Advertisement

Cometary Ices

  • Carey Lisse
  • Akiva Bar-Nun
  • Diana Laufer
  • Michael Belton
  • Walter Harris
  • Henry Hsieh
  • David Jewitt
Chapter
Part of the Astrophysics and Space Science Library book series (ASSL, volume 356)

Abstract

The purpose of this chapter is to survey the empirical situation of cometary ices, as they are known today – their location in the solar system, the discernable nature of the ices from remote sensing measurements, and the important physico-chemical properties of the ice known from previous laboratory studies. We then attempt to synthesize this phenomenological data into a framework for recognizing the most important unresolved issues in understanding the behavior of low temperature, porous, mixed amorphous/crystalline and radiation damaged ices together with their ability to trap gases and release them upon warming – with the hope of launching new, important laboratory studies of cometary ice analogues.

For an excellent earlier review discussing physico-chemical models of the origin of cometary ices in the ISM, dense cloud cores, and the proto-solar nebula, we suggest the reader examine Ehrenfreund et al. (2002).

Keywords

Solar System Thermal Inertia Cometary Nucleus Protoplanetary Disk Deep Impact 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. A’Hearn M et al (1995) The ensemble properties of comets: results from narrowband photometry of 85 comets, 1976–1992. Icarus 118:223–270ADSGoogle Scholar
  2. A’Hearn MF et al (2005) Deep impact: excavating comet Tempel 1. Science 310:258–264ADSGoogle Scholar
  3. A’Hearn MF, Combi MR (2007) Deep impact at comet Tempel 1. Icarus 187:1–3Google Scholar
  4. Bar-Nun A, Kleinfeld I (1989) On the temperature and gas composition in the region of comet formation. Icarus 80:243–253ADSGoogle Scholar
  5. Bar-Nun A, Laufer D (2003) First experimental studies of large samples of gas-laden amorphous “Cometary” ices. Icarus 161:157–163ADSGoogle Scholar
  6. Bar-Nun A, Dror J, Kochavi E, Laufer D (1987) Amorphous water ice and its ability to trap gases’. Phys Rev B 35:2427–2435ADSGoogle Scholar
  7. Bar-Nun A, Pat-El I, Laufer D (2007) Comparison between the findings of deep impact and experimental results on large samples of gas-laden amorphous ice. Icarus 187:321–325ADSGoogle Scholar
  8. Bar-Nun A, Pálsson F, Björnsson H (2008) Formation of smooth terrain on comet Tempel 1. Icarus 197:164–168ADSGoogle Scholar
  9. Barucci MA, Doressoundiram A, Fulchignoni M, Florczak M, Lazzarin M, Angeli C, Lazzaro D (1998) Search for aqueously altered materials on asteroids. Icarus 132:388–396ADSGoogle Scholar
  10. Basilevsky AT, Keller HU (2007) Craters, smooth terrains, flows, and layering on the comet nuclei. Sol Syst Res 41:109–117ADSGoogle Scholar
  11. Belton MJS, Melosh HJ (2009) Fluidization and multiphase transport of particulate cometary material as an explanation of the smooth terrains and repetitive outbursts on 9P/Tempel 1. Icarus 200:280–291ADSGoogle Scholar
  12. Belton MJS, Thomas P, Veverka J, Schultz P, A’Hearn MF, Feaga L, Farnham T, Groussin O, Li J-Y, Lisse C, McFadden L, Sunshine J, Meech KJ, Delamere WA, Kissel J (2007) The internal structure of Jupiter family cometary nuclei from deep impact observations: the “talps” or “Layered Pile” model. Icarus 187:332–344ADSGoogle Scholar
  13. Belton MJS, Feldman P, A’Hearn MF, Carcich B (2008) Cometary Cryo-volcanism: source regions and a model for the UT 2005 June 14 and other mini-outbursts on comet 9P/Tempel 1. Icarus 198:189–207ADSGoogle Scholar
  14. Biver N, Bockelée-Morvan D, Colom P, Crovisier J, Germain B, Lellouch E, Davies, JK, Dent WRF, Moreno R, Paubert G, Wink J, Despois D, Lis DC, Mehringer D, Benford D, Gardner M, Phillips, TG, Gunnarsson M, Rickman H, Winnberg A, Bergman P, Johansson LEB, Rauer H (1997) Long-term evolution of the outgassing of comet Hale-Bopp from radio observations. Earth Moon Planet 78:5–11ADSGoogle Scholar
  15. Biver N et al (2002) The 1995 2002 long-term monitoring of comet C/1995 O1 (HALE BOPP) at radio. Earth Moon Planet 90(1):5–14ADSGoogle Scholar
  16. Biver N, Bockelée-Morvan D, Boissier J, Crovisier J, Colom P, Lecacheux A, Moreno R, Paubert G, Lis DC, Sumner M, Frisk U, Hjalmarson Å, Olberg M, Winnberg A, Florén HG, Sandqvist A, Kwok S (2007) Radio observations of comet 9P/Tempel 1 before and after deep impact. Icarus 187:253–271ADSGoogle Scholar
  17. Boehnhardt H (2004) Split Comets. In: Festou M, Keller HU, Weaver HA (eds) Comets II. University of Arizona Press, Tucson, pp 301–316Google Scholar
  18. Britt DT, Boice DC, Buratti BJ, Campins H, Nelson RM, Oberst J, Sandel BR, Stern SA, Soderblom LA, Thomas N (2004) The morphology and surface processes of comet 19P/Borrelly. Icarus 167:45–53ADSGoogle Scholar
  19. Burbine TH (1998) Could G-class asteroids be the parent bodies of the CM chondrites? Meteor Planet Sci 33:253ADSGoogle Scholar
  20. Campins H et al (2010) Water ice and organics on the surface of the asteroid 24 themis. Nature 464:1320–1321ADSGoogle Scholar
  21. Chen J, Jewitt D (1994) On the rate at which comets split. Icarus 108:265–271ADSGoogle Scholar
  22. Chiang EI, And Brown ME (2001) Keck pencil-beam survey for faint kuiper belt. Astron J 118:1411–1422ADSGoogle Scholar
  23. Ciesla FJ, Cuzzi JN (2006) The evolution of the water distribution in a viscous protoplanetary disk. Icarus 181:178ADSGoogle Scholar
  24. Cochran AL, Jackson WM, Meech KJ, Glaz M (2007) Observations of comet 9P/Tempel 1 with the keck 1 HIRES instrument during deep impact. Icarus 187:156–166ADSGoogle Scholar
  25. Cook JC, Desch SJ, Roush TL, Trujillo CA, Geballe TR (2007) Near-infrared spectroscopy of Charon: possible evidence for Cryovolcanism on Kuiper Belt objects. Astrophys J 663:1406–1419ADSGoogle Scholar
  26. Davidsson BJR, Gutiérrez P, Rickman H (2009) Physical properties of morphological units on comet 9P/Tempel derived from near-IR deep impact spectra. Icarus 201:335–357ADSGoogle Scholar
  27. Davies JK et al (1997) The detection of water ice in comet Hale–Bopp. Icarus 127:238–245ADSGoogle Scholar
  28. Dones L et al (2004) Oort cloud formation and dynamics. In: Festou MC, Keller HU, Weaver HA (eds) Comets II. University Of Arizona Press, Tucson, p 745Google Scholar
  29. Ehrenfreund P, Rodgers SD, And Charnley SB (2002) Physico-chemistry of comets: models and laboratory experiments. Earth Moon Planet 89:221–246ADSGoogle Scholar
