Advertisement

Abstract

The basic tenet of inquiry learning is that students arrive at an understanding of the subject matter by engaging in self-directed investigations. The foundations of this mode of learning are derived from three related fields of study. Psychological research on scientific reasoning revolves around the cognitive processes involved in inducing knowledge from empirical data, and intends to give an account of the problems students encounter in performing these processes. These learning difficulties (should) serve as a starting point for educational research into the effectiveness of support or scaffolding that can be used to overcome known skill deficiencies. Research and development of software tools and environments addresses the ways in which this support can best be offered to the learner so as to enhance learning processes and outcomes. This chapter outlines recent trends and issues in these three research areas, and attempts to synthesize key findings in order to identify the latest advancements in inquiry-based learning.

Keywords

Inquiry learning Scientific reasoning Scaffolding Learning environment 

References

  1. *Alfieri, L., Brooks, P. J., Aldrich, N. J., & Tenenbaum, H. R. (2011). Does discovery-based instruction enhance learning? Journal of Educational Psychology, 103, 1–18. doi:  10.1037/a0021017.Google Scholar
  2. Amsel, E., & Brock, S. (1996). The development of evidence evaluation skills. Cognitive Development, 11, 523–550. doi: 10.1016/S0885-2014(96)90016-7.CrossRefGoogle Scholar
  3. Bernacki, M. L., Aguilar, A. C., & Byrnes, J. P. (2011). Self-regulated learning and technology-enhanced learning environments: An opportunity-propensity analysis. In D. Persico & G. Dettori (Eds.), Fostering self-regulated learning through ICT (pp. 1–26). Hershey, PA: Information Science Publishing.Google Scholar
  4. Burns, B. D., & Vollmeyer, R. (2002). Goal specificity effects on hypothesis testing in problem solving. The Quarterly Journal of Experimental Psychology, 55A, 241–261. doi: 10.1080/02724980143000262.Google Scholar
  5. Chang, K. E., Chen, Y. L., Lin, H. Y., & Sung, Y. T. (2008). Effects of learning support in simulation-based physics learning. Computers in Education, 51, 1486–1498. doi: 10.1016/j.compedu.2008.01.007.CrossRefGoogle Scholar
  6. Chi, M. T. H., Feltovich, P., & Glaser, R. (1981). Categorization and representation of physics problems by experts and novices. Cognitive Science, 5, 121–152. doi: 10.1207/s15516709cog0502_2.CrossRefGoogle Scholar
  7. Chinn, C. A., & Brewer, W. F. (1993). The role of anomalous data in knowledge acquisition: A theoretical framework and implications for science instruction. Review of Educational Research, 63, 1–49. doi: 10.3102/00346543063001001.CrossRefGoogle Scholar
  8. Chinn, C. A., & Brewer, W. F. (1998). An empirical test of a taxonomy of responses to anomalous data in science. Journal of Research in Science Teaching, 35, 623–654. doi:10.1002/(SICI)1098-2736(199808)35:6<623::AID-TEA3>3.0.CO;2-O.CrossRefGoogle Scholar
  9. Chinn, C. A., & Malhotra, B. A. (2002a). Children’s responses to anomalous scientific data: How is conceptual change impeded? Journal of Educational Psychology, 94, 327–343. doi: 10.1037/0022-0663.94.2.327.CrossRefGoogle Scholar
  10. Chinn, C. A., & Malhotra, B. A. (2002b). Epistemologically authentic inquiry in schools: A theoretical framework for evaluating inquiry tasks. Science Education, 86, 175–218. doi: 10.1002/sce.10001.CrossRefGoogle Scholar
  11. De Jong, T. (2006a). Computer simulations: Technological advances in inquiry learning. Science, 312, 532–533. doi: 10.1126/science.1127750.CrossRefGoogle Scholar
  12. De Jong, T. (2006b). Scaffolds for scientific discovery learning. In J. Elen & R. E. Clark (Eds.), Handling complexity in learning environments: Theory and research (pp. 107–128). London: Elsevier.Google Scholar
  13. De Jong, T. (2010). Instruction based on computer simulations. In R. E. Mayer & P. A. Alexander (Eds.), Handbook of research on learning and instruction (pp. 446–466). London: Routledge.Google Scholar
