Skip to main content

Immunogene Therapy

  • Chapter
Glioma

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 746))

Abstract

Antigenic differences between normal and malignant cells of the cancer patient form the rationale for clinical immunotherapeutic strategies. Because the antigenic phenotype of neoplastic cells varies widely among different cells within the same malignant cell-population, immunization with a vaccine that stimulates immunity to the broad array of tumor antigens expressed by the cancer cells is likely to be more efficacious than immunization with a vaccine for a single antigen. A vaccine prepared by transfer of DNA from the tumor into a highly immunogenic cell line can encompass the array of tumor antigens that characterize the patient’s neoplasm. Poorly immunogenic tumor antigens, characteristic of malignant cells, can become strongly antigenic if they are expressed by highly immunogenic cells. A DNA-based vaccine was prepared by transfer of genomic DNA from a breast cancer that arose spontaneously in a C3H/He mouse into a highly immunogenic mouse fibroblast cell line, where genes specifying tumor-antigens were expressed. The fibroblasts were modified in advance of DNA-transfer to secrete an immune augmenting cytokine and to express allogeneic MHC Class I-determinants. In an animal model of breast cancer metastatic to the brain, introduction of the vaccine directly into the tumor bed stimulated a systemic cellular antitumor immune response measured by two independent in vitro assays and prolonged the lives of the tumor-bearing mice. Furthermore, using antibodies against the various T-cell subsets, it was determined that the systemic cellular antitumor immunity was mediated by CD8+, CD4+ and NK/LAK cells. In addition an enrichment strategy has also been developed to increase the proportion of immunotherapeutic cells in the vaccine which has resulted in the development of enhanced antitumor immunity. Finally regulatory T cells (CD4+CD25+Fox p3+-positive) were found to be relatively deficient in the spleen cells from the tumor-bearing mice injected intracerebrally with the enriched vaccine. The application of DNA-based genomic vaccines for the treatment of a variety of brain tumors is being explored.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ries LAG, Kosary CL, Hankey BF et al. SEER Cancer Statistics Review, 1973-1995. National Cancer Institute, 1988.

    Google Scholar 

  2. Radhakrishnan K, Mokri B, Parisi JE et al. The trends in incidence of primary brain tumors in the population of Rochester, Minnesota. Ann Neurol 1995; 37:67–73.

    Article  PubMed  CAS  Google Scholar 

  3. Imperato JP, PaleĂ³logos NA, Vick NA. Effects of treatment on long-term survivors with malignant astrocytomas. Ann Neurol 1990; 28:818–822.

    Article  PubMed  CAS  Google Scholar 

  4. Heimans JJ, Taphoorn MJ. Impact ofbrain tumour treatment on quality of life. J Neurol 2002; 249:955–960.

    Article  PubMed  Google Scholar 

  5. Belanich M, Randall T, Pastor MA et al. Intracellular localization and intercellular heterogeneity of the human DNA repair protein O(6)-methylguanine-DNA methyltransferase. Cancer Chemother Pharmacol 1996; 37:547–555.

    Article  PubMed  CAS  Google Scholar 

  6. Hotta T, Saito Y, Fujita H et al. 06-alkylguanine-DNA alkyltransferase activity of human malignant glioma and its clinical implications. J Neurooncol 1994; 21:135–140.

    Article  PubMed  CAS  Google Scholar 

  7. Wigler M, Pellicer A, Silverstein S et al. DNA-mediated transfer of the adenine phosphoribosyltransferase locus into mammalian cells. Proc Natl Acad Sci USA 1979; 76:1373–1376.

    Article  PubMed  CAS  Google Scholar 

  8. Mendersohn C, Johnson B, Lionetti KA et al. Transformation of a human poliovirus receptor gene into mouse cells. Proc Natl Acad Sci USA 1986; 83:7845–7849.

    Article  Google Scholar 

  9. Barraclough R, Chen HJ, Davies BR et al. Use of DNA transfer in the induction of metastasis in experimental mammary systems. Biochem Soc Symp 1998; 63:273–294.

    PubMed  CAS  Google Scholar 

  10. Chen H, Ke Y, Oates AJ et al. Isolation of and effector for metastasis-inducing DNAs from a human metastatic carcinoma cell line. Oncogene 1997; 14:1581–1588.

