Advertisement

Emergent Action Language on Real Robots

  • Luc Steels
  • Michael Spranger
  • Remi van Trijp
  • Sebastian Höfer
  • Manfred Hild
Chapter

Abstract

Almost all languages in the world have a way to formulate commands. Commands specify actions that the body should undertake (such as “stand up”), possibly involving other objects in the scene (such as “pick up the red block”). Action language involves various competences, in particular (i) the ability to perform an action and recognize which action has been performed by others (the so-called mirror problem), and (ii) the ability to identify which objects are to participate in the action (e.g. “the red block” in “pick up the red block”) and understand what role objects play, for example whether it is the agent or undergoer of the action, or the patient or target (as in “put the red block on top of the green one”). This chapter describes evolutionary language game experiments exploring how these competences originate, can be carried out and acquired, by real robots, using evolutionary language games and a whole systems approach.

Key words

language acquisition action language mirror systems case grammar 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beuls K, van Trijp R, Wellens P (2012) Diagnostics and Repairs in Fluid Construction Grammar. In: Steels L, Hild M (eds) Language Grounding in Robots, Springer, New YorkGoogle Scholar
  2. Feldman J, Narayanan S (2004) Embodied meaning in a neural theory of language. Brain and Language 89:385–392 Fillmore C (1968) The case for case. In: Bach E, Harms R (eds) Universals in Linguistic Theory, Holt, Rinehart and Winston, New YorkGoogle Scholar
  3. Fujita M, Kuroki Y, Ishida T (2003) A small humanoid robot sdr-4x for entertainment applications. In: Advanced Intelligent Mechatronics, 2003. AIM 2003. Proceedings. 2003 IEEE/ASME International Conference on, vol 2, pp 938–943Google Scholar
  4. Gerasymova K, Spranger M (2012) Learning Temporal Language: a Case Study for Russian Aspect. In: Steels L, Hild M (eds) Language Grounding in Robots, Springer, New YorkGoogle Scholar
  5. Gibson J (1979) The Ecological Approach to Visual Perception. Houghton Mifflin, BostonGoogle Scholar
  6. Haspelmath M (2003) The geometry of grammatical meaning: Semantic maps andGoogle Scholar
  7. cross-linguistic comparison. In: Tomasello M (ed) The New Psychology of Language, vol 2, Lawrence Erlbaum, Mahwah, New Jersey, pp 211–242Google Scholar
  8. Hild M, Siedel T, Benckendorff C, Thiele C, Spranger M (2012) Myon, a New Humanoid. In: Steels L, Hild M (eds) Language Grounding in Robots, Springer, New YorkGoogle Scholar
  9. Hofer S, Spranger M, Hild M (2012) Posture Recognition Based on Slow Feature Analysis. In: Steels L, Hild M (eds) Language Grounding in Robots, Springer, New YorkGoogle Scholar
  10. Oudeyer PY, Kaplan F, Hafner V (2007) Intrinsic motivation systems for autonomous mental development. IEEE Transactions on Evolutionary Computation 11(2):265–286CrossRefGoogle Scholar
  11. Pasemann F, Rempis C, von Twickel A (2012) Evolving Humanoid Behaviours for Language Games. In: Steels L, Hild M (eds) Language Grounding in Robots, Springer, New YorkGoogle Scholar
  12. Rizzolatti G, Craighero L (2004) The mirror-neuron system. Annual Review Neuroscience 27:169–192CrossRefGoogle Scholar
  13. Schilling M (2012) Grounded internal body models. In: Steels L, Hild M (eds) Language Grounding in Robots, John Benjamins Pub, AmsterdamGoogle Scholar
  14. Spranger M, Pauw S, Loetzsch M, Steels L (2012) Open-ended Procedural Semantics. In: Steels L, Hild M (eds) Language Grounding in Robots, Springer, New YorkGoogle Scholar
  15. Steels L (2003) Language re-entrance and the ‘inner voice’. Journal of Consciousness Studies 10(4-5):173–185Google Scholar
  16. Steels L (2012) Grounding Language through Evolutionary Language Games. In: Steels L, Hild M (eds) Language Grounding in Robots, Springer, New YorkGoogle Scholar
  17. Steels L, Spranger M (2008a) Can body language shape body image? In: Bullock S, Noble J, Watson R, Bedau MA (eds) Artificial Life XI, The MIT Press, Cambridge MaGoogle Scholar
  18. Steels L, Spranger M (2008b) The robot in the mirror. Connection Science 20(4):337–358CrossRefGoogle Scholar
  19. Steels L, Spranger M (2012) Emergent mirror systems for body language. In: Steels L (ed) Experiments in Cultural Language Evolution, John Benjamins, Amsterdam Steels L, De Beule J, Wellens P (2012) Fluid Construction Grammar on Real Robots. In: Steels L, Hild M (eds) Language Grounding in Robots, Springer, New York Talmy L (1988) Force dynamics in language and cognition. Cognitive Science 12:49 100Google Scholar
  20. van Trijp R (2012) The evolution of case systems for marking event structure. In: Steels L (ed) Experiments in Cultural Language Evolution, John Benjamins, AmsterdamGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Luc Steels
    • 1
    • 3
  • Michael Spranger
    • 2
  • Remi van Trijp
    • 1
  • Sebastian Höfer
    • 5
  • Manfred Hild
    • 1
    • 4
  1. 1.Sony Computer Science Laboratory ParisParisFrance
  2. 2.Systems Technologies LaboratoriesSony CorporationTokyoJapan
  3. 3.ICREA Institute for Evolutionary Biology (UPF-CSIC)BarcelonaSpain
  4. 4.Neurorobotics Research LaboratoryHumboldt-Universität zu BerlinBerlinGermany
  5. 5.Robotics and Biology LaboratoryTechnische Universität BerlinBerlinGermany

Personalised recommendations