Advanced Technologies for Personalized Learning, Instruction, and Performance

Chapter

Abstract

The inclusion of computer technology in education has led to increased attention for ­personalized learning and instruction. By means of personalized learning, or adaptive learning, learners are given instruction and support directly, adjusted to their cognitive and ­noncognitive needs.

This chapter aims at giving an overview of the current research that addresses advanced technologies, models, and approaches to establish personalized learning, instruction, and performance. In order to provide this, relevant learner and learning characteristics need to be measured or inferred and incorporated in learner models. These learner models provide the basis from which personalization can occur and have to be considered as the core of personalized learning environments.

In order to provide dynamic personalized learning, learner models need to be adjusted and updated with new information about the learner’s knowledge, affective states, and behavior. To do so, the fields of artificial intelligence and educational data mining provide advanced technologies that can be applied for fine-grained learner modeling. First, the field of artificial intelligence in education has largely supported the development of intelligent tutoring systems. Second, educational data mining is indispensable for providing information about the learning process and learner behavior.

The integration of artificial intelligence and educational data mining in the learner modeling research provides a firm basis for effectiveness research on personalized systems. This chapter is concluded with the call for educational technologists to use advanced technologies as a method to support personalized learning and not as a goal when developing adaptive learning environments.

Keywords

Artificial intelligence (AI) Artificial intelligence in education (AIED) Learner modeling Educational data mining (EDM) Personalized learning Adaptive system 

References

  1. Akhras, F. N., & Self, J. A. (2002). Beyond intelligent tutoring systems: Situations, interactions, processes and affordances. Instructional Science, 30, 1–30.CrossRefGoogle Scholar
  2. *Aleven, V., McLaren, B. M., Sewall, J., & Koedinger, K. R. (2009). A new paradigm for intelligent tutoring systems: Example-tracing tutors. International Journal of Artificial Intelligence in Education, 19(2), 105–154.Google Scholar
  3. Amershi, S., & Conati, C. (2009). Combining unsupervised and ­supervised classification to build user models for exploratory ­learning environments. Journal of Educational Data Mining, 1(1), 18–71.Google Scholar
  4. Anderson, J. R. (1993). Rules of the mind. Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.Google Scholar
  5. Anderson, J. R., Boyle, C. F., Corbett, A. T., & Lewis, M. W. (1990). Cognitive modeling and intelligent tutoring. Artificial Intelligence, 42, 7–49.CrossRefGoogle Scholar
  6. *Anderson, J. R., Corbett, A. T., Koedinger, K. R., & Pelletier, R. (1995). Cognitive tutors: Lessons learned. Journal of the Learning Sciences, 4(2), 167–207.Google Scholar
  7. Anderson, J. R., & Reiser, B. J. (1985). The LISP tutor. Byte, 10, 159–175.Google Scholar
  8. Arroyo, I., Cooper, D. G., Burleson, W., Woolf, B. P., Muldner, K., & Christopherson, R. (2009). Emotion sensors go to school. In V. Dimitrova, R. Mizoguchi, B. du Boulay, & A. Graesser (Eds.), Proceedings of the 14th International Conference on Artificial Intelligence in Education (pp. 17–24). Amsterdam: Ios Press.Google Scholar
  9. Baker, S. J. d. (2010). Data mining for education. In B. McGaw, P. Peterson, & E. Baker (Eds.), International encyclopedia of education (3rd ed., pp. 112–118). Oxford: Elsevier.CrossRefGoogle Scholar
  10. Baker, R. S. J. d., Corbett, A. T., Koedinger, K. R., Evenson, S., Roll, I., Wagner, A., et al. (2006). Adapting to when students game an intelligent tutoring system. In M. Ikeda, K. Ashley, & C. Tak-Wai (Eds.), Proceedings of the 8th International Conference on Intelligent Tutoring Systems (pp. 392–401). Berlin: Springer.CrossRefGoogle Scholar
