Advertisement

CoCrMo Alloy for Biomedical Applications

  • Ingrid Milošev
Chapter
Part of the Modern Aspects of Electrochemistry book series (MAOE, volume 55)

Abstract

Metallic materials used in biomedical applications have become increasingly important as the number of various implanted devices, e.g., orthopedic, cardiovascular, dental, and ophthalmological implants, constantly increases. In addition to titanium-based alloys and stainless steel, cobalt–chromium–molybdenum alloy (CoCrMo) is one of the most important materials used in orthopedic applications, i.e., total hip replacements. The increasing number of implanted hip replacements is the result of the prolongation of the average life expectancy and an active lifestyle in older age. Among the diseases of the joint that in most cases require surgical treatment, osteoarthritis is the most important. After implantation of a hip prosthesis, pain is reduced and the functionality of the joint is recovered. The average lifetime of the implanted prosthesis is about 15 years. Compared to implants used in the 1970s, the lifetime of contemporary hip prostheses progressively increases because of progress in surgical techniques, treatment, material manufacturing, and quality control. The ultimate goal is to produce hip prostheses that would endure the average postsurgical lifetime of more than 20 years and enable the patient to live an active lifestyle without pain. To achieve this goal, understanding alloy behavior in vitro and in vivo is crucial.

Keywords

Phosphate Buffer Solution Passive Film Passive Layer Crevice Corrosion Passive Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The valuable technical assistance of Mr. Gregor Žerjav is gratefully acknowledged. High-resolution TEM experiments on CoCr-based particles were carried out by Dr. Maja Remškar. The author thanks the orthopedic surgeons at the Valdoltra Orthopedic Hospital for collaboration on retrieval studies. The financial support by the Slovene Research Agency is greatly appreciates (grants No. P2-0148 and J1-2243).

References

  1. 1.
    Williams DF (1981) The properties and clinical use of cobalt-chromium alloy. In: Williams DF (ed) Biocompatibility of clinical implant materials, vol I. CRC Press, Boca Raton, FL, p 99Google Scholar
  2. 2.
    International standard ISO 5832-4-1996, 2nd edn. Implants for surgery – Metallic materials – Part 4: Cobalt-chromium-molybdenum casting alloyGoogle Scholar
  3. 3.
    International standard ISO 5832-12-2007, 2nd edn. Implants for surgery – Metallic materials – Part 12: Wrought cobalt-chromium-molybdenum alloyGoogle Scholar
  4. 4.
    International standard ISO 5832-5-2005, 3rd edn. Implants for surgery – Metallic materials – Part 5: Wrought cobalt-tungsten-nickel alloyGoogle Scholar
  5. 5.
    International standard ISO 5832-6-1997, 2nd edn. Implants for surgery – Metallic materials – Part 6: Wrought cobalt-nickel-chromium-molybdenum alloyGoogle Scholar
  6. 6.
    Hallab NJ, Jacobs JJ, Katz JL (2004) Orthopedic applications. In: Ratner BD, Hoffman AS, Schoen FJ, Lemons JE (eds) Biomaterials science: an introduction to materials in medicine. Elsevier, London, p 526Google Scholar
  7. 7.
    Brunski JB (2004) Metals. In: Ratner BD, Hoffman AS, Schoen FJ, Lemons JE (eds) Biomaterials science: an introduction to materials in medicine. Elsevier, London, p 137Google Scholar
  8. 8.
    Ring PA (1971) J Bone Joint Surg Br 53B:344Google Scholar
  9. 9.
    Charnley J (1971) J Bone Joint Surg Br 53B:342Google Scholar
  10. 10.
    Milošev I (2011) Pure Appl Chem 83:309CrossRefGoogle Scholar
  11. 11.
    Hoar TP, Mears DC (1966) Proc R Soc London 294:486CrossRefGoogle Scholar
  12. 12.
    Hanks JH, Wallace RE (1949) Proc Soc Exp Biol Med 71:196Google Scholar
  13. 13.
    Kuhn AT (1981) Biomaterials 2:68CrossRefGoogle Scholar
  14. 14.
    Espevik S (1978) Acta Odontol Scand 36:113CrossRefGoogle Scholar
  15. 15.
    Mueller HJ, Greener EH (1970) J Biomed Mater Res 4:29CrossRefGoogle Scholar
  16. 16.
    Cahoon JR, Hill LD (1978) J Biomed Mater Res 12:805CrossRefGoogle Scholar
  17. 17.
