Skip to main content

Modeling Heterogeneous Tumor Growth Using Hybrid Cellular Automata

  • Conference paper
  • First Online:

Abstract

We show that heterogeneity of cells that compose a tumor leads to its irregular growth. We model avascular tumor growth using cellular automata (CA). In our model, we take into account the composition of cells and intercellular adhesion in addition to processes involved in cell cycle—proliferation, quiescence, apoptosis and necrosis. More importantly, we consider cell mutation that gives rise to a different phenotype and therefore, a tumor with heterogeneous population of cells. A new phenotype is probabilistically chosen and has the ability to survive at lower levels of nutrient concentration and reproduce faster. We solve diffusion equation using central difference method to determine the concentration of nutrients, in particular, oxygen available to each cell during the growth process. We present the growth simulation and demonstrate similarity with theoretical findings.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Hanahan, D., Weinberg, R.A.: The Hallmarks of Cancer. Cell 100, 57–70 (2000)

    Article  Google Scholar 

  2. Sutherland, R.: Cell and environment interactions in tumor microregions: The multicell spheroid model. Science 240, 177–184 (1988)

    Article  Google Scholar 

  3. Greenspan, H.P.: Models for the growth of a solid tumor by diffusion. Stud Appl Math. L1(4), 31–340 (1972)

    Google Scholar 

  4. Gatenby, R.A., Gawlinski, E.T.: A reaction diffusion model of cancer invasion. Cancer. Res. 56, 5745–5753 (1996)

    Google Scholar 

  5. Ward, J.P., King, J.R.: Mathematical modelling of avascular-tumour growth – I. IMA J. Math. Appl. Med. Biol. 14, 39–69 (1997)

    Article  MATH  Google Scholar 

  6. Ferreira, S.C., Martins, M.L., Vilela, M.J.: Reaction-diffusion model for the growth of avascular tumor. Phys. Rev. E. 65, 021907 (2002)

    Article  MathSciNet  Google Scholar 

  7. Ambrosi, D., Mollica, F.: On the mechanics of a growing tumor. Int. J. Eng. Sci. 40, 1297–1316 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. Byrne, H., Preziosi, L.: Modelling solid tumour growth using the theory of mixtures. Math. Med. Biol. 20, 341–366 (2003)

    Article  MATH  Google Scholar 

  9. Cristini, V., Li, X., Lowengrub, J.S., Wise, S.M.: Nonlinear simulations of solid tumor growth using a mixture model—Invasion and branching. J. Math. Biol. 58, 723–763 (2009)

    Article  MathSciNet  Google Scholar 

  10. Araujo, R.P., McElwain, D.L.S.: A history of the study of solid tumour growth—The contribution of mathematical modelling. Bull. Math. Biol. 66, 1039–1091 (2004)

    Article  MathSciNet  Google Scholar 

  11. Qi, A., Zheng, X., Du, C., An, B.: A cellular automaton model of cancerous growth. J. Theor. Biol. 161, 1–12 (1993)

    Article  Google Scholar 

  12. Dormann, S., Deutsch, A.: Modeling of self-organized avascular tumor growth with a hybrid cellular automaton. In Silico Biol. 2, 393–406 (2002)

    Google Scholar 

  13. Wang, Z., Deisboeck, T.S.: Computational modeling of brain tumors—Discrete, continuum or hybrid. Sci. Model. Simul. 15, 381–393 (2008)

    Article  Google Scholar 

  14. Anderson, A.R.A.: A hybrid mathematical model of solid tumor invasion: the importance of cell adhesion. Math. Med. Biol. 22, 163–186 (2005)

    Article  MATH  Google Scholar 

  15. Alarcon, T., Byrne, H.M., Maini, P.K.: Towards whole-organ modelling of tumour growth. Prog. Biophys. Mol. Biol. 75, 451–472 (2004)

    Article  Google Scholar 

  16. Sottoriva, A., Verhoeff, J.C., Borovski, T., McWeeney, S.K., Naumov, L., Medema, J.P., Sloot, P.M.A., Vermeulen, L.: Cancer stem cell tumour model reveals invasive morphology and increased phenotypical heterogeneity. Cancer Res. 1, 46–56 (2010)

    Article  Google Scholar 

  17. Wolfram, S.: Theory and Applications of Cellular Automata. World Scientific, Singapore (1986)

    MATH  Google Scholar 

  18. Wolfram, S.: A New Kind of Science. Wolfram Media, Champaign, IL (2002)

    MATH  Google Scholar 

  19. Kansal, A.R., Torquato, S., Chiocca, E.A., Deisboeck, T.S.: Emergence of a subpopulation in a computational model of tumor growth. J. Theor. Biol. 207, 431–441 (2000)

    Article  Google Scholar 

  20. Vermeulen, L., Torado, M., Mello, F.S., Sprick, M.R., Kemper, K., Alea, M.P., Richel, D.J., Stassi, G., Medema, J.P.: Single-cell cloning of colon cancer stem cells reveals a multi-lineage differentiation capacity. Proc. Natl. Acad. Sci. USA 105(36), 13427–13432 (2008)

    Article  Google Scholar 

  21. Sherwood, L.: Human physiology: From cells to systems. Brooks/Cole, Cengage Learning (2010), ISBN 9780495391845; ISBN 0495391840

    Google Scholar 

  22. Tomita, K., Plager, J.E.: In vivo cell cycle synchronization of the murine sarcoma 180 tumor following Alternating periods of hydroxyurea blockade and release. Cancer Res. 39, 4407–4411 (1979)

    Google Scholar 

  23. Gerlee, P., Anderson, A.R.A.: Stability analysis of a hybrid cellular automaton model of cell colony growth. Phys. Rev. E 75, 051911 (2007)

    Article  Google Scholar 

  24. Casciari, J.J., Sotirchos, S.V., Sutherland, R.M.: Variations in tumor cell growth rates and metabolism with oxygen concentration, glucose concentration, and extracellular pH. J. Cell. Physiol. 151, 386–394 (1992)

    Article  Google Scholar 

  25. Freyer, J.P., Tustanoff, E., Franko, A.J., Sutherland, R.M.: In situ oxygen consumption rates of cells in V-79 multicellular spheroids during growth. J. Cell. Physiol. 118, 53–61 (1984)

    Article  Google Scholar 

Download references

Acknowledgments

The first author was a SIRF scholar in Australia and was in receipt of the UIS scholarship during the completion of this research. The financial support of the National Health and Medical Research Council (Australia) Grant No.1006031 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sachin Man Bajimaya Shrestha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this paper

Cite this paper

Shrestha, S.M.B., Joldes, G., Wittek, A., Miller, K. (2012). Modeling Heterogeneous Tumor Growth Using Hybrid Cellular Automata. In: Nielsen, P., Wittek, A., Miller, K. (eds) Computational Biomechanics for Medicine. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3172-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-3172-5_14

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-3171-8

  • Online ISBN: 978-1-4614-3172-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics