Skip to main content

Hierarchical Reliability Assessment Models for Novel LED-Based Recessed Down Lighting Systems

  • Chapter
  • First Online:
Solid State Lighting Reliability

Part of the book series: Solid State Lighting Technology and Application Series ((SSLTA,volume 1))

  • 2748 Accesses

Abstract

This chapter describes development of hierarchical reliability assessment models for novel LED-based lighting systems. Much of the chapter is excerpted from references (Arik et al., IEEE Trans Compon Packag Tech 33:668–679, 2010; Song et al., IEEE Trans Compon Packag Tech 33:728–737, 2010; Song et al., Microelectron Reliab 2011) and technical details omitted in the chapter can be found in the references. After a brief introduction about the motivation of LED-based recessed down lighting systems, Sect. 18.2 is devoted to luminaire subcomponent development and the challenges to realize a high-lumen luminaire at an affordable cost. In Sect. 18.3, a hierarchical reliability prediction model to assess the lifetime of LED-based lighting systems is first described, and the model is subsequently implemented for the LED-based recessed down lighting system cooled by synthetic jets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vio white LEDs. http://www.lumination.com/product.php?id=56

  2. Solid-state lighting research and development. http://apps1.eere.energy.gov/buildings/publications/pdfs/ssl/sslmypp2009web.pdf

  3. http://www.newark.com/pdfs/datasheets/Lumileds/LUXEONIII_STAR.pdf

  4. Gardner NF et al (2007) Blue-emitting InGaN-GaN double-heterostructure light-emitting diodes reaching maximum quantum efficiency above 200 A/cm(2). Appl Phys Lett 91

    Google Scholar 

  5. http://www.cree.com/index.asp

  6. Nichia Corporation. http://www.nichia.com/

  7. Hofler GE et al (1996) Wafer bonding of 50-mm diameter GaP to AlGaInP-GaP light-emitting diode wafers. Appl Phys Lett 69:803–805

    Article  Google Scholar 

  8. Arik M, Setlur A (2010) Environmental and economical impact of LED lighting systems and effect of thermal management. Int J Energ Res 34:1195–1204

    Article  Google Scholar 

  9. Arik M et al (2007) Chip to system levels thermal needs and alternative thermal technologies for high brightness LEDS. J Electronic Packag 129:328–338

    Article  Google Scholar 

  10. Energy efficiency and renewable energy. http://www1.eere.energy.gov/buildings/ssl/comparinglights.html

  11. Kückmann O (2006) High-power LED arrays, special requirements on packing technology. Proc SPIE 6134:613404

    Article  Google Scholar 

  12. Liu TLS, Luo X, Chen M, Jiang X (2006) A microjet array cooling system for thermal management of active radars and high-brightness LEDs. In: Proceedings electronic component technology conference, pp 1634–1638

    Google Scholar 

  13. Arik M (2007) An investigation into feasibility of impingement heat transfer and acoustic abatement of meso scale synthetic jets. Appl Thermal Eng 27:1483–1494

    Article  Google Scholar 

  14. Garg J et al (2005) Advanced localized air cooling with synthetic jets. ASME J Electron Packag 127:503–511

    Article  Google Scholar 

  15. Arik YUM, Ozmusul M (2008) Effect of synthetic jets over a natural convection heat sink. Proc ASME IMECE, p 68784

    Google Scholar 

  16. Arik M et al (2010) Development of a high lumen solid state down light application. IEEE Trans Compon Packag Tech 33:668–679

    Article  Google Scholar 

  17. Cree EZ1000 LEDs datasheet. http://www.cree.com/products/pdf/CPR3CR.pdf

  18. Erickson RW, Maksimovic D (2001) Fundamentals of power electronics, 2nd edn. Kluwer, Norwell, MA

    Google Scholar 

  19. Mohan N et al (1989) Power electronics, converters, applications, and design. Wiley, New York

    Google Scholar 

  20. Song BM et al (2010) Hierarchical life prediction model for actively cooled LED-based luminaire. IEEE Trans Compon Packag Tech 33:728–737