  30. Fanale FP, Salvail JR (1984) An idealized short-period comet model – surface insolation, H2O flux, dust flux, and mantle evolution. Icarus 82:97ADSGoogle Scholar
  31. Farnham TL, Wellnitz DD, Hampton DL, Li J-Y, Sunshine J, Groussin O, McFadden LA, Crockett CJ, A’Hearn MF, Belton MJS, Schultz P, Lisse CM (2007) Dust coma morphology in the deep impact images of comet 9P/Tempel 1. Icarus 187:26–40ADSGoogle Scholar
  32. Feierberg MA, Lebofsky LA, Tholen DJ (1985) The nature of C-class asteroids from 3-μm spectrophotometry. Icarus 63:183ADSGoogle Scholar
  33. Feldman PD, McCandliss SR, Route M, Weaver HA, A’Hearn MF, Belton MJS, Meech KJ (2007) Hubble space telescope observations of comet 9P/Tempel1 during the deep impact encounter. Icarus 187:113–122ADSGoogle Scholar
  34. Feldman P, McCandliss SR, Morgenthaler JP, Lisse CM, Weaver HA, AHearn MF (2010) GALEX observations of CS and OH emission in comet 9P/Tempel 1 during deep impact. Icarus (submitted Dec 2009)Google Scholar
  35. Fernández JA (2007) Origin of comet nuclei and dynamics. Sp Sci Rev 138:27–42Google Scholar
  36. Fernandez YR, et al. (2010) Centaurs and small irregular TNOs, NASA 2010 Decadal Survey WhitepaperGoogle Scholar
  37. Francis PJ (2005) The demographics of long-period comets. Astrophys J 635:1348–1361ADSGoogle Scholar
  38. Gidaspow D (1994) Multiphase flow and fluidization. Academic, San DiegoMATHGoogle Scholar
  39. Gougen JD, Thomas PC, Veverka JF (2008) Flows on the nucleus of comet Tempel 1. In: Proceedings of the lunar and planetary sciences conference 39, abstract #1969, HoustonGoogle Scholar
  40. Grimm RE, McSween HY Jr (1989) Water and the thermal evolution of carbonaceous chondrite parent bodies. Icarus 82:244–280ADSGoogle Scholar
  41. Groussin O, A’Hearn MF, Li J-Y, Thomas PC, Sunshine JM, Lisse CM, Meech KJ, Farnham TL, Feaga LM, Delamere WA (2007) Surface temperature of the nucleus of comet 9P/Tempel 1. Icarus 187:16–25ADSGoogle Scholar
  42. Grün E, Gebhard J, Bar-Nun A, Benkhoff J, Dueren H, Eich G, Hische R, Huebner WF, Keller HU, Klees G (1993) Development of a dust mantle on the surface of an insolated ice–dust mixture – results from the KOSI-9 experiment. J Geophys Res 98:15091–15104ADSGoogle Scholar
  43. Grundy WM, Buie MW, Stansberry JA, Spencer JR, Schmitt B (1999) Near-infrared spectra of icy outer solar system surfaces: remote determination of H2O ice temperatures. Icarus 142:536–549ADSGoogle Scholar
  44. Gurnett DA, Ansher JA, Kurth WS, Granroth LJ (1997) Micron-sized dust particles detected in the outer solar system by the Voyager 1 snd 2 plasma wave instruments. Geophys Res Lett 24:3125–3128ADSGoogle Scholar
  45. Haghighipour N (2009) Dynamical constraints on the origin of main belt comets. Meteor Planet Sci 44(12):1863–1869, arXiv:0910.5746ADSGoogle Scholar
  46. Hahn JM, Malhotra R (1999) Orbital evolution of planets embedded in a massive planetesimal disk. Astron J 117:3041–3053ADSGoogle Scholar
  47. Hansen GB, McCord TB (2004) Amorphous and crystalline ice on the Galilean Satellites: a balance between thermal and radiolytic processes. J Geophys Res 109:E01012Google Scholar
  48. Hiroi T, Zolensky ME, Pieters CM, Lipschutz ME (1996) Thermal metamorphism of the C, G, B, and F asteroids seen from the 0.7-μm, 3-μm, and UV absorption strengths in comparison with carbonaceous chondrites. Meteor Planet Sci 31:321–327ADSGoogle Scholar
  49. Holt JW et al (2008) Radar sounding evidence for buried glaciers in the southern mid-latitudes of Mars. Science 322:1235–1238ADSGoogle Scholar
  50. Hsieh HH, Jewitt D (2006) A population of comets in the main asteroid belt. Science 312:561–563ADSGoogle Scholar
  51. Hsieh HH, Jewitt DC, Fernández YR (2004) The strange case of 133P/Elst- Pizarro: a comet amongst the asteroids. Astron J 127:2997–3017ADSGoogle Scholar
  52. Hsieh HH, Jewitt D, Ishiguro M (2009) Physical properties of main-belt comet P/2005 U1 (Read). Astron J 137:157–168ADSGoogle Scholar
  53. Hughes DW (1991) Possible mechanisms for cometary outbursts. In: Newburn RL Jr, Neugebauer M, Rahe J (eds) Comets in the post-halley era, vol 2. Kluwer, DordrechtGoogle Scholar
  54. Jenniskens P, Blake DF (1994) Structural transitions in amorphous water ice and astrophysical implications. Science 265:753–756ADSGoogle Scholar
  55. Jewitt DC (1990) The persistent coma of comet 29P/Schwassmann-Wachmann 1. Astron J 351:277–286ADSGoogle Scholar
  56. Jewitt DC (2009) The active centaurs. Astron J 137:4296–4312ADSGoogle Scholar
  57. Jewitt DC, Haghighipour N (2007) Irregular satellites of the planets: products of capture in the early solar system. Annu Rev Astron Astrophys 45:261–295ADSGoogle Scholar
  58. Jewitt DC, Luu J (2004) Crystalline water ice in Kuiper Belt object (50000) Quaoar. Nature 432:731–733ADSGoogle Scholar
  59. Jewitt DC, Yang B, Haghighipour N (2009) Main-belt comet P/2008 R1 (Garradd). Astron J 137:4313–4321ADSGoogle Scholar
  60. Jewitt DC et al (2010) A recent disruption of the main-belt asteroid P/2010A2. Nature 467:817–819ADSGoogle Scholar
  61. Jones TD, Lebofsky LA, Lewis JS, Marley MS (1990) The composition and the origin of the C, P, and D asteroids: water as a tracer of thermal evolution in the outer belt. Icarus 88:172–192ADSGoogle Scholar
  62. Kawakita H et al (2001) The spin temperature of NH3 in comet C/1999 S4 (LINEAR). Science 294:1089ADSGoogle Scholar
  63. Kawakita H et al (2002) Spin temperature of ammonia determined from NH2 in comet C/2001 A2 (LINEAR). Earth Moon Planet 90:371MathSciNetADSGoogle Scholar
  64. Kawakita H, Watanabe JI, Furusho R, Fuse T, Capria MT, DeSanctis MC, Cremonese G (2004) Spin temperatures of ammonia and water molecules in comets. Astrophys J 601:1152–1158ADSGoogle Scholar
  65. Keil K (2000) Thermal alteration of asteroids: evidence from meteorites. Planet Space Sci 48:887ADSGoogle Scholar
  66. Kelly MLU (1999) Thermal properties of airless planetary regoliths. Ph.D. thesis, University of Colorado, Boulder. Source DAI-B 60/07, 118 ppGoogle Scholar
  67. Kölzer G, Grün E, Kochan H, Lämmerzahl P, Thiel K (1995) Dust particle emission dynamics from insolated ice/dust mixtures: results from KOSI 5 experiment. Planet Space Sci 43:391–407ADSGoogle Scholar
