Advertisement

First-Principles Calculations of Physical Properties of Planetary Ices

  • Razvan Caracas
Chapter
Part of the Astrophysics and Space Science Library book series (ASSL, volume 356)

Abstract

We review specific aspects from computational condensed-matter physics with particular interest to the study of physical properties of the planetary ices. We describe the most widespread technique in use today, the density-functional theory and its derivative, the density-functional perturbation theory. We show the basic theoretical formalism and then discuss and exemplify the most important physical properties that can be computed today and that are relevant for the community of planetary ices.

Keywords

Atomic Displacement Dynamical Matrice Dielectric Tensor Dynamical Charge Phonon Band 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abascal JLF, Sanz E, Vega C (2009) Triple points and coexistence properties of the dense phases of water calculated using computer simulation. Phys Chem Chem Phys 11:556–562CrossRefGoogle Scholar
  2. Allen MP, Tildesley DJ (1989) Computer simulation of liquids. Clarendon, Oxford, p 408Google Scholar
  3. Bader R (1991) A quantum theory of molecular structure and its applications. Chem Rev 91:893–928CrossRefGoogle Scholar
  4. Baroni S, Resta R (1986) Ab initio calculation of the low-frequency Raman cross section in silicon. Phys Rev B 33:5969–5971ADSCrossRefGoogle Scholar
  5. Baroni S, Giannozzi P, Testa A (1987) Green’s-function approach to linear response in solids. Phys Rev Lett 58:1861–1864ADSCrossRefGoogle Scholar
  6. Baroni S, de Gironcoli S, Dal Corso A, Giannozzi P (2001) Phonons and related crystal properties from density-functional perturbation theory. Rev Mod Phys 73:515–562ADSCrossRefGoogle Scholar
  7. Benoit M, Bernasconi M, Focher P, Parrinello M (1996) New high-pressure phase of ice. Phys Rev Lett 76:2934ADSCrossRefGoogle Scholar
  8. Bini R, Ulivi L, Kreutz J, Jodl H (2000) High pressure phases of solid nitrogen by Raman and infrared spectroscopy. J Chem Phys 112:8522ADSCrossRefGoogle Scholar
  9. Bobocioiu E, Caracas R (2010) Complexity in low-temperature phase diagrams of planetary ices: phase transition in bischofite, MgCl2.6H2O. In: Abstract MR11C-1890P presented at 2010 fall meeting, AGU, San Francisco, 13–17 Dec 2010Google Scholar
  10. Brand HEA, Fortes DA, Wood IG, Vocadlo L (2009) Equation of state and pressure-induced structural changes in mirabilite (Na2SO4·10H2O) determined from ab initio density functional theory calculations. Phys Chem Miner 37:265–282CrossRefGoogle Scholar
  11. Caracas R (2007) Raman spectra and lattice dynamics of cubic gauche nitrogen. J Chem Phys 127:144510ADSCrossRefGoogle Scholar
  12. Caracas R (2008) Dynamical instabilities of ice X. Phys Rev Lett 101:085502ADSCrossRefGoogle Scholar
  13. Caracas R, Banigan E (2009) Elasticity and Raman and infrared spectra of MgAl2O4 spinel from density-functional perturbation theory. Phys Earth Planet Inter 174:113–121ADSCrossRefGoogle Scholar
  14. Caracas R, Bobocioiu E (2011) The WURM project – a freely available web-based repository of computed physical data for minerals. Amer Miner 96:437–443CrossRefGoogle Scholar
  15. Caracas R, Cohen RE (2006) Theoretical determination of the Raman spectra of MgSiO3 perovskite and post-perovskite at high pressure. Geophys Res Lett 33:L12S05. doi: 10.1029/2006GL025736 CrossRefGoogle Scholar
  16. Caracas R, Gonze X (2010) Lattice dynamics and thermodynamical properties. In: Chaplot SL, Mittal R, Choudhury N (eds) Thermodynamic properties of solids: experiment and modeling. Wiley-VCH, WeinheimGoogle Scholar