    Article  Google Scholar 

  21. Ishizaki S et al (2007) Lifetime estimation of high power white LEDs. J Light Vis Environ 31:11–18

    Article  Google Scholar 

  22. Meneghesso G et al (2010) Recent results on the degradation of white LEDs for lighting. J Phys D: Appl Phys 43:354007

    Article  Google Scholar 

  23. Deshayes Y et al (2005) Long-term reliability prediction of 935 nm LEDs using failure laws and low acceleration factor ageing tests. Qual Reliab Eng Int 21:24

    Article  Google Scholar 

  24. Narendran N et al (2004) Solid-state lighting: failure analysis of white LEDs. J Cryst Growth 268:449–456

    Article  Google Scholar 

  25. Gu Y et al (2004) White LED performance. Presented at the 4th international conference on solid state lighting, 2004

    Google Scholar 

  26. Han L, Narendran N (2009) Developing an accelerated life test method for LED drivers. Presented at the 9th international conference on solid state lighting, San Diego, 2009

    Google Scholar 

  27. Nader G et al (2004) Effective damping value of piezoelectric transducer determined by experimental techniques and numerical analysis. ABCM Symp Ser Mechatronics 1:271–279

    Google Scholar 

  28. Bao MH, Yang H (2007) Squeeze film air damping in MEMS. Sens Actuators A Phys 136:3–27

    Article  Google Scholar 

  29. Rao SS (1995) Mechanical vibrations, 3rd edn. Addison-Wesley, New York

    Google Scholar 

  30. Wise J et al (1995) An ultrasensitive technique for testing the arrhenius extrapolation assumption for thermally aged elastomers. Polymer Degrad Stabil 49:403–418

    Article  Google Scholar 

  31. Song B-M et al (2012) Life prediction of LED-based recess downlight cooled by synthetic jet. Microelectron Reliab 52(1):937–948

    Google Scholar 

  32. Chen WP et al (2003) Degradation in lead zirconate titanate piezoelectric ceramics by high power resonant driving. Mater Sci Eng 99:203–206

    Article  Google Scholar 

  33. Tai W-P, Kim S-H (1996) Relationship between cyclic loading and degradation of piezoelectric properties in Pb(Zr, Ti)O3 ceramics. Mater Sci Eng B38:182–185

    Article  Google Scholar 

  34. Stevens JL et al (2002) The service life of large aluminum electrolytic capacitors: effects of construction and application. IEEE Trans Ind Appl 38:1441–1446

    Article  Google Scholar 

  35. Harada K et al (1993) Use of ESR for deterioration diagnosis of electrolytic capacitor. IEEE Trans Power Electron 8:355–361

    Article  Google Scholar 

  36. Lahyani A et al (1998) Failure prediction of electrolytic capacitors during operation of a switchmode power supply. IEEE Trans Power Electron 13:1199–1207

    Article  Google Scholar 

  37. Sankaran VA et al (1997) Electrolytic capacitor life testing and prediction. Presented at the IEEE industry applications society annual meeting, New Orleans, Louisiana, 1997

    Google Scholar 

  38. Cree® XLamp® XR-E LED data sheet [Online]

    Google Scholar 

  39. Application guidelines for aluminum electrolytic capacitors [Online]

    Google Scholar 

  40. Pabjanczyk W et al (2009) Influence of ambient temperature on LED luminaires. Przeglad Elektrotechniczny 85:320–323

    Google Scholar 

  41. Subcommittee on Solid State Lighting of the IESNA Testing Procedures Committee (2008) Approved method: measuring lumen maintenance of LED light sources, LM-80-08. New York: Illuminating Engineering Society of North America

    Google Scholar 

  42. Huang BJ et al (2009) A PWM constant average current driving technique for solar LED lighting systems. J Chin Soc Mech Eng 30:455–465

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bongtae Han .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Han, B., Song, BM., Arik, M. (2013). Hierarchical Reliability Assessment Models for Novel LED-Based Recessed Down Lighting Systems. In: van Driel, W., Fan, X. (eds) Solid State Lighting Reliability. Solid State Lighting Technology and Application Series, vol 1. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3067-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-3067-4_18

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-3066-7

  • Online ISBN: 978-1-4614-3067-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics