Skip to main content

Abstract

Methods for assessing problem-solving learning outcomes vary with the nature of the ­problem. For simpler well-structured problems, answer correctness and process may be used along with assessments of comprehension of problem schemas, including problem classification, text editing, and analogical comparisons. For more complex and ill-­structured problems that have no convergent answers, solution criteria, or solution methods, problem solving may be assessed by constructing and applying solution rubrics to assess mental simulations (scenarios), arguments in support of solutions, and student-constructed ­problems. Problem solving processes are normally assessed by coding schemes. In addition to assessing problem solutions, assessments of critical cognitive skills, including causal reasoning and student models, may be used to infer problem-solving skills.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allaire, J. C., & Marisiske, M. (1999). Everyday cognition: Age and intellectual ability correlates. Psychology and Aging, 14, 627–644.

    Google Scholar 

  • Arlin, P. K. (1989). Problem solving and problem finding in young artists and young scientists. In M. L. Commons, J. D. Sinnott, F. A. Richards, & C. Amon (Eds.), Adult development volume 1: comparisons and applications of developmental models (pp. 197–216). New York: Praeger.

    Google Scholar 

  • Atman, C. J., & Turns, J. (2001). Studying engineering design learning: Four verbal protocol analysis studies. In C. Eastman, W. M. McCracken, & W. C. Newstetter (Eds.), Design knowing and learning: Cognition in design education (pp. 37–62). New York: Elsevier.

    Google Scholar 

  • Barab, S. A., & Duffy, T. M. (2000). From practice fields to communities of practice. In D. H. Jonassen & S. M. Land (Eds.), Theoretical foundations of learning environments (pp. 25–55). Mahwah, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Barab, S. A., Squire, K. D., & Dueber, W. (2000). A co-evolutionary model for supporting the emergence of authenticity. Educational Technology Research and Development, 48(2), 37–62.

    Article  Google Scholar 

  • Brown, S. I., & Walter, M. I. (2005). The art of problem posing (3rd ed.). Mahwah, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Chapman, M., McBride, M. L. (1992). The education of reason: Cognitive conflict and its role inintellectyural development. In C. U. Shantz & WW. Hartup (Eds.), Conflict in child and adolescent development (pp. 36–89). Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Chi, M. T. H., Feltovich, P. J., & Glaser, R. (1981). Categorization and representation of physics problems by experts and novices. Cognitive Science, 5, 121–152.

    Article  Google Scholar 

  • Cho, K. L., & Jonassen, D. H. (2002). The effects of argumentation scaffolds on argumentation and problem solving. Educational Technology Research and Development, 50(3), 5–22.

    Article  Google Scholar 

  • Dufresne, R. J., Gerace, W. J., Hardiman, P. T., & Mestre, J. P. (1992). Constraining novices to perform expertlike problem analysis: Effects on schema acquisition. The Journal of the Learning Sciences, 2(3), 307–331.

    Article  Google Scholar 

  • Elliott, S. N. (1995). Creating Meaningful Performance Assessments. http://www.ed.gov/databases/ERIC_Digests/ed381985.html; ERIC Digest E531; (ED381985).

  • Ericsson, K. A., & Simon, H. A. (1993) Protocol analysis: Verbal reports as data. Cambridge, MA: MIT Press.

    Google Scholar 

  • Greeno, J. G. (1980). Trends in the theory of knowledge for problem solving. In D. T. Turna & F. Reif (Eds.), Problem solving and education: Issues in teaching and research (pp. 9–25). Hillsdale, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Halpern, D. F. (2003). Thought and knowledge: An introduction to critical thinking (4th ed.). Mahwah, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Hong, N. S., Jonassen, D. H., & McGee, S. (2003). Predictors of well-structured and ill-structured problem solving in an astronomy simulation. Journal of Research in Science Teaching, 40(1), 6–33.

    Article  Google Scholar 

  • Hardiman, P. T., Dufresne, R., & Mestre, J. P. (1989). The relationship between problem categorization and problem solving among experts and novices. Memory and Cognition, 17(5), 627–638.

    Article  Google Scholar 

  • Jacobs, A. E. J. P., Dolmans, D. H. J. M., Wolfhagen, I. H. A. P., & Scherpbier, A. J. J. A. (2003). Validation of a short questionnaire to assess the degree of complexity and structuredness of PBL problems. Medical Education, 37(11), 1001–1007.