    Galante J, Rosteker W (1972) Clin Orthop 86:237CrossRefGoogle Scholar
  18. 18.
    Rostoker W, Galante JO, Lereim P (1978) J Biomed Mater Res 12:823CrossRefGoogle Scholar
  19. 19.
    Lucas LC, Buchanan RA, Lemons JE (1981) J Biomed Mater Res 15:731CrossRefGoogle Scholar
  20. 20.
    Kummer FJ, Rose RM (1983) J Bone Joint Surg Am 165-A:1125Google Scholar
  21. 21.
    Griffin CD, Buchanan RA, Lemons JE (1983) J Biomed Mater Res 17:489CrossRefGoogle Scholar
  22. 22.
    Thompson NG, Buchanan RA, Lemons JE (1979) J Biomed Mater Res 13:35CrossRefGoogle Scholar
  23. 23.
    Lucas LC, Buchanan RA, Lemons JE, Griffin CD (1982) J Biomed Mater Res 16:799CrossRefGoogle Scholar
  24. 24.
    Syrett BC, Wing SS (1978) Corrosion 34:379Google Scholar
  25. 25.
    Cohen J (1962) J Bone Joint Surg 44-A:307Google Scholar
  26. 26.
    Süry P (1977) Corrosion Sci 17:155CrossRefGoogle Scholar
  27. 27.
    Mears DC (1975) J Biomed Mater Res 9:133CrossRefGoogle Scholar
  28. 28.
    Igual Muňoz A, Mischler S (2007) J Electrochem Soc 154:C562CrossRefGoogle Scholar
  29. 29.
    Hodgson AWE, Kurz S, Virtanen S, Fervel V, Olsson C-OA, Mischler S (2004) Electrochim Acta 49:2167CrossRefGoogle Scholar
  30. 30.
    Metikoš-Huković M, Babić R (2007) Corros Sci 49:3570CrossRefGoogle Scholar
  31. 31.
    Kocijan A, Milošev I, Merl DK, Pihlar B (2004) J Appl Electrochem 34:517CrossRefGoogle Scholar
  32. 32.
    Metikoš-Huković M, Babić R, Omanović D, Milošev I (2007) ECS Trans 2:43CrossRefGoogle Scholar
  33. 33.
    Milošev I, Strehblow HH (2003) Electrochim Acta 48:2767CrossRefGoogle Scholar
  34. 34.
    Metikoš-Huković M, Pilić Z, Babić R, Omanović D (2006) Acta Biomater 2:693CrossRefGoogle Scholar
  35. 35.
    Kocijan A, Milošev I, Pihlar B (2003) J Mater Sci Mater Med 14:69CrossRefGoogle Scholar
  36. 36.
    Milošev I, Strehblow H-H (2000) J Biomed Mater Res 52:404CrossRefGoogle Scholar
  37. 37.
    Milošev I (2002) J Appl Electrochem 32:311CrossRefGoogle Scholar
  38. 38.
    Kocijan A, Milošev I, Pihlar B (2004) J Mater Sci Mater Med 15:643CrossRefGoogle Scholar
  39. 39.
    Valero Vidal C, Igual Muňoz A (2008) Corrosion Sci 50:1954CrossRefGoogle Scholar
  40. 40.
    Valero Vidal C, Olmo Juan A, Igual Muňoz A (2010) J Colloids Surf B Biointerfaces 80:1CrossRefGoogle Scholar
  41. 41.
    Karimi S, Nickchi T, Alfantazi A (2011) Corrosion Sci 53:3262CrossRefGoogle Scholar
  42. 42.
    Ouerd A, Alemany-Dumont C, Normand B, Szunerits S (2008) Electrochim Acta 53:4461CrossRefGoogle Scholar
  43. 43.
    Sato N, Ohtsuka T (1978) J Electrochem Soc 125:1735CrossRefGoogle Scholar
  44. 44.
    Burke LD, Lyons ME, Murphy OJ (1982) J Electroanal Chem 132:247CrossRefGoogle Scholar
  45. 45.
    Ismail KM, Badawy WA (2000) J Appl Electrochem 30:1303CrossRefGoogle Scholar
  46. 46.
    Badawy WA, Al-Kharafi FM, Al-Ajmi JR (2000) J Appl Electrochem 30:693CrossRefGoogle Scholar
  47. 47.
    Foelske A, Strehblow H-H (2000) Surf Interface Anal 29:548CrossRefGoogle Scholar
  48. 48.