  17. Caracas R, Hemley RJ (2007) New structures of dense nitrogen: pathways to the polymeric phase. Chem Phys Lett 442:65–70ADSCrossRefGoogle Scholar
  18. Cardona M (1982) Light scattering in solids II. In: Cardona M, Güntherodt G (eds) Basic concepts and instrumentation, vol 50, Topics in applied physics. Springer, New York, pp 19–168Google Scholar
  19. Cavazzoni C, Ghiaroti GL, Scandolo S, Tosatti E, Bernasconi M, Parinello M (1999) Superionic and metallic states of water and ammonia at giant planet conditions. Science 283:44–46ADSCrossRefGoogle Scholar
  20. Downs RT (2006) The RRUFF project: an integrated study of the chemistry, crystallography, Raman and infrared spectroscopy of minerals. In: Program and abstracts of the 19th general meeting of the international mineralogical association in Kobe, International Mineralogical Association, Kobe, 3–13 Oct 2006Google Scholar
  21. Eremets M, Gavriliuk AG, Trojan IA, Dzvienko DA, Boehler R (2004) Single-bonded cubic form of nitrogen. Nat Mater 3:558ADSCrossRefGoogle Scholar
  22. Eremets M, Gavriliuk AG, Trojan IA (2007) Single-crystalline polymeric nitrogen. Appl Phys Lett 90:171904ADSCrossRefGoogle Scholar
  23. Fortes AD (2004) Computational & experimental studies of solids in the ammonia-water system. Ph.D. thesis, University College of London/University of LondonGoogle Scholar
  24. Fortes AD, Choukroun M (2010) Phase behaviour of ices and hydrates. ISSI special publication on exchange processes in icy satellites. Space Sci Rev 153:185–218ADSCrossRefGoogle Scholar
  25. Fortes AD, Suard E, Lemee-Cailleau MH, Pickard CJ, Needs RJ (2009) Crystal structure of ammonia monohydrate phase II. J Am Chem Soc 131:13508–13515CrossRefGoogle Scholar
  26. Fortes AD, Suard E, Knight KS (2011) Negative linear compressibility and massive anisotropic thermal expansion in methanol monohydrate. Science 331:742–746ADSCrossRefGoogle Scholar
  27. Frenkel D, Smit B (2001) Understanding molecular simulation: from algorithms to applications. Academic, San Diego, 664 ppGoogle Scholar
  28. Gellert R, Rieder R, Anderson RC, Bruckner J, Clark BC, Dreibus C, Economou T, Klingelhöfer G, Lugmair GW, Ming DW, Squyres SW, d’Uston C, Wänke H, Yen A, Zipfel J (2004) Chemistry of rocks and soils in Gusev Crater from the alpha particle X-ray spectrometer. Science 305:829–832ADSCrossRefGoogle Scholar
  29. Ghosez Ph, Michenaud J-P, Gonze X (1998) Dynamical atomic charges: the case of ABO3 compounds. Phys Rev B58:6224–6240ADSGoogle Scholar
  30. Goldman N, Fried LE, Kuo IFW, Mundy CJ (2005) Bonding in the superionic phase of water. Phys Rev Lett 94:217801ADSCrossRefGoogle Scholar
  31. Goncharov AF, Struzhkin VV, Somayazulu MS, Hemley RJ, Mao HK (1996) Compression of ice to 210 gigapascals: infrared evidence for a symmetric hydrogen-bonded phase. Science 273:218ADSCrossRefGoogle Scholar
  32. Gonze X, Lee C (1997) Dynamical matrices, born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory. Phys Rev B 55:10355–10368ADSCrossRefGoogle Scholar
  33. Gonze X, Vigneron J-P (1989) Density-functional approach to nonlinear-response coefficients of solids. Phys Rev B49:13120–13128ADSGoogle Scholar
  34. Gonze X, Allan DC, Teter MP (1992) Dielectric tensor, effective charges and phonon in α-quartz by variational density-functional perturbation theory. Phys Rev Lett 68:3603–3606ADSCrossRefGoogle Scholar
  35. Gonze X, Charlier J-C, Allan DC, Teter MP (1994) Interatomic force constants from first principles the case of α-quartz. Phys Rev B50:13035–13038ADSGoogle Scholar
  36. Gonze X, Beuken J-M, Caracas R, Detraux F, Fuchs M, Rignanese G-M, Sindic L, Verstraete M, Zerah G, Jollet F, Torrent M, Roy A, Mikami M, Ghosez Ph, Raty J-Y, Allan DC (2002) First-principle computation of material properties the ABINIT software project. Comput Mater Sci 25:478–492, http//www.abinit.org CrossRefGoogle Scholar