  68. Kossacki KJ, Komle NI, Leliwa-Kopystynski J, Kargl G (1997) Laboratory investigation of the evolution of cometary analogs: results and interpretation. Icarus 128:127–144ADSGoogle Scholar
  69. Kouchi A, Sirono S (2001) Crystallization heat of impure amorphous H2O ice. Geophys Res Lett 28(5):827–830ADSGoogle Scholar
  70. Lara LM, Boehnhardt H, Gredel R, Gutiérrez PJ, Ortiz JL, Rodrigo R, Vidal-Nuñez MJ (2006) Pre-impact monitoring of comet 9P/Tempel 1, the deep impact target. Astron Astropys 445:1151–1157ADSGoogle Scholar
  71. Laufer D, Kochavi E, Bar-Nun A (1987) Structure and dynamics of amorphous water ice. Phys Rev B 36:9219–9227ADSGoogle Scholar
  72. Laufer D, Pat-El I, Bar-Nun A (2005) Experimental simulation of the formation of non-circular active depressions on comet wild-2 and of ice grain ejection from cometary surfaces. Icarus 178:248–252ADSGoogle Scholar
  73. Lebofsky LA (1980) Infrared reflectance spectra of asteroids: a search for water of hydration. Astron J 85:573–585ADSGoogle Scholar
  74. Lebofsky LA, Feierberg MA, Tokunaga AT, Larson HP, Johnson JR (1981) The 1.7 to 4.2 μm spectrum of asteroid 1 ceres: evidence for structural water in clay minerals. Icarus 48:453–459ADSGoogle Scholar
  75. Lecar M, Podolak M, Sasselov D, Chiang E (2006) On the location of the snow line in a protoplanetary disk. Astrophys J 640:1115–1118ADSGoogle Scholar
  76. Lellouch E et al (1998) Evidence for water ice and estimate of dust production rate in comet Hale-Bopp At 2.9 AU from the sun. Astron Astrophys 339:L9–L12ADSGoogle Scholar
  77. Levison HFAnd, Morbidelli A (2003) The formation of the Kuiper Belt by the outward transport of bodies during Neptune’s migration. Nature 426:419–421ADSGoogle Scholar
  78. Licandro J et al (2011) (65) Cybele: detection of small silicate grains, water-ice, and organics. Astron Astrophys 525:A34ADSGoogle Scholar
  79. Lisse CM, A’Hearn MF, Groussin O, Fernandez YR, Belton MJ, van Cleve JE, Charmandaris V, Meech KJ, McGleam C (2005) Rotationally resolved 8–35 um spitzer space telescope observations of the nucleus of comet 9P/Tempel 1. Astrophys J Lett 625:L139–L142ADSGoogle Scholar
  80. Lisse CM, VanCleve J, Adams AC, A’Hearn MF, Fernández YR, Farnham TL, Armus L, Grillmair CJ, Ingalls J, Belton MJS, Groussin O, McFadden LA, Meech KJ, Schultz PH, Clark BC, Feaga LM, Sunshine JM (2006) Spitzer spectral observations of the deep impact ejecta. Science 313:635–640ADSGoogle Scholar
  81. Marboeuf U, Mousis O, Petit JM, Schmitt B (2010) Clathrate hydrates formation in short-period comets. Astrophys J 708:812–816ADSGoogle Scholar
  82. Mastrapa RME, Brown RH (2006) Ion irradiation of crystalline H2O ice: effect on the 1.65 micron band. Icarus 183:207–214ADSGoogle Scholar
  83. McCord TB, Sotin C (2005) Ceres: evolution and current state. J Geophys Res 110:5009Google Scholar
  84. Meech KJ, Pittichova J, Bar-Nun A, Notesco G, Laufer D, Hainaut OR, Lowry SC, Yeomans DK, Pitts M (2008) Activity of comets at large heliocentric distances pre-perihelion. Icarus 201:719–739ADSGoogle Scholar
  85. Melosh HJ (1989) Impact cratering: a geologic process, vol 11, Oxford monographs on geology and geophysics. Clarendon, OxfordGoogle Scholar