  11. Baker, R. S. J., de Carvalho, A. M. J. B., Raspat, J., Aleven, V., Corbett, T., & Koedinger, K. R. (2008). Educational software features that encourage and discourage “Gaming the System”. In V. Dimitrova, R. Mizoguchi, B. du Boulay, & A. Graesser (Eds.), Proceedings of the 14th International Conference on Artificial Intelligence in Education (pp. 475–482). Amsterdam: Ios Press.Google Scholar
  12. *Baker, R., Walonoski, J., Heffernan, N., Roll, I., Corbett, A., & Koedinger, K. (2008). Why students engage in “Gaming the System” behavior in interactive learning environments. Journal of Interactive Learning Research, 19(2), 185–224.Google Scholar
  13. *Baker, R. S. J. d., & Yacef, K. (2009). The state of educational data mining in 2009: A review and future visions. Journal of Educational Data Mining, 1(1), 3–17.Google Scholar
  14. Beal, C. R., & Lee, H. (2005, July). Creating a pedagogical model that uses student self-reports of motivation and mood to adapt ITS instruction. Paper session presented at the Workshop on Motivation and Affect in Educational Software, 12th International Conference on Artificial Intelligence in Education, Amsterdam, The Netherlands.Google Scholar
  15. Beck, J. E., Jia, P., Sison, J., & Mostow, J. (2003). Predicting student help-request behavior in an intelligent tutor for reading. In P. Brusilovsky, A. T. Corbett, & F. De Rosis (Eds.), Proceedings of the 9th International Conference on User Modeling. LNAI 2702 (pp. 303–312). Berlin: Springer.Google Scholar
  16. Beck, J. E., & Mostow, J. (2008). How who should practice: Using learning decomposition to evaluate the efficacy of different types of practice for different types of students. In B. Woolf, E. Aimeur, R. Nkambou, & S. Lajoie (Eds.), Proceedings of the 9th International Conference on Intelligent Tutoring Systems (pp. 353–362). Berlin: Springer.CrossRefGoogle Scholar
  17. *Beck, J. E., & Woolf, B. (2000). High-level student modeling with machine learning. In G. Gilles, C. Frasson, & vanLehn, K. (Eds.), Proceedings of the 5th International Conference on Intelligent Tutoring systems (pp. 584–593). London: Springer-Verlag.Google Scholar
  18. Blanchard, E. G., Chalfoun, P., & Frasson, C. (2007). Towards advanced learner modeling: Discussions on quasi real-time adaptation with physiological data. In J. M. Spector, D. G. Sampson, T. Okamuto, S. A. Kinshuk, M. U. Cerri, & A. Kashihara (Eds.), Proceedings of the 7th IEEE International Conference on Advanced Learning Technologies (pp. 809–813). Washington, DC: IEEE Computer Society.Google Scholar
  19. Blessing, S. B., Gilbert, S. B., Ourada, S., & Ritter, S. (2009). Authoring model-tracing cognitive tutors. International Journal of Artificial Intelligence in Education, 19(2), 189–210.Google Scholar
  20. Brusilovsky, P. (1996). Methods and techniques of adaptive hypermedia. User Modeling and User-Adapted Interaction, 6, 87–129.CrossRefGoogle Scholar
  21. Brusilovsky, P. (2001). Adaptive hypermedia. User Modeling and User-Adapted Interaction, 11, 87–110.CrossRefGoogle Scholar
  22. Brusilovsky, P., & Millán, E. (2007). User models for adaptive hypermedia and adaptive educational systems. In P. Brusilovsky, A. Kobsa, & W. Nejdl (Eds.), The adaptive web (pp. 3–53). Berlin: Springer.CrossRefGoogle Scholar
  23. *Brusilovsky, P., & Peylo, C. (2003). Adaptive and intelligent web-based educational systems. International Journal of Artificial Intelligence in Education, 13(2–4), 159–172.Google Scholar
  24. Bull, S., Abu-Isa, A. S., Ghag, H., & Lloyd, T. (2005). Some unusual open learner models. In C.-K. Looi, G. I. McCalla, B. Bredeweg, & J. Breuker (Eds.), Proceedings of the 2005 Conference on Artificial Intelligence in Education (pp. 104–111). Amsterdam: Ios Press.Google Scholar
  25. Bull, S., Ahmad, N., Johnson, M., Johan, R., Mabbott, A., & Kerly, A. (2008). Adaptive navigation support, learner control and open learner models. In W. Neijdl, J. Kay, P. Pu, & E. Herder (Eds.), Adaptive hypermedia and adaptive web-based systems (pp. 275–278). Berlin: Springer.CrossRefGoogle Scholar