    Kudo K (1978) In: Frankenthal P, Kruger J (eds) Passivity of metals. Electrochemical Society, Princeton, NJ, p 918Google Scholar
  49. 49.
    Heusler KE (1978) In: Frankenthal P, Kruger J (eds) Passivity of metals. Electrochemical Society, Princeton, NJ, p 771Google Scholar
  50. 50.
    Gervasi CA, Biaggio SR, Vilche JR, Ariva AJ (1989) Corros Sci 29:427CrossRefGoogle Scholar
  51. 51.
    Povey AF, Metcalfe AA (1977) J Electroanal Chem 84:73CrossRefGoogle Scholar
  52. 52.
    Wang K, Li Y-S, He P (1998) Electrochim Acta 43:2459CrossRefGoogle Scholar
  53. 53.
    Moffat TP, Latanision RM (1992) J Electrochem Soc 139:1869CrossRefGoogle Scholar
  54. 54.
    Haupt S, Strehblow H-H (1987) J Electroanal Chem 228:365CrossRefGoogle Scholar
  55. 55.
    Melendres CA, Pankuch N, Li YS, Knight RL (1992) Electrochim Acta 37:2747CrossRefGoogle Scholar
  56. 56.
    Schmuki P, Virtanen S, Davenport AJ, Vitus CM (1996) J Electrochem Soc 143:3997CrossRefGoogle Scholar
  57. 57.
    Seo M, Saito R, Saho N (1980) J Electrochem Soc 127:1909CrossRefGoogle Scholar
  58. 58.
    Pourbaix M (1974) Atlas of electrochemical equilibria in aqueous solutions, 2nd edn. NACE, HustonGoogle Scholar
  59. 59.
    Bardwell JA, Sproule GI, MacDougall B, Graham MJ (1992) J Electrochem Soc 139:371CrossRefGoogle Scholar
  60. 60.
    Metikoš-Huković M, Ceraj-Cerić M (1987) J Electrochem Soc 134:2193CrossRefGoogle Scholar
  61. 61.
    Lorang G, Da Cunha Belo M, Simoes AMP, Ferreira MGS (1994) J Electrochem Soc 141:3347CrossRefGoogle Scholar
  62. 62.
    Olefjord I, Brox B, Jelvestam U (1985) J Electrochem Soc 132:2854CrossRefGoogle Scholar
  63. 63.
    Piao T, Park S-M (1997) J Electrochem Soc 144:3371CrossRefGoogle Scholar
  64. 64.
    Li Y-S, Wang K, He P, Huang BX, Kovacs P (1999) J Raman Spectrosc 30:97CrossRefGoogle Scholar
  65. 65.
    Codaro EN, Melnikov P, Ramires I, Guastaldi AC (2000) Russ J Electrochem 36:1117CrossRefGoogle Scholar
  66. 66.
    Pound BG (2010) J Biomed Mater Res A 94A:93CrossRefGoogle Scholar
  67. 67.
    Gilbert JL (1998) J Biomed Mater Res 40:233CrossRefGoogle Scholar
  68. 68.
    Haeri M, Goldberg S, Gilbert JL (2010) Corros Sci 53:582CrossRefGoogle Scholar
  69. 69.
    Gilbert JL, Bai Z, Bearinger J, Megremis S (2004) Medical device materials: Proceedings of the materials and processes for medical devices conference. ASM International, Anaheim, p 139Google Scholar
  70. 70.
    Smith SM, Gilbert JL (1994) In: Kovacs P, Istephanous NS (eds) Proceedings of the symposium on compatibility of biomedical implants, 94-15. The Electrochemical Society, Pennington, NJ, p 229Google Scholar
  71. 71.
    Brown SA, Farnsworth LJ, Merritt K, Crowe TD (1988) J Biomed Mater Res 22:321CrossRefGoogle Scholar
  72. 72.
    Őzçlik F, Gülen J, Akdoğan A, Pişkin S (1999) Prakt Metallogr 36:385Google Scholar
  73. 73.
    Lewis AC, Heard PJ (2005) J Biomed Mater Res 75A:365CrossRefGoogle Scholar
  74. 74.
    Urban RM, Jacobs JJ, Gilbert JL, Galante JO (1994) J Bone Joint Surg Am 76-A:1345Google Scholar
  75. 75.
    Ouerd A, Alemany-Dumont C, Berthomé G, Normand B, Szunerits S (2007) J Electrochem Soc 154:C593CrossRefGoogle Scholar
  76. 76.
    Black J (1992) Biological performance of materials. Dekker, New YorkGoogle Scholar
  77. 77.
    Smith RM, Martell AE (eds) (1977) Critical stability constants, vol 3. Plenum, New YorkGoogle Scholar
  78. 78.
    Peters T Jr (1996) All about albumin. Academic Press, San Diego, CAGoogle Scholar
  79. 79.
    Sugio S, Kashima A, Mochizuki S, Noda M, Kobayashi K (1999) Protein Eng 12:439CrossRefGoogle Scholar
  80. 80.
    Omanovic S, Roscoe SG (1999) Langmuir 15:8315CrossRefGoogle Scholar
  81. 81.
    Omanovic S, Roscoe SG (2000) J Colloid Interface Sci 227:452CrossRefGoogle Scholar
  82. 82.
    Stupnišek-Lisac E, Metikoš-Huković M, Lenčić D, Forkapić-Furac K (1992) Corrosion 48:924CrossRefGoogle Scholar
  83. 83.
    Jackson DR, Omanovic S, Roscoe SG (2000) Langmuir 16:5449CrossRefGoogle Scholar
  84. 84.
    Alfonso MLCA, Villamil Jaimes RFV, Arêas EPG, Capri MR, Oliveira E, Agostinho SML (2008) Colloids Surf A Physicochem Eng Asp 317:760CrossRefGoogle Scholar
  85. 85.
    Giacomelli CE, Esplandiú MJ, Ortiz PI, Avena MJ, De Pauli CP (1999) J Colloid Interface Sci 218:404CrossRefGoogle Scholar
  86. 86.
    Kopac T, Bozgeyik K, Yener J (2008) Colloids Surf A Physicochem Eng Asp 322:19CrossRefGoogle Scholar
  87. 87.
    Ithurbide A, Frateur I, Galtayries P, Marcus P (2007) Electrochim Acta 53:1336CrossRefGoogle Scholar
  88. 88.
    Pradier CM, Kármán F, Telegdi J, Kálman E, Marcus P (2003) J Phys Chem B 107:6766CrossRefGoogle Scholar
  89. 89.
    Reyes L, Bert J, Fornazero J, Cohen R, Heinrich L (2002) Colloids Surf B 25:99CrossRefGoogle Scholar
  90. 90.
    Lu DR, Park K (1991) J Colloids Interface 144:271CrossRefGoogle Scholar
  91. 91.
    Svare CW, Belton G, Korostoff E (1970) J Biomed Mater Res 4:457CrossRefGoogle Scholar
  92. 92.
    Brown SA, Merrit K (1980) J Biomed Mater Res 14:173CrossRefGoogle Scholar
  93. 93.
    Williams RL, Brown SA, Merritt K (1988) Biomaterials 9:181CrossRefGoogle Scholar
  94. 94.
    Merritt K, Brown SA (1988) J Biomed Mater Res 22:111CrossRefGoogle Scholar
  95. 95.
    Clark GCF, Williams DF (1982) J Biomed Mater Res 16:125CrossRefGoogle Scholar
  96. 96.
    Yamauchi O, Odani A (1996) Pure Appl Chem 68:469CrossRefGoogle Scholar
  97. 97.
    Yang J, Black J (1994) Biomaterials 15:262CrossRefGoogle Scholar
  98. 98.
    Woodman JL, Black J, Jiminez SA (1984) J Biomed Mater Res 18:99CrossRefGoogle Scholar
  99. 99.
    Merritt K, Brown SA, Sharkey NA (1984) J Biomed Mater Res 18:991CrossRefGoogle Scholar
  100. 100.
    Merritt K, Brown SA, Sharkey NA (1984) J Biomed Mater Res 18:1005CrossRefGoogle Scholar
  101. 101.
    Hallab NJ, Skipor A, Jacobs JJ (2003) J Biomed Mater Res A 65:311CrossRefGoogle Scholar
  102. 102.
    Hallab NJ, Jacobs JJ, Skipor A, Black J, Mikecz K, Galante JO (2000) J Biomed Mater Res 49:353CrossRefGoogle Scholar
  103. 103.
    Contu F, Elsener B, Böhni H (2002) J Biomed Mater Res 62:412CrossRefGoogle Scholar
  104. 104.
    Contu F, Elsener B, Böhni H (2003) J Biomed Mater Res 67A:246CrossRefGoogle Scholar
  105. 105.
    Hiromoto S, Noda K, Hanawa T (2002) Corrosion Sci 44:955CrossRefGoogle Scholar
  106. 106.