  37. Gonze X, Rignanese G-M, Verstraete M, Beuken J-M, Pouillon Y, Caracas R, Jollet F, Torrent M, Zerah G, Mikami M, Ghosez Ph, Veithen M, Raty J-Y, Olevano V, Bruneval F, Reining L, Godby R, Onida G, Hamann DR, Allan DC (2005a) A brief introduction to the ABINIT software package. Zeitschrift für Kristallographie 220:558–562ADSCrossRefGoogle Scholar
  38. Gonze X, Rignanese G-M, Caracas R (2005b) First-principles studies of the lattice dynamics of crystals, and related properties. Zeitschrift für Kristallographie 220:458–472ADSCrossRefGoogle Scholar
  39. Gonze X, Amadon B, Anglade P-M, Beuken J-M, Bottin F, Boulanger P, Bruneval F, Caliste D, Caracas R, Côté M, Deutsch T, Genovesi L, Ghosez Ph, Giantomassi M, Goedecker S, Hamann DR, Hermet P, Jollet F, Jomard G, Leroux S, Mancini M, Mazevet S, Oliveira MJT, Onida G, Pouillon Y, Rangel T, Rignanese G-M, Sangalli D, Shaltaf R, Torrent M, Verstraete MJ, Zerah G, Zwanziger JW (2009) ABINIT: first-principles approach to material and nanosystem properties. Comput Phys Commun 180:2582–2615ADSCrossRefGoogle Scholar
  40. Grimme S (2004) Accurate description of van der Waals complexes by density functional theory including empirical corrections. J Comput Chem 25:1463–1473CrossRefGoogle Scholar
  41. Hamann D, Wu X, Rabe KM, Vanderbilt D (2005) Metric tensor formulation of strain in density-functional perturbation theory. Phys Rev B 71:035117ADSCrossRefGoogle Scholar
  42. Hayes W, Loudon R (1978) Scattering of light by crystals. Wiley, Hoboken, 113 ppGoogle Scholar
  43. Hedin L (1965) New method for calculating the one-particle green’s function with application to the electron-gas problem. Phys Rev 139:A796–A823ADSCrossRefGoogle Scholar
  44. Hemley RJ (2000) Effects of high pressure on molecules. Annu Rev Phys Chem 51:763–800ADSCrossRefGoogle Scholar
  45. Hemley RJ, Jephcoat AP, Mao HK, Zha CS, Finger LW, Cox DE (1987) Static compression of H2O-ice to 128 GPa (1.28 Mbar). Nature 330:737–740ADSCrossRefGoogle Scholar
  46. Hermet P, Goffinet M, Kreisel J, Ghosez Ph (2007) Raman and infrared spectra of multiferroic bismuth ferrite from first-principles. Phys Rev B 75:220102(R)ADSCrossRefGoogle Scholar
  47. Hirshfeld FH (1977) Theoret. Chim Acta (Berl) 44:129CrossRefGoogle Scholar
  48. Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136:B864–B871MathSciNetADSCrossRefGoogle Scholar
  49. Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/
  50. Johari GP, Andersson O (2007) Vibrational and relaxational properties of crystalline and amorphous ices. Thermochim Acta 461:14–43CrossRefGoogle Scholar
  51. Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140:A1133–A1138MathSciNetADSCrossRefGoogle Scholar
  52. Landau L, Lifshitz E (1960) Electrodynamics of continuous media. Pergamon Press, OxfordMATHGoogle Scholar
  53. Lazzeri M, Mauri F (2003) First-principles calculation of vibrational Raman spectra in large systems: signature of small rings in crystalline SiO2. Phys Rev Lett 90:36–401CrossRefGoogle Scholar
  54. Lein M, Dobson JF, Gross EKU (1999) Toward the description of van der Waals interactions within density functional theory. J Comput Chem 20:12–22CrossRefGoogle Scholar
  55. Maradudin AA, Montroll EW, Weiss GH, Ipatova IP (1971) Theory of lattice dynamics in the harmonic approximation. In: Ehrenreich HE, Seitz F, Turnbull D (eds) Solid state physics. Academic, New YorkGoogle Scholar
  56. Martin RM, Needs RJ (1986) Theoretical study of the molecular-to-nonmolecular transformation of nitrogen at high pressures. Phys Rev B 34:5082–5092ADSCrossRefGoogle Scholar