  26. *Bull, S., & Kay, J. (2007). Student models that invite the learner in: The SMILI open learner modelling framework. International Journal of Artificial Intelligence in Education, 17(2), 89–120.Google Scholar
  27. Bull, S., Mabbott, A., & Abu-Issa, A. (2007). UMPTEEN: Named and anonymous learner model access for instructors and peers. International Journal of Artificial Intelligence in Education, 17(3), 227–253.Google Scholar
  28. Chou, C.-Y., Chan, T.-W., & Lin, C.-J. (2003). Redefining the learning companion: The past, present and future of educational agents. Computers & Education, 40, 255–269.CrossRefGoogle Scholar
  29. Cocea, M., & Weibelzahl, S. (2009). Log file analysis for disengagement detection in e-learning environments. User Modeling and User-Adapted Interaction, 19, 341–385.CrossRefGoogle Scholar
  30. Conati, C., Gertner, A., & vanLehn, K. (2002). Using Bayesian networks to manage uncertainty in student modeling. User Modeling and User-Adapted Interaction, 12, 371–417.CrossRefGoogle Scholar
  31. Conati, C., & Maclaren, H. (2005). Data-driven refinement of a probabilistic model of user affect. In L. Ardissono, P. Brna, & A. Mitrovic (Eds.), Proceedings of the 10th International Conference on User Modeling (pp. 40–49). Berlin: Springer.Google Scholar
  32. Corbalan, G., Kester, L., & van Merriënboer, J. J. G. (2008). Selecting learning tasks: Effects of adaptation and shared control on efficiency and task involvement. Contemporary Educational Psychology, 33, 733–756.CrossRefGoogle Scholar
  33. Corbalan, G., Kester, L., & van Merriënboer, J. J. G. (2009). Combining shared control with variability over surface features: Effects on transfer test performance and task involvement. Computers in Human Behavior, 25, 290–298.CrossRefGoogle Scholar
  34. *Corbett, A. T., Koedinger, K. R., & Anderson, J. R. (1997). Intelligent tutoring systems ( chapter 37). In M. G. Helander, T. K. Landauer, & P. Prabhu, (Eds.) Handbook of human-computer interaction (2nd ed.). Amsterdam, The Netherlands: Elsevier Science.
  35. Craig, S. D., D’Mello, S., Witherspoon, A., & Graesser, A. (2008). Emote aloud during learning with AutoTutor: Applying the facial action coding system to cognitive-affective states during learning. Cognition and Emotion, 22(5), 777–788.CrossRefGoogle Scholar
  36. D’Mello, S. K., Dowell, N., & Graesser, A. (2009). Cohesion relationships in tutorial dialogue as predictors of affective states. In V. Dimitrova, R. Mizoguchi, B. du Boulay, & A. Graesser (Eds.), Proceedings of 14th International Conference on Artificial Intelligence in Education (pp. 9–16). Amsterdam: Ios Press.Google Scholar
  37. D’Mello, S. K., & Graesser, A. (2011). Dynamics of affective states during complex learning. Learning and Instruction, 22, 145–157.CrossRefGoogle Scholar
  38. D’Mello, S. K., Lehman, B., & Graesser, A. (2011). A motivationally supportive affect-sensitive Autotutor. In R. A. Calvo & S. K. D’Mello (Eds.), New perspectives on affect and learning technologies (Vol. 3, part 2, pp. 113–126). New York: Springer.CrossRefGoogle Scholar
  39. de Vicente, A., & Pain, H. (2002). Informing the detection of the students’ motivational state: An empirical study. In S. A. Cerri, G. Gouardères, & F. Paraguacu (Eds.), Proceedings of the 6th International Conference on Intelligent Tutoring Systems (pp. 933–943). London: Springer.CrossRefGoogle Scholar
  40. Dillenbourg, P. (1994, November). The role of artificial intelligence techniques in training software. Paper presented at Learntex 1994, Karlsruhe, Germany.Google Scholar
  41. D’Mello, S. K., Craig, S. D., Witherspoon, A. W., McDaniel, B. T., & Graesser, A. (2008). Automatic detection of learner’s affect from conversational cues. User Modeling and User-Adapted Interaction, 18(1–2), 45–80.CrossRefGoogle Scholar
  42. Dringus, L., & Ellis, T. (2005). Using data mining as a strategy for assessing asynchronous discussion forums. Computers & Education, 45, 141–160.CrossRefGoogle Scholar