  14. De Jong, T., & Van Joolingen, W. R. (1998). Scientific discovery learning with computer simulations of conceptual domains. Review of Educational Research, 68, 179–202. doi: 10.3102/00346543068002179.CrossRefGoogle Scholar
  15. De Jong, T., Van Joolingen, W. R., Giezma, A., Girault, I., Hoppe, U., Kindermann, J., et al. (2010). Learning by creating and exchanging objects: The SCY experience. British Journal of Educational Technology, 41, 909–921. doi: 10.1111/j.1467-8535.2010.01121.x.CrossRefGoogle Scholar
  16. Dean, D., & Kuhn, D. (2007). Direct instruction vs. discovery: The long view. Science Education, 91, 384–397. doi: 10.1002/sce.20194.CrossRefGoogle Scholar
  17. Dunbar, K. (1993). Concept discovery in a scientific domain. Cognitive Science, 17, 397–434. doi: 10.1207/s15516709cog1703_3.CrossRefGoogle Scholar
  18. Eberbach, C., & Crowley, K. (2009). From everyday to scientific observation: How children learn to observe the biologist’s world. Review of Educational Research, 79, 39–68. doi: 10.3102/0034654308325899.CrossRefGoogle Scholar
  19. Eysink, T. H. S., De Jong, T., Berthold, K., Kolloffel, B., Opfermann, M., & Wouters, P. (2009). Learner performance in multimedia learning arrangements: An analysis across instructional approaches. American Educational Research Journal, 46, 1107–1149. doi: 10.3102/0002831209340235.CrossRefGoogle Scholar
  20. Fund, Z. (2007). The effects of scaffolded computerized science problem-solving on achievement outcomes: A comparative study of support programs. Journal of Computer Assisted Learning, 23, 410–424. doi: 10.1111/j.1365-2729.2007.00226.x.CrossRefGoogle Scholar
  21. Gijlers, H., & De Jong, T. (2005). The relation between prior knowledge and students’ collaborative discovery learning processes. Journal of Research in Science Teaching, 42, 264–282. doi: 10.1002/tea.20056.CrossRefGoogle Scholar
  22. Gijlers, H., & De Jong, T. (2009). Sharing and confronting propositions in collaborative scientific discovery learning. Cognition and Instruction, 27, 239–268. doi: 10.1080/07370000903014352.CrossRefGoogle Scholar
  23. Hmelo-Silver, C. E., Golan Dunca, R., & Chinn, C. A. (2007). Scaffolding and achievement in problem-based and inquiry learning: A response to Kirschner, Sweller, and Clark (2006). Educational Psychologist, 42, 99–107. doi: 10.1080/00461520701263368.CrossRefGoogle Scholar
  24. Horwitz, P., Neumann, E., & Schwartz, J. (1996). Teaching science at multiple levels: The GenScope program. Communications of the ACM, 39, 127–131.CrossRefGoogle Scholar
  25. Horwitz, P., O’Dwyer, L. M., & Rosca, C. V. (2010, April). Teaching and assessing “Evolution Readiness” to fourth graders using games. Paper presented at the annual meeting of the American Educational Research Association, Denver, CO.Google Scholar
  26. Hulshof, C. D., & De Jong, T. (2006). Using just-in-time information to support discovery learning about geometrical optics in a computer-based simulation. Interactive Learning Environments, 14, 79–94. doi: 10.1080/10494820600769171.CrossRefGoogle Scholar
  27. Inhelder, B., & Piaget, J. (1958). The growth of logical thinking from childhood to adolescence. New York, NY: Basic Books.CrossRefGoogle Scholar
  28. Kali, Y., & Linn, M. C. (2008). Technology-enhanced support strategies for inquiry learning. In J. M. Spector, M. D. Merrill, J. J. G. Van Merrienboer, & M. Driscoll (Eds.), Handbook of research on educational communications and technology (3rd ed., pp. 145–161). New York, NY: Lawrence Erlbaum.Google Scholar
  29. Keselman, A. (2003). Supporting inquiry learning by promoting normative understanding of multivariable causality. Journal of Research in Science Teaching, 40, 898–921. doi: 10.1002/tea.10115.CrossRefGoogle Scholar
  30. Kirschner, P. A., Sweller, J., & Clark, R. E. (2006). Why minimal guidance during instruction does not work: An analysis of the failure of constructivist, discovery, problem-based, experiential, and inquiry-based teaching. Educational Psychologist, 41, 75–86. doi: 10.1207/s15326985ep4102_1.CrossRefGoogle Scholar
  31. Klahr, D. (2000). Exploring science: The cognition and development of discovery processes. Cambridge, MA: MIT Press.Google Scholar