    Article  PubMed  CAS  Google Scholar 

  11. Hsu C, Kavathas P, Herzenberg LA. Cell surface antigens expressed on L cells transfected with whole DNA from non-expressing and expressing cells. Nature 1984; 312:68–69.

    Article  PubMed  CAS  Google Scholar 

  12. Kavathas P, Herzenberg LA. Stable transformation of mouse LM cells (a transformed fibroblast cell line) for human membrane T-cell differentiation antigens, HLA and B2 microglobulin: Selection by fluorescence-activated cell sorting. Proc Natl Acad Sci USA 1983; 80:524–528.

    Article  PubMed  CAS  Google Scholar 

  13. Robbins PF, El-Gamil M, Li YF et al. A mutated ĂŸ-catenin gene encodes a melanoma-specific antigen recognized by tumor-infiltrating lymphoyctes. J Exp Med 1996; 183:1185–1192.

    Article  PubMed  CAS  Google Scholar 

  14. de Vries TJ, Fourkour A, Wobbes T et al. Heterologous expression of immunotherapy candidate proteins gp100, MART-1 and tyrosinase in human melanoma cell lines and in human melanocytic lesions. Cancer Res 1997; 57:3223–3229.

    PubMed  Google Scholar 

  15. van der Bruggen P, Traversari C, Chomez P et al. A gene encoding an antigen recognized by cytolytic T-lymphocytes on a human melanoma. Science 1991; 254:1643–1647.

    Article  PubMed  Google Scholar 

  16. Boon T, Cerottini JC, Van den Bynde B et al. Tumor antigens recognized by T-lymphocytes. Ann Rev Immunol 1994; 12:337–365.

    Article  CAS  Google Scholar 

  17. deZoeten E et al. An optimum anti melanoma response in mice immunized with fibroblasts transfected with DNA from mouse melanoma cells requires the expression of both syngeneic and allogeneic MHC-determinants. Gene Therapy 2002; 9:1163–1172.

    Article  CAS  Google Scholar 

  18. Hammerling GJ, Klar D, Katzav S et al. Manipulation of metastasis and tumour growth by transfection with histocompatibility class I genes. J Immunogen 1986; 13:15–157.

    Article  Google Scholar 

  19. Hui KM, Sim TF, Foo TT et al. Tumor rejection mediated by transfection with allogeneic class I histocompatibility gene. J Immunol 1989; 143:3835–3843.

    PubMed  CAS  Google Scholar 

  20. Ostrand-Rosenberg S, Thakur A, Clements V. Rejection of mouse sarcoma cells after transfection of MHC class II genes. J Immunol 1990; 144:4068–4071.

    PubMed  CAS  Google Scholar 

  21. Fearon ER, Itaya T, Hunt B et al. Induction in a murine tumor of immunogenic tumor variants by transfection with a foreign gene. Cancer Res 1988; 48:2975–2980.

    PubMed  CAS  Google Scholar 

  22. Gattoni-Celli S, Willett CG, Rhoads DB et al. Partial suppression of anchorage-independent growth and tumorigenicity in immunodeficient mice by transfection of the H-2 class I gene H-2Ld into a human colon cancer cell line (HCT). Proc Natl Acad Sci USA 1988; 85:8543–8547.

    Article  PubMed  CAS  Google Scholar 

  23. Nabel GJ, Gordon D, Bishop DK et al. Immune response in human melanoma after transfer of an allogeneic class I major histocompatibility complex gene with DNA-liposome complexes. Proc Natl Acad Sci USA 1996; 93:15388–15393.

    Article  PubMed  CAS  Google Scholar 

  24. Gong J, Chen D, Kashiwaba M et al. Induction of antitumor activity by immunization with fusions of dendritic and carcinoma cells. Nat Med 1997; 3:558–561.

    Article  PubMed  CAS  Google Scholar 

  25. Liang W, Cohen EP. Resistance to murine leukemia in mice rejecting syngeneic somatic hybrid cells. J Immunol 1976; 116:623–628.

    PubMed  CAS  Google Scholar 

  26. Liang W, Cohen EP. Resistance to murine leukemia in mice receiving simultaneous injections of syngeneic hybrid and parental neoplastic cells. J Immunol 1977; 118:903–908.

    PubMed  CAS  Google Scholar 

  27. Whiteside TL, Rabinowich H. The role of Fas/FasL in immunosuppression induced by human tumors. Cancer Immunol Immunother 1998; 46:175–184.