  43. El Saadawi, G. M., Tseytlin, E., Legowski, E., Jukic, D., Castine, M., Fine, J., et al. (2008). A natural language intelligent tutoring system for training pathologists: Implementation and evaluation. Advances in Health Sciences Education: Theory and Practice, 13(5), 709–722.CrossRefGoogle Scholar
  44. Elen, J. (2000). Technologie voor en van het onderwijs [Technology for and of education]. Leuven: Acco.Google Scholar
  45. Fazlollahtabar, H., & Mahdavi, I. (2009). User/tutor optimal learning path in e-learning using comprehensive neuro-fuzzy approach. Educational Research Review, 4(2), 142–155.CrossRefGoogle Scholar
  46. Fogel, D. B. (2006). Evolutionary computation—toward a new philosophy of machine intelligence (3rd ed.). Hoboken, NJ: John Wiley & Sons.Google Scholar
  47. *Frias-Martinez, E., Magoulas, G., Chen, S., & Macredie, R. (2005). Recent soft computing approaches to user modeling in adaptive hypermedia. In De Bra, P., & Nejdl, W. (Eds.), Adaptive Hypermedia and Adaptive Web-Based Systems, Third International Conference, AH 2004 (pp. 23–26). Berlin: Springer-Verlag.Google Scholar
  48. García, P., Amandi, A., Schiaffino, S., & Campo, M. (2007). Evaluating Bayesian networks’ precision for detecting students’ learning styles. Computers & Education, 49, 794–808.CrossRefGoogle Scholar
  49. Graesser, A., D’Mello, S., Craig, S., Witherspoon, A., Sullins, J., McDaniel, B., et al. (2008). The relationship between affective states and dialog patterns during interactions with AutoTutor. Journal of Interactive Learning Research, 19(2), 293–312.Google Scholar
  50. Hammouda, K., & Kamel, M. (2007). Data mining in e-learning. In S. Pierre (Ed.), E-learning networked environments and architectures: A knowledge processing perspective. Berlin: Springer.Google Scholar
  51. Jeong, H., & Biswas, G. (2008). Mining student behavior models in learning-by-teaching environments. In R. S. J. Baker, T. Barnes, & J. E. Beck (Eds.), Proceedings of the 1st International Conference on Educational Data Mining (pp. 127–136). Montreal: International Educational Data Mining Society.Google Scholar
  52. Jeremic, Z., Jovanovic, J., & Gasevic, D. (2009). Evaluating an intelligent tutoring system for design patterns: The DEPTHS experience. Educational Technology & Society, 12(2), 111–130.Google Scholar
  53. Keller, F. S. (1974). Ten years of personalized instruction. Teaching of Psychology, 1(1), 4–9.Google Scholar
  54. Kodaganallur, V., Weitz, R. R., & Rosenthal, D. (2006). An assessment of constraint-based tutors: A response to Mitrovic and Ohlsson’s critique of “A comparison of model-tracing and constraint-based intelligent tutoring paradigms”. International Journal of Artificial Intelligence in Education, 16(3), 291–321.Google Scholar
  55. Koedinger, K. R., & Anderson, J. R. (1993). Effective use of intelligent software in high school math classrooms. In P. Brna, S. Ohisson, & H. Pain (Eds.), Artificial intelligence in education: Proceedings of the World Conference on AI in Education (pp. 241–248). Charlottesville, VA: AACE.Google Scholar
  56. Koedinger, K. R., & Corbett, A. T. (2006). Cognitive tutors: Technology bringing learning science to the classroom. In K. Sawyer (Ed.), The Cambridge handbook of the learning sciences (pp. 61–78). Cambridge: Cambridge University Press.Google Scholar
  57. Lazarinis, F., & Retalis, S. (2007). Analyse me: Open learner model in an adaptive web testing system. International Journal of Artificial Intelligence in Education, 17(3), 255–271.Google Scholar
  58. *Lee, J., & Park, O. (2008). Adaptive instructional systems. In J. M. Spector, M. D. Merril, J. J. G. van Merriënboer, & M. Driscoll (Eds.), Handbook of research on educational communications and technology (3rd ed., pp. 469–484). New York, NJ: Lawrence Erlbaum Associates.Google Scholar
  59. Lehman, B., D’Mello, S. K., & Graesser, A. (2012). Confusion and complex learning during interaction with computer learning environments. The Internet and Higher Education. doi: 10.1016/j.iheduc.2012.01.002.