  32. Klahr, D. (2005). Early science instruction: Addressing fundamental issues. Psychological Science, 16, 871–872. doi: 10.1111/j.1467-9280.2005.01629.x.CrossRefGoogle Scholar
  33. Klahr, D., & Dunbar, K. (1988). Dual space search during scientific reasoning. Cognitive Science, 12, 1–48. doi: 10.1207/s15516709cog1201_1.CrossRefGoogle Scholar
  34. Klahr, D., Fay, A. L., & Dunbar, K. (1993). Heuristics for scientific experimentation: A developmental study. Cognitive Psychology, 25, 111–146. doi: 10.1006/cogp.1993.1003.CrossRefGoogle Scholar
  35. Klahr, D., & Li, J. (2005). Cognitive research and elementary science instruction: From the laboratory, to the classroom, and back. Journal of Science Education and Technology, 14, 217–238. doi: 10.1007/s10956-005-4423-5.CrossRefGoogle Scholar
  36. Klahr, D., & Nigam, M. (2004). The equivalence of learning paths in early science instruction: Effects of direct instruction and discovery learning. Psychological Science, 15, 661–667. doi: 10.1111/j.0956-7976.2004.00737.x.CrossRefGoogle Scholar
  37. Koslowski, B., Marasia, J., Chelenza, M., & Dublin, R. (2008). Information becomes evidence when an explanation can incorporate it into a causal framework. Cognitive Development, 23, 472–487. doi: 10.1016/j.cogdev.2008.09.007.CrossRefGoogle Scholar
  38. Krajcik, J., Blumenfeld, P. C., Marx, R. W., Bass, K. M., Fredricks, J., & Soloway, E. (1998). Inquiry in project-based science classrooms: Initial attempts by middle school students. The Journal of the Learning Sciences, 7, 313–350. doi: 10.1207/s15327809jls0703%26;4_3.Google Scholar
  39. Kuhn, D., Amsel, E., & O’Loughlin, M. (1988). The development of scientific thinking skills. Orlando, FL: Academic.Google Scholar
  40. Kuhn, D., Black, J., Keselman, A., & Kaplan, D. (2000). The development of cognitive skills to support inquiry learning. Cognition and Instruction, 18, 495–523. doi: 10.1207/S1532690XCI1804_3.CrossRefGoogle Scholar
  41. Kuhn, D., & Dean, D. (2005). Is developing scientific thinking all about learning to control variables? Psychological Science, 16, 866–870. doi: 10.1111/j.1467-9280.2005.01628.x.CrossRefGoogle Scholar
  42. Kuhn, D., Iordanou, K., Pease, M., & Wirkala, C. (2008). Beyond control of variables: What needs to develop to achieve skilled scientific thinking? Cognitive Development, 23, 435–451. doi: 10.1016/j.cogdev.2008.09.006.CrossRefGoogle Scholar
  43. Kuhn, D., Schauble, L., & Garcia-Mila, M. (1992). Cross-domain development of scientific reasoning. Cognition and Instruction, 9, 285–327. doi: 10.1207/s1532690xci0904_1.CrossRefGoogle Scholar
  44. Lazonder, A. W., Hagemans, M. G., & De Jong, T. (2010). Offering and discovering domain information in simulation-based inquiry learning. Learning and Instruction, 20, 511–520. doi: 10.1016/j.learninstruc.2009.08.001.CrossRefGoogle Scholar
  45. Lazonder, A. W., Wilhelm, P., & Hagemans, M. G. (2008). The influence of domain knowledge on strategy use during simulation-based inquiry learning. Learning and Instruction, 18, 580–592. doi: 10.1016/j.learninstruc.2007.12.001.CrossRefGoogle Scholar
  46. Lazonder, A. W., Wilhelm, P., & Van Lieburg, E. (2009). Unraveling the influence of domain knowledge during simulation-based inquiry learning. Instructional Science, 37, 437–451. doi: 10.1007/s11251-008-9055-8.CrossRefGoogle Scholar
  47. Lin, J. (2007). Responses to anomalous data obtained from repeatable experiments in the laboratory. Journal of Research in Science Teaching, 44, 506–528. doi: 10.1002/tea.20125.CrossRefGoogle Scholar
  48. Linn, M. C. (1995). Designing computer learning environments for engineering and computer science: The scaffolded knowledge integration framework. Journal of Science Education and Technology, 4, 103–126. doi: 10.1007/BF02214052.CrossRefGoogle Scholar
  49. Lorch, R. F., Lorch, E. P., Calderhead, W. J., Dunlap, E. E., Hodell, E. C., & Freer, B. D. (2010). Learning the control of variables strategy in higher and lower achieving classrooms: Contributions of explicit instruction and experimentation. Journal of Educational Psychology, 102, 90–101. doi: 10.1037/a0017972.CrossRefGoogle Scholar