    Google Scholar 

  • Jacobson, M. J., & Archodidou, A. (2000). The design of hypermedia tools for learning: Fostering conceptual change and transfer of complex scientific knowledge. The Journal of the Learning Sciences, 9(2), 149–199.

    Article  Google Scholar 

  • Jonassen, D. H. (1997). Instructional design model for well-structured and ill-structured problem-solving learning outcomes. Educational Technology Research and Development, 45(1), 65–95.

    Article  Google Scholar 

  • Jonassen, D. H. (2000). Toward a design theory of problem solving. Educational Technology Research and Development, 48(4), 63–85.

    Article  Google Scholar 

  • *Jonassen, D. H. (2011). Learning to solve problems: A handbook for designing problem-solving learning environments. New York, NY: Routledge.

    Google Scholar 

  • Jonassen, D. H., & Cho, Y. H. (2011). Fostering argumentation while solving engineering ethics problems. Journal of Engineering Education, 100(4), 1–23.

    Article  Google Scholar 

  • Jonassen, D. H., & Grabowski, B. L. (1993). Handbook of individual differences, learning and instruction. Hillsdale, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Jonassen, D. H., & Hung, W. (2008). All problems are not equal: Implications for PBL. Interdisciplinary Journal of Problem-Based Learning, 2(2), 6–28.

    Google Scholar 

  • *Jonassen, D. H., & Kim, B. (2010). Arguing to learn and learning to argue: Design justifications and guidelines. Educational Technology: Research & Development, 58(4), 439–457.

    Google Scholar 

  • Jonassen, D. H., & Kwon, H. I. (2001). Communication patterns in computer-mediated vs. face-to-face group problem solving. Educational Technology Research & Development, 49(1), 35–52.

    Google Scholar 

  • Jonassen, D. H., & Ionas, I. G. (2008). Designing effective supports for reasoning causally. Educational Technology Research & Development, 56(3), 287–308.

    Google Scholar 

  • Jonassen, D. H., Shen, D., Marra, R. M., Cho, Y. H., Lo, J. L., & Lohani, V. K. (2009). Engaging and supporting problem solving in engineering ethics. Journal of Engineering Education, 98(3), 235–254.

    Article  Google Scholar 

  • Jonassen, D. H., Strobel, J., & Ionas, I. G. (2008). The evolution of a collaborative authoring system for non-linear hypertext: A design-based research study. Computers and Education, 51, 67–85.

    Article  Google Scholar 

  • Jonassen, D. H., Strobel, J., & Lee, C. B. (2006). Everyday problem solving in engineering: Lessons for engineering educators. Journal of Engineering Education, 95(2), 1–14.

    Google Scholar 

  • Kahn, H. (1965). On escalation: Metaphor and scenarios. New York, NY: Praeger.

    Google Scholar 

  • Kitchner, K. S. (1983). Cognition, metacognition, and epistemistic cognition: A three-level model of cognitive processing. Human Development, 26, 222–232.

    Google Scholar 

  • Littlefield, J., & Rieser, J. J. (1993). Semantic features of similarity and children’s strategies for identifying relevant information in mathematical story problems. Cognition and Instruction, 11(2), 133–188.

    Article  Google Scholar 

  • Lave, J. (1988). Cognition in practice: Mind, mathematics and culture in everyday life. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • *Low, R., & Over, R. (1989) Detection of missing and irrelevant information within algebraic story problems. British Journal of Educational Psychology, 59, 296–305.

    Google Scholar 

  • Low, R., & Over, R. (1990). Text editing of algebraic word problems. Australian Journal of Psychology, 42(1), 63–73.

    Article  Google Scholar 

  • Low, R., & Over, R. (1992). Hierarchical ordering of schematic knowledge relating to the area-of-rectangle problem. Journal of Educational Psychology, 84, 62–69.

    Article  Google Scholar 

  • Low, R., Over, R., Doolan, L., & Michell, S. (1994). Solution of algebraic word problems following training in identifying necessary and sufficient information within problems. The American Journal of Psychology, 107(3), 423–439.

    Article  Google Scholar 

  • Meacham, J. A., & Emont, N. M. (1989). The interpersonal basis of everyday problem solving. In J. D. Sinnnott (Ed.), Everyday problem solving: Theory and applications (pp. 7–23). New York: Praeger.

    Article  Google Scholar 

  • Mestre, J. (2002). Probing adults’ conceptual understanding and transfer of learning via problem posing. Journal of Applied Developmental Psychology, 23(1), 9–50.

    Article  Google Scholar 

  • Morrison, M., & Morgan, M. S. (1999). Models as mediating instruments. In M. S. Morgan & M. Morrison (Eds.), Models as mediators: Perspectives on natural and social science (pp. 10–37). Cambridge, England: Cambridge University Press.

    Chapter  Google Scholar 

  • Newell, A., & Simon, H. A. (1972). Human problem solving. Englewood Cliffs, NJ: Prentice-Hall.

    Article  Google Scholar 

  • Ngu, B. H., Lowe, R., & Sweller, J. (2002). Text editing in chemistry instruction. Instructional Science, 30, 379–402.

    Article  Google Scholar 

  • Nicaise, M., Gibney, T., & Crane, M. (2000). Toward an understanding of authentic learning: Student perceptions of an authentic classroom. Journal of Science Education and Technology, 9(1), 79–94.

    Article  Google Scholar 

  • Norris, S. P., & Ennis, R. H. (1989). Evaluating critical thinking. Pacific Grove, CA: Critical Thinking Press.

    Google Scholar 

  • Nussbaum, E. M., & Kardash, C. M. (2005). The effects of goal instructions and text on the generation of counterarguments during writing. Journal of Educational Psychology, 97(2), 157–169.

    Article  Google Scholar 

  • Radinsky, J., Buillion, L., Lento, E. M., & Gomez, L. (2001). Mutual partnership benefit: A curricular design for authenticity. Journal of Curriculum Studies, 33(4), 405–430.

    Google Scholar 

  • Rich, B. (1960). Schaum’s principles of and problems of elementary algebra. New York, NY: Schaum’s.

    Google Scholar 

  • Rogoff, B., & Lave, J. (Eds.) (1984). Everyday cognition: Its development in social context. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Rumelhart, D. E., & Ortony, A. (1977). The representation of knowledge in memory. In R. C. Anderson, R. J. Spiro, & W. E. Montague (Eds.), Schooling and the acquisition of knowledge (pp. 99–135). Hillsdale, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Savelsbergh, E. R., de Jong, T., & Ferguson-Hessler, M. G. M. (1998). Competence related differences in problem representations. In M. van Someren, P. Reimann, T. de Jong, & H. Boshuizen (Eds.), The role of multiple representations in learning and problem solving (pp. 263–282). Amsterdam: Elservier.

    Google Scholar 

  • Silver, E. A., & Cai, J. (1996). An analysis of arithmetic problem posing by middle school students. Journal for Research in Mathematics Education, 27(6), 521–539.

    Article  Google Scholar 

  • Simon, H. A. (1978). What the knower knows: Alternative strategies for problem-solving tasks. In F. Klix (Ed.), Human and artificial intelligence (pp. 89–100). Berlin: VEB Deutscher Verlag der Wissenschafter.

    Google Scholar 

  • Smith, M. U. (Ed.) (1991). Toward a unified theory of problem solving: Views from the content domains. Hillsdale, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Toulmin, S. (1958). The uses of argument. Cambridge, England: Cambridge University Press.

    Google Scholar 

  • *Tversky, A., & Kahneman, D. (1980). Causal schemas in judgments under uncertainty. In M. Fishbein (Ed.), Progress in social psychology (Vol. 1, pp. 49–72). Hillsdale, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Van Heuvelen, A., & Maloney, D. P. (1999). Playing physics jeopardy. American Journal of Physics, 67(3), 252–256.

    Article  Google Scholar 

  • Voss, J. F., & Post, T. A. (1988). On the solving of ill-structured problems. In M. T. H. Chi, Rl Glaser, & M. J. Farr (Eds.), The nature of expertise. NJ: Lawrence Erlbaum.

    Google Scholar 

  • Wood, P. K. (1983). Inquiring systems and problem structures: Implications for cognitive development. Human Development, 26, 249–265.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David H. Jonassen Ed.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Jonassen, D.H. (2014). Assessing Problem Solving. In: Spector, J., Merrill, M., Elen, J., Bishop, M. (eds) Handbook of Research on Educational Communications and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3185-5_22

Download citation

Publish with us

Policies and ethics