  60. Liu, C., Rani, P., & Sarkar, N. (2005, August). An empirical study of machine learning techniques for affect recognition in human-robot interaction. Paper presented at the IEEE International Conference on Intelligent Robots and Systems, Alberta, Canada.Google Scholar
  61. Lockee, B., Larson, M., Burton, J. K., & Moore, D. M. (2008). Programmed technologies. In J. M. Spector, M. D. Merrill, J. J. G. Van Merrienboer, & M. P. Driscoll (Eds.), Handbook of research on educational communications and technology (3rd ed., pp. 187–197). New York, NJ: Lawrence Erlbaum Associates.Google Scholar
  62. McLaren, B. M., Lim, S., & Koedinger, K. R. (2008a). When and how often should worked examples be given to students? New results and a summary of the current state of research. In B. C. Love, K. McRae, & V. M. Sloutsky (Eds.), Proceedings of the 30th Annual Conference of the Cognitive Science Society (pp. 2176–2181). Austin, TX: Cognitive Science Society.Google Scholar
  63. McLaren, B. M., Lim, S., & Koedinger, K. R. (2008b). When is assistance helpful to learning? Results in combining worked examples and intelligent tutoring. In B. Woolf, E. Aimeur, R. Nkambou, & S. Lajoie (Eds.), Proceedings of the 9th International Conference on Intelligent Tutoring Systems (pp. 677–680). Berlin: Springer.CrossRefGoogle Scholar
  64. McQuiggan, S., Lee, S., & Lester, J. (2007). Early prediction of student frustration. In A. C. Paiva, R. Prada, & R. W. Picard (Eds.), Proceedings of the 2nd International Conference on Affective Computing and Intelligent Interaction (pp. 698–709). Berlin: Springer.CrossRefGoogle Scholar
  65. McQuiggan, S., Rowe, J., Lee, S., & Lester, J. (2008). Story-based learning: The impact of narrative on learning experiences and outcomes. In B. Woolf, E. Aimeur, R. Nkambou, & S. Lajoie (Eds.), Proceedings of the 9th International Conference on Intelligent Tutoring Systems (pp. 530–539). Berlin: Springer.CrossRefGoogle Scholar
  66. Mitrovic, A., & Koedinger, K. R. (2009). Preface. International Journal of Artificial Intelligence in Education, 19, 103–104.Google Scholar
  67. *Mitrovic, A., Koedinger, K. R., & Martin, B. (2003). A comparative analysis of cognitive tutoring and constraint-based modeling. In P. Brusilovsky, A. T. Corbett, & F. De Rosis (Eds.), Proceedings of the 9th International Conference on User Modeling. LNAI 2702 (pp. 313–322). Berlin: Springer-Verlag.Google Scholar
  68. Mitrovic, A., & Martin, B. (2007). Evaluating the effect of open student models on self-assessment. International Journal of Artificial Intelligence in Education, 17(2), 121–144.Google Scholar
  69. Mitrovic, A., Martin, B., Suraweera, P., Zakharov, K., Milik, N., Holland, J., et al. (2009). ASPIRE: An authoring system and deployment environment for constraint-based tutors. International Journal of Artificial Intelligence in Education, 19(2), 155–188.Google Scholar
  70. Mitrovic, A., Mayo, M., Suraweera, P., & Martin, B. (2001). Constraint-based tutors: A success story. In L. Monostori, J. Váncza, & M. Ali (Eds.), Proceedings of the 14th International Conference on Industrial and Engineering Application of Artificial Intelligence and Expert Systems (pp. 931–940). Berlin: Springer.Google Scholar
  71. Mitrovic, A., & Ohlsson, S. (1999). Evaluation of a constraint-based tutor for a database language. International Journal of Artificial Intelligence in Education, 10(3–4), 238–256.Google Scholar
  72. Moore, A. (2006). Statistical data mining tutorials. Retrieved from http://www.autonlab.org/tutorials
  73. Murray, T. (2003). An overview of intelligent tutoring system authoring tools: Updated analysis of the state of the art. In T. Murray, S. Blessing, & S. Ainsworth (Eds.), Authoring tools for advanced technology learning environments (pp. 491–545). Norwell, MA: Kluwer Academic Publishers.CrossRefGoogle Scholar