  50. Manlove, S., Lazonder, A. W., & De Jong, T. (2009). Trends and issues of regulative support use during inquiry learning: Patterns from three studies. Computers in Human Behavior, 25, 795–803. doi: 10.1016/j.chb.2008.07.010.CrossRefGoogle Scholar
  51. Masnick, A. M., & Morris, B. J. (2008). Investigating the development of data evaluation: The role of data characteristics. Child Development, 79, 1032–1048. doi: 10.1111/j.1467-8624.2008.01174.x.CrossRefGoogle Scholar
  52. Minner, D. D., Levy, A. J., & Century, J. (2010). Inquiry-based science instruction—What is it and does it matter? Results from a research synthesis years 1984 to 2002. Journal of Research in Science Teaching, 47, 474–496. doi: 10.1002/tea.20347.CrossRefGoogle Scholar
  53. Mulder, Y. G., Lazonder, A. W., & De Jong, T. (2010). Finding out how they find it out: An empirical analysis of inquiry learners’ need for support. International Journal of Science Education, 32, 2033–2053. doi: 10.1080/09500690903289993.CrossRefGoogle Scholar
  54. Njoo, M., & De Jong, T. (1991). Learning processes of students working with a computer simulation on mechanical engineering. In M. Carretero, M. Pope, R.-J. Simons, & J. I. Pozo (Eds.), Learning and instruction: European research in an international context (Vol. 3, pp. 483–495). Oxford: Pergamon.Google Scholar
  55. Njoo, M., & De Jong, T. (1993a). Exploratory learning with a computer simulation for control theory: Learning processes and instructional support. Journal of Research in Science Teaching, 30, 821–844. doi: 10.1002/tea.3660300803.CrossRefGoogle Scholar
  56. Njoo, M., & De Jong, T. (1993b). Supporting exploratory learning by offering structured overviews of hypotheses. In D. Towne, T. De Jong, & H. Spada (Eds.), Simulation-based experiential learning (pp. 207–225). Berlin: Springer.CrossRefGoogle Scholar
  57. Penner, D. E., & Klahr, D. (1996). The interaction of domain-specific knowledge and domain-general discovery strategies: A study with sinking objects. Child Development, 67, 2709–2727. doi: 10.1111/1467-8624.ep9706244829.CrossRefGoogle Scholar
  58. Quinn, J., & Alessi, S. (1994). The effects of simulation complexity and hypothesis-generation strategy on learning. Journal of Research on Computing in Education, 27, 75–91.Google Scholar
  59. Quintana, C., Reiser, B. J., Davis, E. A., Krajcik, J., Fretz, E., Duncan, R. G., et al. (2004). A scaffolding design framework for software to support science inquiry. The Journal of the Learning Sciences, 13, 337–386. doi: 10.1207/s15327809jls1303_4.CrossRefGoogle Scholar
  60. Reid, D. J., Zhang, J., & Chen, Q. (2003). Supporting scientific discovery learning in a simulation environment. Journal of Computer Assisted Learning, 19, 9–20. doi: 10.1111/j.1365-2729.2006.00162.x.CrossRefGoogle Scholar
  61. Reiser, B. J. (2004). Scaffolding complex learning: The mechanisms of structuring and problematizing student work. The Journal of the Learning Sciences, 13, 273–304. doi: 10.1207/s15327809jls1303_2.CrossRefGoogle Scholar
  62. Reiser, B. J., Tabak, I., Sandoval, W. A., Smith, B., Steinmuller, F., & Leone, T. J. (2001). BGuILE: Strategic and conceptual scaffolds for scientific inquiry in biology classrooms. In S. M. Carver & D. Klahr (Eds.), Cognition and instruction: Twenty five years of progress (pp. 263–305). Mahwah, NJ: Lawrence Erlbaum.Google Scholar
  63. Rieber, L. P., Tzeng, S., & Tribble, K. (2004). Discovery learning, representation, and explanation within a computer-based simulation: Finding the right mix. Learning and Instruction, 14, 307–323. doi: 10.1016/j.learninstruc.2004.06.008.CrossRefGoogle Scholar
  64. Ross, J. A. (1988). Controlling variables: A meta-analysis of studies. Review of Educational Research, 58, 405–437. doi: 10.3102/0034654305800440.CrossRefGoogle Scholar
  65. Schauble, L., Glaser, R., Duschl, R. A., Schulze, S., & John, J. (1995). Students’ understanding of the objectives and procedures of experimentation in the science classroom. The Journal of the Learning Sciences, 4, 131–166. doi: 10.1207/s15327809jls0402_1.CrossRefGoogle Scholar