    Hiromoto S, Onodera E, Chiba A, Asami K, Hanawa T (2005) Biomaterials 26:4912CrossRefGoogle Scholar
  107. 107.
    Hsu RW-W, Yang C-C, Huang C-A, Chen Y-S (2005) Mater Chem Phys 93:531CrossRefGoogle Scholar
  108. 108.
    Hanawa T, Hiromoto S, Asami K (2001) Appl Surf Sci 183:68CrossRefGoogle Scholar
  109. 109.
    Lin H-Y, Bumgardner JD (2004) Biomaterials 25:1233CrossRefGoogle Scholar
  110. 110.
    Lewis AC, Kilburn MR, Heard PJ, Scott TB, Hallam KR, Allen GC, Learmonth ID (2006) J Orthop Res 24:1587CrossRefGoogle Scholar
  111. 111.
    Landolt D, Mischler S, Stemp M (2001) Electrochim Acta 46:3913CrossRefGoogle Scholar
  112. 112.
    Virtanen S, Milošev I, Gomez-Barrena E, Trebše R, Salo J, Konttinen YT (2008) Acta Biomater 4:468CrossRefGoogle Scholar
  113. 113.
    Contu F, Elsener B, Böhni H (2003) J Electrochem Soc 150:B419CrossRefGoogle Scholar
  114. 114.
    Hiromoto S, Onodera E, Chiba A, Asami K, Hanawa T (2005) Biomaterials 26:4912CrossRefGoogle Scholar
  115. 115.
    Igual Muňoz A, Mischler S (2011) J Mater Sci Mater Med 22:437CrossRefGoogle Scholar
  116. 116.
    Mischler S (2008) Tribol Int 41:573CrossRefGoogle Scholar
  117. 117.
    Igual Muňoz A, Casabán Julián L (2010) Electrochim Acta 55:5428CrossRefGoogle Scholar
  118. 118.
    Casabán Julián L, Igual Muňoz A (2011) Tribol Int 44:318CrossRefGoogle Scholar
  119. 119.
    Yan Y, Neville A, Dowson D (2007) Tribol Int 40:1492CrossRefGoogle Scholar
  120. 120.
    Yan Y, Neville A, Dowson D, Williams S (2006) Tribol Int 39:1509CrossRefGoogle Scholar
  121. 121.
    Yan Y, Neville A, Dowson D (2006) J Phys D Appl Phys 39:3206CrossRefGoogle Scholar
  122. 122.
    Sun D, Wharton JA, Wood RJK, Ma L, Rainforth WM (2009) Tribol Int 42:99CrossRefGoogle Scholar
  123. 123.
    Band T, Metcalf J, Jones H (2001) J Bone Joint Surg 86-B:402Google Scholar
  124. 124.
    Bücher R, Fisher A (2003) Materialwissenschaft Werkstofftechnik 234:966CrossRefGoogle Scholar
  125. 125.
    Wimmer MA, Loos J, Nassutt R, Heitkemper M, Fischer A (2001) Wear 250:250CrossRefGoogle Scholar
  126. 126.
    Milošev I, Remškar M (2009) J Biomed Mater Res A 91A:1100CrossRefGoogle Scholar
  127. 127.
    Bücher R, Tager G, Dudinski W, Gleising B, Wimmer MA, Fisher A (2005) J Biomed Mater Res B 72:206CrossRefGoogle Scholar
  128. 128.
    Svanson SAV, Freeman MAR (1977) The scientific basis of joint replacement. Wiley, New YorkGoogle Scholar
  129. 129.
    Salinas-Rodriguez A (1999) ASTM Spl Techn Publ 1365:108Google Scholar
  130. 130.
    Levitas VI (2004) Europhys Lett 66:687CrossRefGoogle Scholar
  131. 131.
    Scales JT, Winter GD, Shirley HT (1959) J Bone Joint Surg 41-B:810Google Scholar
  132. 132.
    Scales JT (1971) J Bone Joint Surg Br 53-B:344Google Scholar
  133. 133.
    Gruen TA, Amstutz HC (1975) J Biomed Mater Res 9:465CrossRefGoogle Scholar
  134. 134.
    Reclaru L, Lerf R, Eschler P-Y, Blatter A, Meyer J-M (2002) Biomaterials 23:3479CrossRefGoogle Scholar
  135. 135.
    Serhan H, Slivka M, Albert T, Kwak SD (2004) Spine J 4:379CrossRefGoogle Scholar
  136. 136.