  86. Notesco G, Bar-Nun A (2005) A 25 K temperature of formation for the submicron ice grains which formed comets. Icarus 175:546–550ADSGoogle Scholar
  87. Owen TC (2007) Planetary atmospheres. Space Sci Rev 130:97–104ADSGoogle Scholar
  88. Patashnik H, Rupprecht G, Schuerman DW (1974) Energy sources for comet outbursts. Nature 250:313–314ADSGoogle Scholar
  89. Pat-El I, Laufer D, Notesco G, Bar-Nun A (2009) An experimental study of the thermal inertia of comet nuclei, formation of an ice crust and migration of water vapor in a comet’s upper layers. Icarus 201:406–411ADSGoogle Scholar
  90. Prialnik D, Bar-Nun A (1990) Gas release in comet nuclei. Astrophys J 363:274–282ADSGoogle Scholar
  91. Prialnik D, Podolak M (1999) Changes in the structure of cometary nuclei due to radioactive heating. Space Sci Rev 90:169–178ADSGoogle Scholar
  92. Prialnik D et al (2004) Modeling the structure and activity of comet nuclei. In: Festou M, Keller HU, Weaver HA (eds) Comets II. University of Arizona Press, Tucson, pp 359–387Google Scholar
  93. Richardson JE, Melosh HJ, Lisse CM, Carcich B (2007) A ballistics analysis of the deep impact ejecta plume: determining comet Tempel 1’s gravity, mass, and density. Icarus 190:357–390ADSGoogle Scholar
  94. Rivkin AS, Emery JP (2010) Detection of ice and organics on an asteroidal surface. Nature 464:1322–1323ADSGoogle Scholar
  95. Sasselov DD, Lecar M (2000) On the snow line in dusty protoplanetary disks. Astrophys J 528:995–998ADSGoogle Scholar
  96. Schmitt B, Espinasse S, Grim RJA, Greenberg JM, Klinger J (1989) Physics and mechanics of cometary materials, ESA SP-302, European Space Agency, Paris, p. 65Google Scholar
  97. Schörghofer N (2008) The lifetime of ice on main belt asteroids. Astrophys J 682:697–705ADSGoogle Scholar
  98. Schultz PH, Eberhardy CA, Ernst CM, Sunshine JM, A’Hearn MF, Lisse CM (2007) The deep impact oblique cratering experiment. Icarus 190:295–333ADSGoogle Scholar
  99. Scott ERD, Krot AN (2005) Thermal history of silicate dust in the solar nebula: clues from primitive chondrite matrices. Astrophys J 623:571–578ADSGoogle Scholar
  100. Scotti JV, McMillan RS, Jewitt D, Annis J, Soares-Santos M, Licandro J, Tozzi GP, Liimets T, Haver R, Buzzi L (2010a) P/2010 A2 [27338-2011/01-S2]. IAUC 9109:1Google Scholar
  101. Scotti JV, McMillan RS, Licandro J, Tozzi GP, Liimets T, Cabrera-Lavers A, Gomez G, Haver R, Caradossi A, Buzzi L (2010b) P/2010 A2 (LINEAR). CBET 2134:1Google Scholar
  102. Sears DWG, Kochan HW, And Huebner WF (1999) Invited review: laboratory simulation of the physical processes occurring on and near the surfaces of comet nuclei. Meteor Planet Sci 34:497–525ADSGoogle Scholar
  103. Sekanina Z (1982) The problem of split comets in review. In: Wilkening L (ed) Comets. The University of Arizona Press, Tucson, pp 251–287Google Scholar
  104. Sekanina Z (1997) The problem of split comets revisited. Astron J 318:L5–L8ADSGoogle Scholar
  105. Soderblom LA, Britt DT, Brown RH, Buratti BJ, Kirk RL, Owen TC, Yelle RV (2004) Short-wavelength infrared (1.3–2.6 μm) observations of the nucleus of comet 19P/Borrelly. Icarus 167:100–112ADSGoogle Scholar