  74. Nasraoui, O., & Petenes C. (2003, August). Combining web usage ­mining and fuzzy inference for website personalization. Proceedings of WebKDD 2003—KDD Workshop on Web Mining as a Premise to Effective and Intelligent Web Applications, Washington, DC (pp. 37–48).Google Scholar
  75. Nokelainen, P., Tirri, H., Miettinen, M., Silander, T., & Kurhila, J. (2002). Optimizing and profiling users online with Bayesian probabilistic modeling. Proceedings of the International Networked Learning Conference of Natural and Artificial Intelligence Systems Organization. Canada: ICSC-NAISO Academic Press.Google Scholar
  76. Ohlsson, S. (1994). Constraint-based student modeling. In J. E. Greer & G. McCalla (Eds.), Student modeling: The key to individualized knowledge-based instruction (pp. 167–189). New York: Springer.CrossRefGoogle Scholar
  77. Ohlsson, S. (1996). Learning from performance errors. Psychological Review, 103, 241–262.CrossRefGoogle Scholar
  78. Ohlsson, S., & Mitrovic, A. (2007). Fidelity and efficiency of knowledge representations for intelligent tutoring systems. Technology, Instruction, Cognition and Learning, 5(2), 101–132.Google Scholar
  79. Park, O., & Lee, H. (2003). Adaptive instructional systems. In D. H. Jonassen (Ed.), Handbook of research on educational communications and technology (2nd ed., pp. 651–684). Bloomington, IN: The Association for Educational Communications and Technology (AECT).Google Scholar
  80. Pashler, H., McDaniel, M., Rohrer, D., & Bjork, R. (2008). Learning styles: Concepts and evidence. Psychological Science in the Public Interest, 9(3), 105–119.Google Scholar
  81. Poole, D., & Mackworth, A. K. (2010). Artificial intelligence—foundations of computations agents. New York, NY: Cambridge University Press.CrossRefGoogle Scholar
  82. Rich, E. (1979). User modeling via stereotypes. Cognitive Science, 3, 329–354.CrossRefGoogle Scholar
  83. Richey, R. C., Silber, K. H., & Ely, D. P. (2008). Reflections on the 2008 AECT definitions of the field. TechTrends, 52(1), 24–25.CrossRefGoogle Scholar
  84. Robison, J. L., McQuiggan, S. W., & Lester, J. C. (2009). Modeling task-based vs. affect-based feedback behavior in pedagogical agents: An inductive approach. In V. Dimitrova, R. Mizoguchi, B. du Boulay, & A. Graesser (Eds.), Proceedings of the 14th International Conference on Artificial Intelligence in Education (pp. 17–24). Amsterdam: Ios Press.Google Scholar
  85. Romero, C., & Ventura, S. (2007). Educational data mining: A survey from 1995 to 2005. Expert Systems with Applications, 33, 135–146.CrossRefGoogle Scholar
  86. Romero, C., & Ventura, S. (2010). Educational data mining: A review of the state-of-the-art. IEEE Transaction on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 40(6), 601–618.CrossRefGoogle Scholar
  87. Romero, C., Ventura, S., & Garcia, E. (2008). Data mining in course management systems: Moodle case study and tutorial. Computers & Education, 51, 368–384.CrossRefGoogle Scholar
  88. Romero, C., Ventura, S., Pechenizkiy, M., & Baker, R. S. J. (2011). Handbook of educational data mining. Boca Raton, FL: CRC Press.Google Scholar
  89. Sebe, N., Cohen, I., & Huang, T. S. (2006, August). Emotion recognition based on joint visual and audio cues. Paper presented at the 18th International Conference on Pattern Recognition, Hong Kong.Google Scholar
  90. *Self, J. (1990). Bypassing the intractable problem of student modelling. In C. Frasson, & G. Gauthier (Eds.), Intelligent tutoring ­systems: At the crossroads of artificial intelligence and education (pp. 107–123). Norwood, NJ: Ablex.Google Scholar
  91. Shen, D., Nuankhieo, P., Huang, X., Amelung, C., & Laffey, J. (2008). Using social network analysis to understand sense of community in an online learning environment. Journal of Educational Computing Research, 39(1), 17–36.CrossRefGoogle Scholar
  92. Shute, V. J. (1992). Aptitude-treatment interactions and cognitive skill diagnosis. In J. W. Region & V. J. Shute (Eds.), Cognitive approaches to automated instruction (pp. 15–47). Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