    Collier JP, Surprenant VA, Jensen RE, Mayor MB, Suprenant HP (1991) Clin Orthop Relat Res 271:305Google Scholar
  137. 137.
    Collier JP, Surprenant VA, Jensen RE, Mayor MB, Suprenant HP (1992) J Bone Joint Surg 74-B:511Google Scholar
  138. 138.
    Gilbert JL, Buckley CA, Jacobs JJ (1993) J Biomed Mater Res 27:1533CrossRefGoogle Scholar
  139. 139.
    Gilbert JL, Jacobs JJ (1997) The mechanical and electrochemical processes associated with taper fretting crevice corrosion: a review. In: Marlowe DE, Parr JE, Mayor MB (eds) Modularity of orthopaedic implants. ASTM publication, STP 1301, West Conhohocken, PA, p 45Google Scholar
  140. 140.
    Goldberg JR, Gilbert JL, Jacobs JJ, Bauer TW, Paprosky W, Leurgans S (2002) Clin Orthop Relat Res 401:149CrossRefGoogle Scholar
  141. 141.
    Cook SD, Barrack RL, Baffes GC, Clemow AJT, Serekian P, Dong N, Kester M (1994) Clin Orthop Relat Res 298:80Google Scholar
  142. 142.
    Bobyn JD, Duyovne AR, Krygier JJ, Young DL (1993) In: Morrey BF (ed) Biological, material, and mechanical considerations of joint replacement. Raven, New York, p 287Google Scholar
  143. 143.
    Mathiesen EB, Urban Lindgren J, Blomgren GA, Reinholt FP (1991) J Bone Joint Surg Br 73-B:569Google Scholar
  144. 144.
    McKellop HA, Sarmiento A, Brien W, Park SH (1992) J Arthroplasty 7:291CrossRefGoogle Scholar
  145. 145.
    Gilbert JL, Buckley CA, Jacobs JJ, Bertin KC, Zernich MR (1994) J Bone Joint Surg 76-A:110Google Scholar
  146. 146.
    Brown SA, Flemming CAC, Kawalec JS, Placko HE, Vassaux C, Merritt K, Payer JH, Kraay MJ (1995) J Appl Biomater 6:19CrossRefGoogle Scholar
  147. 147.
    Viceconti M, Baleani M, Squarzoni S, Toni A (1997) J Biomed Mater Res 35:207CrossRefGoogle Scholar
  148. 148.
    Salvati EA, Lieberman JR, Huk OL, Evans BG (1995) Clin Orthop Relat Res 319:85Google Scholar
  149. 149.
    Urban RM, Jacobs JJ, Gilbert JL, Rice SB, Justy M, Bragdon CR, Galante JO (1997) Characterization of solid products of corrosion generated by modular-head femoral stems of different designs and materials. In: Marlowe DE, Parr JE, Mayor MB (eds) Modularity of orthopaedic implants. ASTM publication, STP 1301, West Conhohocken, PA, p 33Google Scholar
  150. 150.
    Urban RM, Jacobs JJ, Gilbert JL, Galante JO (1994) J Bone Joint Surg 76-B:1345Google Scholar
  151. 151.
    Huber M, Reinisch G, Trettenhahn G, Zweymüller K, Lintner F (2009) Acta Biomater 5:172CrossRefGoogle Scholar
  152. 152.
    McCarthy JC, Bono JV, O’Donnell PJ (1997) Clin Orthop Relat Res 344:162CrossRefGoogle Scholar
  153. 153.
    Yerby SA, Taylor JK, Park J, Shackelford JF (1996) J Arthroplasty 11:157CrossRefGoogle Scholar
  154. 154.
    Lieberman JR, Rimnac CM, Garvin KL, Klein RW, Salvati EA (1994) Clin Orthop Relat Res 300:162Google Scholar
  155. 155.
    Kop AM, Swarts E (2009) J Arthroplasty 24:1019CrossRefGoogle Scholar
  156. 156.
    Willert H-G, Brobäck L-G, Buchhorn GH, Jensen PH, Köster G, Lang I, Ochsner P, Schenk R (1996) Clin Orthop Relat Res 333:51Google Scholar
  157. 157.
    Hodgson AW, Mischler S, Von Rechenberg B, Virtanen S (2007) Proc IMechE H 221:291Google Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Jožef Stefan InstituteLjubljanaSlovenia
  2. 2.Valdoltra Orthopedic HospitalAnkaranSlovenia

Personalised recommendations