    Article  PubMed  CAS  Google Scholar 

  28. Strand S, Galle PR. Immune evasion by tumors: involvement of the CD95 (APO-1/Fas) system and its clinical implications. Mol Med Today 1998; 4:63–68.

    Article  PubMed  CAS  Google Scholar 

  29. Nestle FO, Alijagic S, Gilliet M et al. Vaccination of melanoma patients with peptide-or-tumor lysate-pulsed dendritic cells. Nature Med 1998; 4:328–332.

    Article  PubMed  CAS  Google Scholar 

  30. Tighe H, Corr M, Roman M et al. Gene vaccination: plasmid DNA is more than just a blue print. Immunol Today 1998; 19:89–97.

    Article  PubMed  CAS  Google Scholar 

  31. Condon C, Watkins SC, Celluzi CM et al. DNA-based immunization by in vivo transfection of dendritic cells. Nature Med 1996; 2:1122–1128.

    Article  PubMed  CAS  Google Scholar 

  32. Nair SK, Boczkowski D, Morse M et al. Induction of primary carcinoembryonic antigen (CEA)-specific cytotoxic T-lymphocytes in vitro using human dendritic cells transfected with RNA. Nat Biotechnol 1998; 16:364–369.

    Article  PubMed  CAS  Google Scholar 

  33. Ashley DM, Faiola B, Nair S et al. Bone marrow-generated dendritic cells pulsed with tumor extracts or tumor RNA induce antitumor immunity against central nervous system tumors. J Exp Med 1997; 186:1177–1182.

    Article  PubMed  CAS  Google Scholar 

  34. Gilboa E, Nair K, Lyerly HK. Immunotherapy of cancer with dendritic cell-based vaccines. Cancer Immunol Immunother 1998; 46:82–87.

    Article  PubMed  CAS  Google Scholar 

  35. Restifo NP, Esquivel F, Asher AL et al. Defective presentation of endogenous antigens by a murine sarcoma: Implications for the failure of an anti tumor immune response. J Immunol 1991; 147:1453–1458.

    PubMed  CAS  Google Scholar 

  36. Ohlen C, Bastin J, Ljunggren HG et al. Resistance to H-2-restricted but not to allo-H-2-specific graft and cytotoxic T-lymphocyte responses in lymphoma mutant. J Immunol 1990; 145:52–58.

    PubMed  CAS  Google Scholar 

  37. Cohen EP, Kim TS. Neoplastic cells that express low levels of MHC class I determinants escape host immunity. Seminars in Cancer Biology. London: Academic Press, 1994; 5:419–428.

    Google Scholar 

  38. Kim TS, Cohen EP. MHC antigen expression by melanomas recovered from mice treated with allogeneic mouse fibroblasts genetically modified for interleukin-2 secretion and the expression of melanoma-associated antigens. Cancer Immunol Immunother 1994; 38:185–193.

    PubMed  CAS  Google Scholar 

  39. Lichtor T, Glick RP, Kim TS et al. Prolonged survival of mice with glioma injected intracerebrally with double cytokine-secreting cells. J Neurosurg 1995; 83:1038–1044.

    Article  PubMed  CAS  Google Scholar 

  40. Lichtor T, Glick RP, Lin H et al. Intratumoral injection of IL-secreting syngeneic/allogeneic fibroblasts transfected with DNA from breast cancer cells prolongs the survival of mice with intracerebral breast cancer. Cancer Gene Ther 2005; 12:708–714.

    Article  PubMed  CAS  Google Scholar 

  41. Lichtor T, Glick RP, Feldman LA et al. Enhanced immunity to intracerebral breast cancer in mice immunized with a cDNA-based vaccine enriched for immunotherapeutic cells. J Immunother 2008; 31:18–27.

    Article  PubMed  CAS  Google Scholar 

  42. O I, Ku G, Ertl HCJ et al. A dendritic cell vaccine induces protective immunity to intracranial growth of glioma. Anticancer Res 2002; 22:613–622.

    Google Scholar 

  43. Rosenberg SA, Yang JC, Restifo NP. Cancer immunotherapy: moving beyond current vaccines. Nat Med 2004; 10:909–915.

    Article  PubMed  CAS  Google Scholar 

  44. Kobayashi T, Yamanaka R, Homma J et al. Tumor mRNA-loaded dendritic cells elicit tumor-specific CD8+ cytotoxic T-cells in patients with malignant glioma. Cancer Immunol Immunother 2003; 52:632–637.