  93. Shute, V. J., Graf, E. A., & Hansen, E. (2005). Designing adaptive, diagnostic math assessments for sighted and visually-disabled students. In L. Pytlikzillig, R. Bruning, & M. Bodvarsson (Eds.), Technology-based education: Bringing researchers and practitioners together (pp. 169–202). Greenwich, CT: Information Age Publishing.Google Scholar
  94. Shute, V. J., & Psotka, J. (1996). Intelligent tutoring systems: Past, present and future. In D. H. Jonassen (Ed.), Handbook of research on educational communications and technology (pp. 570–600). New York, NY: MacMillan Publishers.Google Scholar
  95. Shute, V. J., & Zapata-Rivera, D. (2008). Adaptive technologies. In J. M. Spector, M. D. Merril, J. J. G. van Merriënboer, & M. Driscoll (Eds.), Handbook of research on educational communications and technology (3rd ed., pp. 277–294). New York, NJ: Lawrence Erlbaum Associates.Google Scholar
  96. Singley, M. K., Anderson, J. R., Gevins, J. S., & Hoffman, D. (1989). The algebra word problem tutor. In D. Bierman, J. Breuker, & J. Sandberg (Eds.), Artificial intelligence and education (pp. 267–2785). Amsterdam: Ios Press.Google Scholar
  97. Triantafillou, E., Pomportsis, A., Demetriadis, S., & Georgiadou, E. (2004). The value of adaptivity based on cognitive style: An ­empirical study. British Journal of Educational Technology, 35, 95–106.CrossRefGoogle Scholar
  98. Tseng, J. C. R., Chu, H.-C., Hwang, G.-J., & Tsai, C.-C. (2008). Development of an adaptive learning system with two sources of personalization information. Computers & Education, 51, 776–786.CrossRefGoogle Scholar
  99. Tsiriga, V., & Virvou, M. (2003). Modelling the student to individualise tutoring in a web-based ICALL. International Journal of Continuing Engineering Education and Life-long Learning, 13(3–4), 350–365.CrossRefGoogle Scholar
  100. Ueno, M. (2004). Data mining and text mining technologies for collaborative learning in an ILMS “Samurai”. In C.-K. Kinshuk, E. Looi, D. G. Sutinen, I. Sampson, L. U. Aedo, & E. Kähkönen (Eds.), Proceedings of the IEEE International Conference on Advanced Learning Technologies (pp. 1052–1053). Washington, DC: IEEE Computer Society.Google Scholar
  101. Van de gaer, E., De Fraine, B., Pustjens, H., Van Damme, J., De Munter, A., & Onghena, P. (2009). School effects on the development of motivation toward learning tasks and the development of academic self-concept in secondary education: A multivariate latent growth curve approach. School Effectiveness and School Improvement, 20(2), 235–253.CrossRefGoogle Scholar
  102. Vandewaetere, M., Desmet, P., & Clarebout, G. (2011). The contribution of learner characteristics in the development of computer-based adaptive learning environments. Computers in Human Behavior, 27, 118–130.CrossRefGoogle Scholar
  103. vanLehn, K., Lynch, C., Schultz, K., Shapiro, J. A., Shelby, R. H., Taylor, L., et al. (2005). The Andes physics tutoring system: Lessons learned. International Journal of Artificial Intelligence in Education, 15(3), 147–204.Google Scholar
  104. Wauters, K., Desmet, P., & Van den Noortgate, W. (2010). Adaptive item-based learning environments based on the item response theory: Possibilities and challenges. Journal of Computer Assisted Learning, 26(6), 549–562.CrossRefGoogle Scholar
  105. Williams, M. D. (1996). Learner-control and instructional technologies. In D. H. Jonassen (Ed.), Handbook of research on educational communications and technology (pp. 957–982). New York, NY: MacMillan Publishers.Google Scholar
  106. Xu, D., & Wang, H. (2006). Intelligent agent supported personalization for virtual learning environments. Decision Support Systems, 42(2), 825–843.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.iTEC, Interdisciplinary Research on Technology, Communication and EducationKortrijkBelgium
  2. 2.CIP&T, Centre for Instructional Psychology and Technology, KU LeuvenLeuvenBelgium
  3. 3.Center for Medical education, Faculty of MedicineLeuvenBelgium

Personalised recommendations