  106. Stern SA, Weissman PR (2001) Rapid collisional evolution of comets during the formation of the Oort Cloud. Nature 409:589–591ADSGoogle Scholar
  107. StÖffler D, Gault DE, Wedekind J, Polkowski G (1975) Experimental hypervelocity impact into quartz sand: distribution and shock metamorphism of ejecta. J Geophys Res 80:4062–4077ADSGoogle Scholar
  108. Strazzulla G, Baratta GA, Johnson RE, Donn B (1991) Primordial comet mantle: irradiation production of a stable organic crust. Icarus 91:101–104ADSGoogle Scholar
  109. Sunshine JM et al (2006) Exposed water ice deposits on the surface of comet 9P/Tempel 1. Science 311:1453–1455ADSGoogle Scholar
  110. Sunshine JM, Groussin O, Schultz PH, A'Hearn MF, Feaga LM, Farnham TL, Klaasen KP (2007) The distribution of water ice in the interior of comet tempel 1. Icarus 190:284–294ADSGoogle Scholar
  111. Thomas PC, Veverka J, Belton MJS, Hidy A, A’Hearn MF, Farnham TL, Groussin O, Li J-Y, McFadden LA, Sunshine J, Wellnitz D, Lisse C, Schlutz P, Meech KJ, Delamere WA (2007) The shape, topography, and geology of Tempel 1 from deep impact observations. Icarus 187:4–15ADSGoogle Scholar
  112. Vernazza P, Mothé-Diniz T, Barucci MA, Birlan M, Carvano JM, Strazzulla G, Fulchignoni M, Migliorini A (2005) Analysis of near-IR spectra of 1 Ceres and 4 Vesta, targets of the Dawn mission. Astron Astrophys 436:1113ADSGoogle Scholar
  113. Vilas F, Jarvis KS, Gaffffey MJ (1994) Iron alteration minerals in the visible and near-infrared spectra of low-albedo asteroids. Icarus 109:274ADSGoogle Scholar
  114. Vitense Ch, Krivov AV, Löhne T (2010) The Edgeworth-Kuiper debris disk. Astron Astrophys 520:A32ADSGoogle Scholar
  115. Weaver HA (2004) Not a rubble pile. Science 304:1760–1762Google Scholar
  116. Weaver HA, Meech KJ et al. (2010) Comets, NASA 2010 Decadal survey whitepaperGoogle Scholar
  117. Weidenschilling SJ (2005) Formation of the cores of the outer planets. Space Sci Rev 116:53–66ADSGoogle Scholar
  118. Weissman PR, Asphaug E, Lowry SC (2004) Structure and density of cometary nuclei. In: Festou M, Keller HU, Weaver HA (eds) Comets II. University of Arizona Press, Tucson, pp 337–357Google Scholar
  119. Yeomans DK (1991) Comets, a chronological history of observation, science, myth, and folklore. Wiley, New YorkGoogle Scholar
  120. Zheng W, Jewitt DC, Kaiser RI (2009) On the state of water ice on Saturn’s moon Titan and implications to icy bodies in the outer solar system. J Phys Chem A 113:11174–11181Google Scholar
  121. Zolotov MY (2009) On the composition and differentiation of Ceres. Icarus 204:183ADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Carey Lisse
    • 1
  • Akiva Bar-Nun
    • 2
  • Diana Laufer
    • 2
  • Michael Belton
    • 3
  • Walter Harris
    • 4
  • Henry Hsieh
    • 5
  • David Jewitt
    • 6
  1. 1.Applied Physics LaboratoryJohns Hopkins UniversityBaltimoreUSA
  2. 2.Department of Geophysics and Planetary SciencesTel-Aviv UniversityTel-AvivIsrael
  3. 3.Belton Space Exploration Initiatives, LLCTucsonUSA
  4. 4.University of California at DavisDavisUSA
  5. 5.Queens UniversityBelfastUK
  6. 6.University of CaliforniaLos AngelesUSA

Personalised recommendations