Skip to main content

Spatio-Temporal Processing

  • Chapter
  • First Online:
Book cover Autonomic Cooperative Networking

Part of the book series: SpringerBriefs in Computer Science ((BRIEFSCOMPUTER))

  • 410 Accesses

Abstract

Spatio-temporal processing emerged as one of the key achievements towards the provision of high data rate, reliable wireless communications. Most recently, the rationale behind this concept has been mapped onto networked systems under the name of cooperative transmission. This chapter provides a general background on spatio-temporal processing to form the basis of further investigations outlined in the remainder of this book. In particular, the gains achievable in Multiple Input Multiple Output Channels are first quantified. Then, the relevant diversity techniques are discussed together with the role of diversity order and diversity gain. Following, Space- Time Block Coding and Space-Time Trellis Coding techniques are introduced and supported with performance results. Eventually, the context of Layered Space-Time Coding is provided. This analysis is further complemented in the next chapter with the definition of Equivalent Distributed Space-Time Block Encoder.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Alamouti. A Simple Transmit Diversity Technique for Wireless Communications. IEEE Journal on Selected Areas in Communications, 16(8):1451–1458, Oct. 1998.

    Article  Google Scholar 

  2. M. Dohler and Y. Li. Cooperative Communications - Hardware, Channel & PHY. Wiley, 2010.

    Google Scholar 

  3. K. Doppler, S. Redana, M. Wódczak, P. Rost, and R. Wichman. Dynamic resource assignment and cooperative relaying in cellular networks: Concept and performance assessment. EURASIP Journal on Wireless Communications and Networking, Jul. 2007.

    Google Scholar 

  4. G. J. Foschini. Layered Space-Time Architecture for Wireless Communications in a Fading Environment When Using Multi-Element Antennas. Bell Labs Technical Journal, 1(2):41–59, 1996.

    Article  Google Scholar 

  5. G. J. Foschini and M. J. Gans. On Limits ofWireless Communications in Fading Environment when Using Multiple Antennas. Wireless Personal Communications, 6:311–335, 1998.

    Article  Google Scholar 

  6. A. Goldsmith. Wireless Communications. Cambridge University Press, 2005.

    Google Scholar 

  7. B. Hassibi and B. M. Hochwald. High-rate codes that are linear in space and time. IEEE Transactions on Information Theory, 48(7):1473–1484, Jun. 2002.

    Article  MathSciNet  MATH  Google Scholar 

  8. M. Jankiraman. Space-Time Codes and MIMO Systems. Artech House, 2004.

    Google Scholar 

  9. E. G. Larsson and P. Stoica. Space-Time Block Coding for Wireless Communications. Cambridge University Press, 2003.

    Google Scholar 

  10. E.G. Larsson and P Stoica. Mean square error optimality of orthogonal space-time block codes. IEEE International Conference on Communications, ICC, pages 2272–2275, May 2003.

    Google Scholar 

  11. A. Lozano, F. R. Farrokhi, and R. A. Valenzuela. Lifting the limits on high-speed wireless data access using antenna arrays. IEEE Communications Magazine, 39(9):156–162, Sep. 2001.

    Article  Google Scholar 

  12. S. M.Alamouti, V.Tarokh, and P.Poon. Trellis coded modulation and transmit diversity: Design criteria and performance evaluation. IEEE International Conference on Universal Personal Communications, ICUPC, pages 703–707, Oct. 1998.

    Google Scholar 

  13. A.F. Molisch and M.Z. Win. MIMO Systems with Antenna Selection. IEEE Microwave Magazine, 5(4):46–56, Mar. 2004.

    Article  Google Scholar 

  14. S. Sfar, R.D. Murch, and K.B. Letaief. Layered space-time multiuser detection over wireless uplink systems. IEEE Transactions on Communications, 2(4):653–668, Jul. 2003.

    Google Scholar 

  15. C. E. Shannon. A Mathematical Theory of Communication. Bell System Technical Journal, 27:379–423 and 623–656, Jul. and Oct. 1948.

    Google Scholar 

  16. V. Tarokh, H. Jafarkhani, and A. R. Calderbank. Space-time block codes from orthogonal designs. IEEE Transactions on Information Theory, 45(5):1456–1467, Jul. 1999.

    Article  MathSciNet  MATH  Google Scholar 

  17. V. Tarokh, H. Jafarkhani, and A. R. Calderbank. Space-time block coding for wireless communications: performance results. IEEE Journal on Selected Areas in Communications, 17(3):451–460, Mar. 1999.

    Article  Google Scholar 

  18. V. Tarokh, N. Seshadri, and A. R. Calderbank. Space-Time Codes for High Data Rate Wireless Communication: Performance Criterion and Code Construction. IEEE Transactions on Information Theory, 44(2):744–765, Mar. 1998.

    Article  MathSciNet  MATH  Google Scholar 

  19. V. Tarokh, N. Seshadri, and A. R. Calderbank. Space-Time Codes for High Data RateWireless Communication: Performance Criteria in the Presence of Channel Estimation Errors, Mobility, and Multiple Paths. IEEE Transactions on Communications, 47(2):199–207, Feb. 1999.

    Article  MATH  Google Scholar 

  20. I. E. Telatar. Capacity of multi-antenna Gaussian channels. European Transactions on Telecommunications, 10(6):585–595, Nov.-Dec. 1999.

    Google Scholar 

  21. A. J Viterbi. Error Bounds for Convolutional Codes and an Asymptotically Optimum Decoding Algorithm. IEEE Transactions on Information Theory, 13(2):260–269, Apr. 1967.

    Google Scholar 

  22. B. Vucetic and J. Yuan. Space-Time Coding. John Wiley & Sons, 2003.

    Google Scholar 

  23. K. Wesołowski. Mobile communications systems. John Wiley and Sons, 2002.

    Google Scholar 

  24. M. Wódczak. On the Adaptive Approach to Antenna Selection and Space-Time Coding in Context of the Relay Based Mobile Ad-hoc Networks. XI National Symposium of Radio Science URSI, Pozna´n, Poland, pages 138–142, Apr. 2005.

    Google Scholar 

  25. M.Wódczak. On Routing information Enhanced Algorithm for space-time coded Cooperative Transmission in wireless mobile networks. PhD thesis, Faculty of Electrical Engineering, Institute of Electronics and Telecommunications, Pozna´n University of Technology, Poland, Sep. 2006.

    Google Scholar 

  26. M. Wódczak. Autonomic Cooperative Networking for Wireless Green sensor Systems. International Journal of Sensor Networks (IJSNet), 10(1/2), 2011.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michał Wódczak .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 The Author

About this chapter

Cite this chapter

Wódczak, M. (2012). Spatio-Temporal Processing. In: Autonomic Cooperative Networking. SpringerBriefs in Computer Science. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-3100-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-3100-8_2

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4614-3099-5

  • Online ISBN: 978-1-4614-3100-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics