefGoogle Scholar
  56. Rummler, G. A. (2006). The anatomy of performance. In J. A. Pershing (Ed.), Handbook of human performance technology: Principles, practices, and potential (3rd ed., pp. 986–1007). San Francisco, CA: Pfeiffer.Google Scholar
  57. Rummler, G. A. (2007). The past is prologue: An eye witness account of HPT. Performance Improvement, 46(10), 5–9.CrossRefGoogle Scholar
  58. Rummler, G. A., & Brache, A. P. (1990). Improving performance: How to manage the white space on the organization chart. San Francisco, CA: Jossey-Bass.Google Scholar
  59. *Silber, K. H. (2010). A principle-based model of instructional design. In K. H. Silber & W. R. Foshay (Eds.), Handbook of improving workplace performance (Vol. 1: Instructional design and training delivery, pp. 23–52). San Francisco, CA: Jossey-Bass/Pfeiffer.Google Scholar
  60. Sims, R. C., & Koszalka, T. A. (2007). Competencies for the new-age instructional designer. In J. Michael Spector, M. David Merrill, Jeroen van Merriënboer, & M. P. Driscoll (Eds.), Handbook of research for educational communications and technology (pp. 570–575). New York: Taylor & Francis.Google Scholar
  61. Smith, P. L., & Ragan, T. J. (2005). Instructional design (3rd ed.). Hoboken, NJ: Wiley.Google Scholar
  62. *Van Tiem, D. M., Moseley, J. L., & Dessinger, J. C. (2004). Fundamentals of performance technology: A guide to improving people, processes, and performance (2nd ed.). Silver Spring, MD: International Society for Performance Improvement.Google Scholar
  63. Villachica, S. W., & Stepich, D. A. (2010). Surviving troubled times: Five best practices for training professionals. Performance Improvement Quarterly, 23(2), 93–115. doi: 10.1002/piq.20083.CrossRefGoogle Scholar
  64. Villachica, S. W., & Stone, D. L. (1998). Rapid application development for performance technology: Five strategies to deliver better interventions in less time. In P. J. Dean & D. E. Ripley (Eds.), Performance improvement interventions: Performance technologies in the workplace (pp. 343–399). Washington, DC: International Society for Performance Improvement.Google Scholar
  65. Villachica, S. W., & Stone, D. L. (1999). Performance support systems. In H. D. Stolovitch & E. J. Keeps (Eds.), Handbook of human performance technology: Improving individual and organizational performance worldwide (2nd ed., pp. 442–463). San Francisco: Jossey-Bass/Pfeiffer.Google Scholar
  66. Villachica, S. W., & Stone, D. L. (2010). Cognitive task analysis. In K. H. Silber, & W. R. Foshay (Eds.), Handbook of improving ­workplace performance (Vol. 1: Instructional design and training delivery, pp. 227–258). San Francisco, CA: Jossey-Bass/Pfeiffer.Google Scholar
  67. Villachica, S. W., Stone, D. L., & Endicott, J. E. (2006). Performance support systems. In J. Pershing (Ed.), Handbook of human performance technology: Improving individual and organizational performance worldwide (3rd ed., pp. 539–566). San Francisco, CA: Jossey-Bass/Pfeiffer.Google Scholar
  68. Watkins, R., Leigh, D., Foshay, W. R., & Kaufman, R. (1998). Kirkpatrick plus: Evaluation and continuous improvement with a community focus. Education Technology Research and Development, 5(3), 390–393.Google Scholar
  69. Winiecki, D. J. (2006). Systems, measures, and workers: Producing and obscuring the system and making systemic performance improvement difficult. In J. A. Pershing (Ed.), Handbook of human performance technology: Principles, practices, and potential (3rd ed., pp. 1224–1250). San Francisco, CA: Pfeiffer.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Wellesley R. Foshay
    • 1
  • Steven W. Villachica
    • 2
  • Donald A. Stepich
    • 2
  1. 1.The Foshay Group and Walden UniversityDallasUSA
  2. 2.Boise State UniversityBoiseUSA

Personalised recommendations