  57. Martinez RD, Caracas R, Humberto AH (2009) Organic ices: methanol monohydrate, Eos Transactions AGU, 90(52), Fall meeting supplement, Abstract MR23A-1680, San FranciscoGoogle Scholar
  58. McMahan AK, LeSar P (1985) Pressure dissociation of solid nitrogen under 1 mbar. Phys Rev Lett 54:1929–1932ADSCrossRefGoogle Scholar
  59. Militzer B, Wilson HF (2010) New phases of water ice predicted at megabar pressures. Phys Rev Lett 105:19570CrossRefGoogle Scholar
  60. Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B13:5188–5192MathSciNetADSGoogle Scholar
  61. Mulliken RS (1955) Electronic population analysis on LCAO-MO molecular wave functions. I. J Chem Phys 23:1833–1840ADSCrossRefGoogle Scholar
  62. Nickel EH (1995) The definition of a mineral. Can Miner 33:689–690Google Scholar
  63. Onida G, Reining L, Rubio A (2002) Electronic excitations: density-functional versus many-body Green’s-function approaches. Rev Mod Phys 74:601–659ADSCrossRefGoogle Scholar
  64. Payne MC, Teter MP, Allan DC, Arias TA, Joannopoulos JD (1992) Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Rev Mod Phys 64:1045–1097ADSCrossRefGoogle Scholar
  65. Placzek G (1934) Rayleigh-Streuung und Raman-Effekt. In: Marx G (ed) Handbuch der Radiologie, vol 6. Akademische, Frankfurt-Main, pp 205–374Google Scholar
  66. Prosandeev SA, Waghmare U, Levin I, Maslar J (2005) First-order Raman spectra of AB′1/2B″1/2O3 double perovskites. Phys Rev B 71:214–307CrossRefGoogle Scholar
  67. Pruzan Ph, Chervin JC, Wolanin E, Canny B, Gauthier M, Hanfland M (2003) Phase diagram of ice in the VII–VIII–X domain. Vibrational and structural data for strongly compressed ice VIII. J Raman Spectrosc 34:591–591ADSCrossRefGoogle Scholar
  68. Runge E, Gross EKU (1984) Density-functional theory for time-dependent systems. Phys Rev Lett 52:997–1000ADSCrossRefGoogle Scholar
  69. Scandolo S, Giannozzi P, Cavazzoni C, de Gironcoli S, Pasquarello A, Baroni S (2005) First-principles codes for computational crystallography in the Quantum-ESPRESSO package. Zeitschrift für Kristallographie 220:574–579, http//www.pwscf.org ADSCrossRefGoogle Scholar
  70. Schwegler E, Sharma M, Gygi F, Galli G (2008) Melting of ice under pressure. Proc Nat Acad Sci USA 105:14779–14783ADSCrossRefGoogle Scholar
  71. Silvestrelli PL (2009) van der Waals interactions in density functional theory using Wannier functions. J Phys Chem A 113:5224–5234CrossRefGoogle Scholar
  72. Tassini L, Gorelli F, Ulivi F (2005) High temperature structures and orientational disorder in compressed solid nitrogen. J Chem Phys 122:074701ADSCrossRefGoogle Scholar
  73. Teter M (1993) Additional condition for transferability in pseudopotentials. Phys Rev B 48:5031–5041ADSCrossRefGoogle Scholar
  74. Troullier N, Martins JL (1991) Efficient pseudopotentials for plane-wave calculations. Phys Rev B 43:1993–2006ADSCrossRefGoogle Scholar
  75. Vega C, Conde MM, McBride C, Abascal JLF, Noya EG, Ramirez R, Sesé LM (2010) Heat capacity of water: a signature of nuclear quantum effects. J Chem Phys 132:046101ADSCrossRefGoogle Scholar
  76. Veithen M, Gonze X, Ghosez Ph (2005) Non-linear optical susceptibilities, Raman efficiencies and electrooptic tensors from first-principles density functional perturbation theory. Phys Rev B71:125107ADSGoogle Scholar
  77. Wang Z, Zhao Y, Zha CS, Xue Q, Downs RT, Duan RG, Caracas R, Liao X (2008) X-Ray induced synthesis of 8 H diamond. Adv Mater 20:3303–3307CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Centre National de la Recherche Scientifique, Laboratoire de Sciences de la TerreEcole Normale Supérieure de LyonLyon cedex 07France

Personalised recommendations