  66. Schunn, C. D., & Klahr, D. (1993). Self vs. other-generated hypotheses in scientific discovery. In Proceedings of the Fifteenth Annual Conference of the Cognitive Science Society (pp. 900–905). Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
  67. Strand-Cary, M., & Klahr, D. (2008). Developing elementary science skills: Instructional effectiveness and path independence. Cognitive Development, 23, 488–511. doi: 10.1016/j.cogdev.2008.09.005.CrossRefGoogle Scholar
  68. Swaak, J., Van Joolingen, W. R., & De Jong, T. (1998). Supporting simulation-based learning; the effects of model progression and assignments on definitional and intuitive knowledge. Learning and Instruction, 8, 235–252. doi: 10.1037/a0021017.CrossRefGoogle Scholar
  69. Tomkins, S. P., & Tunnicliffe, S. D. (2001). Looking for ideas: Observation, interpretation and hypothesis-making by 12-year-old pupils undertaking science investigations. International Journal of Science Education, 23, 791–813. doi: 10.1080/09500690119322.Google Scholar
  70. Tschirgi, J. E. (1980). Sensible reasoning: A hypothesis about hypotheses. Child Development, 51, 1–10. doi: 10.1111/1467-8624.ep12325377.CrossRefGoogle Scholar
  71. Van Joolingen, W. R., & De Jong, T. (1993). Exploring a domain with a computer simulation: Traversing variable and relation space with the help of a hypothesis scratchpad. In D. Towne, T. De Jong, & H. Spada (Eds.), Simulation-based experiential learning (pp. 191–206). Berlin: Springer.CrossRefGoogle Scholar
  72. Veenman, M. V. J., Wilhelm, P., & Beishuizen, J. J. (2004). The relation between intellectual and metacognitive skills from a developmental perspective. Learning and Instruction, 14, 89–109. doi: 10.1016/j.learninstruc.2003.10.004.CrossRefGoogle Scholar
  73. Veermans, K., Van Joolingen, W. R., & De Jong, T. (2000). Promoting self-directed learning in simulation-based discovery learning environments through intelligent support. Interactive Learning Environments, 8, 229–255. doi: 10.1076/1049-4820(200012)8:3;1-D;FT229.CrossRefGoogle Scholar
  74. Veermans, K., Van Joolingen, W. R., & De Jong, T. (2006). Use of heuristics to facilitate scientific discovery learning in a simulation learning environment in a physics domain. Interactive Learning Environments, 28, 341–361. doi: 10.1080/09500690500277615.Google Scholar
  75. Vollmeyer, R., & Burns, B. D. (1996). Hypotheseninstruktion und Zielspezifität: Bedingungen, die das Erlernen und Kontrollieren eines komplexen Systems beeinflussen [Hypothesis instruction and goal-specificity: Factors that influence the learning and controlling of a complex system]. Zeitschrift für Experimentelle Psychologie, 43, 657–683.Google Scholar
  76. Weinbrenner, S., Engler, J., Wichmann, A., & Hoppe, U. (2010). Monitoring and analysing students’ systematic behaviour—The SCY pedagogical agent framework. Lecture Notes in Computer Science, 6383, 602–607. doi: 10.1007/978-3-642-16020-2_61.CrossRefGoogle Scholar
  77. White, B. Y. (1993). ThinkerTools: Causal models, conceptual change, and science education. Cognition and Instruction, 10, 1–100. doi: 10.1207/s1532690xci1001_1.CrossRefGoogle Scholar
  78. Wilhelm, P., & Beishuizen, J. J. (2003). Content effects in self-directed inductive learning. Learning and Instruction, 13, 381–402. doi: 10.1016/S0959-4752(02)00013-0.CrossRefGoogle Scholar
  79. Zhang, J., Chen, Q., Sun, Y., & Reid, D. J. (2004). Triple scheme of learning support design for scientific discovery learning based on computer simulation: Experimental research. Journal of Computer Assisted Learning, 20, 269–282. doi: 10.1111/j.1365-2729.2004.00062.x.CrossRefGoogle Scholar
  80. Zimmerman, C. (2007). The development of scientific thinking skills in elementary and middle school. Developmental Review, 27, 172–223. doi: 10.1016/j.dr.2006.12.001.CrossRefGoogle Scholar
  81. Zohar, A., & Peled, B. (2008). The effects of explicit teaching of metastrategic knowledge on low- and high-achieving students. Learning and Instruction, 18, 337–353. doi: 10.1016/j.learninstruc.2007.07.001.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Instructional TechnologyUniversity of TwenteEnschedeThe Netherlands

Personalised recommendations