    Article  PubMed  CAS  Google Scholar 

  45. Gansbacher B, Bannerji R, Daniels B et al. Retroviral vector-mediated gamma-interferon gene transfer into tumor cells generates potent and long lasting antitumor immunity. Cancer Res 1990; 50:7820–7825.

    PubMed  CAS  Google Scholar 

  46. Colombo MP, Ferrari G, Stoppacciaro A et al. Granulocyte colony-stimulatingfactor gene transfer suppressed tumorigenicity of a murine adenocarcinoma in vivo. J Exp Med 1991; 173:889–897.

    Article  PubMed  CAS  Google Scholar 

  47. Golumbek PT, Lazenby AJ, Levitsky HI et al. Treatment of established renal cancer by tumor cells engineered to secrete interleukin-4. Science 1991; 254:713–716.

    Article  PubMed  CAS  Google Scholar 

  48. Mullen CA, Coale MM, Levy AT et al. Fibrosarcoma cells transduced with the IL-6 gene exhibit reduced tumorigenicity, increased immunogenicity and decreased metastatic potential. Cancer Res 1992; 52:6020–6024.

    PubMed  CAS  Google Scholar 

  49. Dranoff G, Jaffee E, Lazenby A et al. Vaccination with irradiated tumor cells engineered to secrete murine granulocyte-macrophage colony-stimulating factor stimulates potent, specific and long-lasting anti-tumor immunity. Proc Nat Acad Sci USA 1993; 90:3539–3543.

    Article  PubMed  CAS  Google Scholar 

  50. Connor J, Bannerji R, Saito S et al. Regression of bladder tumors in mice treated with interleukin 2 gene-modified tumor cells. J Exp Med 1993; 177:1127–1134.

    Article  PubMed  CAS  Google Scholar 

  51. Cavallo F, Pierro FD, Giovarelli M et al. Protective and curative potential of vaccination with interleukin-2-gene-transfected cells from a spontaneous mouse mammary adenocarcinoma. Cancer Res 1993; 53:5067–5070.

    PubMed  CAS  Google Scholar 

  52. Tahara H, Zeh HJ, Storkus WJ et al. Fibroblasts genetically engineered to secrete interleukin 12 can suppress tumor growth and induce antitumor immunity to amurine melanoma in vivo. Cancer Res 1994;54:182–189.

    PubMed  CAS  Google Scholar 

  53. Marincola FM, Shamamian P, Alexander RB et al. Loss of HLA haplotype and down-regulation in melanoma cell lines. J Immunol 1994; 153:1225–1237.

    PubMed  CAS  Google Scholar 

  54. Valmori D, Levy F, Miconnet I et al. Induction of potent antitumor CTL responses by recombinant vaccinia encoding a melon-A peptide analogue. J Immunol 2000; 164:1125–1131.

    PubMed  CAS  Google Scholar 

  55. Yu JS, Wei MX, Chiocca EA et al. Treatment of glioma by engineered interleukin 4-secreting cells. Cancer Research 1993; 53:3125–3128.

    PubMed  CAS  Google Scholar 

  56. Natsume A, Mizuno M, Ryuke Y et al. Antitumor effect and cellular immunity activation by murine interferon-beta gene transfer against intracerebral glioma in mouse. Gene Ther 1999; 6:1626–1633.

    Article  PubMed  CAS  Google Scholar 

  57. Liu Y, Ehtesham M, Samoto K et al. In site adenoviral interleukin 12 gene transfer confers potent and long-lasting cytotoxic immunity in glioma. Cancer Gene Ther 2002; 9:9–15.

    Article  PubMed  CAS  Google Scholar 

  58. Cohen EP. DNA-based vaccines for the treatment of cancer—an experimental model. Trends Mol Med 2001;7:175–179.

    Article  PubMed  CAS  Google Scholar 

  59. Lichtor T, Glick RP, Tarlock K et al. Application of interleukin-2-secreting syngeneic/allogeneic fibroblasts in the treatment of primary and metastatic brain tumors. Cancer Gene Ther 2002; 9:464–469.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Terry Lichtor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Lichtor, T., Glick, R.P. (2012). Immunogene Therapy. In: Yamanaka, R. (eds) Glioma. Advances in Experimental Medicine and Biology, vol 746. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3146-6_12

Download citation

Publish with us

Policies and ethics