Advertisement

Disruptive Architectural Proposals and Performance Analysis

  • Pierre-Emmanuel Gaillardon
  • Ian O’Connor
  • Fabien Clermidy
Chapter

Abstract

In this chapter, we explore disruptive architecture proposals. In the previous chapter, we showed that it is possible to obtain very compact reconfigurable in-field computation cells. Since these cells require architectural modifications, we proposed an architecture for this compact logic, characterized by the association of a logic layer, to adapt the granularity and the use of fixed interconnection topologies to reduce the routing impact. To compare this approach with conventional FPGAs in an objective way, it was necessary to develop a specific toolflow suited to our requirements, able to describe the designed architecture. Based on the VTR toolflow, the tool integrates fixed topology routing and the specific organization of the layered architecture. Benchmarking simulations were performed. In a first approach, a local exploration of the proposed layer is done, in order to study the impact of the fixed interconnect topologies. We showed that the Modified Omega topology gives the best mapping rates on the structure with about 90% of mapping success for 6-node graphs. In a second approach, complete architectural benchmarking was conducted and we showed that the proposed architecture leads to an improvement, in area saving, of 46% in average, with respect to CMOS. We also discovered that the routing delay is less distributed and tends to be more controllable than in the traditional approach.

References

  1. 1.
    M. Lin, A. El Gamal, Y.-C. Lu, S. Wong, Performance benefits of monolithically stacked 3-D FPGA. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 26(2), 216–229 (2007)CrossRefGoogle Scholar
  2. 2.
    E. Ahmed, J. Rose, The effect of LUT and cluster size on deep-submicron FPGA performance and density. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 12(3), 288–298 (2004)Google Scholar
  3. 3.
    T. Ye, L. Benini, G. De Micheli, Packetization and routing analysis of on-chip multiprocessor networks. J. Syst. Architect. 50(2–3), 81–104 (2004)CrossRefGoogle Scholar
  4. 4.
    D.L. Lewis, S. Yalamanchili, H.-H. S. Lee, High performance non-blocking switch design in 3D die-stacking technology. In:Proceedings of the 2009 IEEE Computer Society Annual Symposium on VLSI, (2009), pp. 25–30Google Scholar
  5. 5.
    H. Mrabet, Z. Marrakchi, P. Souillot, H. Mehrez, Performances improvement of FPGA using novel multilevel hierarchical interconnection structure. In:International Conference on Computer-Aided Design (ICCAD’2006), November 2006, pp. 675–679Google Scholar
  6. 6.
    Z. Marrakchi, H. Mrabet, C. Masson, H. Mehrez, Performances comparison between multilevel hierarchical and mesh FPGA interconnects. Int. J. Electron. 95(3), 275–289 (2008)CrossRefGoogle Scholar
  7. 7.
    C.-L. Wu , T.-Y. Feng, On a class of multistage interconnection networks. IEEE Trans. Comp. 29(8), 694–702 (1980)Google Scholar
  8. 8.
    G.B. Adams, D.P. Agrawal, H.J. Siegel, A survey and comparison of fault-tolerant multistage interconnection networks. Computer 20(6), 14–27 (1987)CrossRefGoogle Scholar
  9. 9.
    Verilog-To-Routing (VTR) Project, http://www.eecg.utoronto.ca/vtr/
  10. 10.
    J. Luu, J. Anderson, J. Rose, Architecture description and packing for logic blocks with hierarchy, modes and complex interconnect. In:ACM/SIGDA 19th International Symposium on Field Programmable Gate Arrays, Monterey, 2011Google Scholar
  11. 11.
    J. Luu, I. Kuon, P. Jamieson, T. Campbell, A. Ye, M. Fang et al., VPRVPR 5.0: FPGA CAD and architecture exploration tools with single-driver routing, heterogeneity and process scaling. In:ACM Symposium on FPGAs, FPGA ‘09, February 2009, pp. 133–142Google Scholar
  12. 12.
    ODIN-II: Verilog synthesis tool, https://code.google.com/p/odin-ii/
  13. 13.
    ABC: Berkeley logic synthesis tool, http://www.eecs.berkeley.edu/~alanmi/abc/
  14. 14.
    M. De Marchi, M. H. Ben Jamaa, G. De Micheli, Regular fabric design with ambipolar CNTFETs for FPGA and structured ASIC applications. In:International Symposium on Nanoscale Architectures (NANOARCH), June 2010Google Scholar
  15. 15.
    S.C. Goldstein, M. Budiu, NanoFabrics: spatial computing using molecular electronics. 28th Annual International Symposium on Computer Architecture, (2001), pp.178–189Google Scholar
  16. 16.
    N.J. Macias, L.J.K. Durbeck, Adaptive methods for growing electronic circuits on an imperfect synthetic matrix. Biosystems 73(3), 173–204 (2004)CrossRefGoogle Scholar
  17. 17.
    M.H. Ben Jamaa, P.-E. Gaillardon, S. Frégonèse, M. De Marchi, G. De Micheli, T. Zimmer, I. O’Connor, F. Clermidy, FPGA design with double-gate carbon nanotube transistors. Electro Chem. Soc. Trans. 34(1), 495–501 (2011)Google Scholar
  18. 18.
    J. Birkner, A. Chan, H.T. Chua, A. Chao, K. Gordon, B. Kleinman et al., A very-high-speed field-programmable gate array using metal-to-metal antifuse programmable elements. Microelectron. J. 23(2), 561–568 (1992) Google Scholar
  19. 19.
    E.M. Sentovich, K.J. Singh, L. Lavagno, C. Moon, R. Murgai, A. Saldanha et al., SIS: a system for sequential circuit synthesis. Technical Report UCB/ERL M92/41, Electronics Research Lab, University of California, Berkeley, CA 94720, May 1992Google Scholar
  20. 20.
    DOT language—Graphviz tool,: http://www.graphviz.org/Documentation.php
  21. 21.
    A.S. Marquardt, V. Betz, J. Rose, Using cluster-based logic blocks and timing-driven packing to improve FPGA speed and density. In:ACM/SIGDA 7th International Symposium on Field Programmable Gate Arrays, (1999),pp.37–46Google Scholar
  22. 22.
    E. Bozorgzadeh, S. Memik, X. Yang, M. Sarrafzadeh, Routability-driven packing: metrics and algorithms for cluster-based FPGAs. J. Circuits Syst. Comp. 13, 77–100 (2004)CrossRefGoogle Scholar
  23. 23.
    A. Singh, G. Parthasarathy, M. Marek-Sadowksa, Efficient circult clustering for area and power reduction in FPGAs. ACM Trans. Des. Autom. Electron. Syst. 7(4), 643–663 (2002)CrossRefGoogle Scholar
  24. 24.
    D. Chen, K. Vorwerk, A. Kennings, Improving timing-driven FPGA packing with physical information.In: International Conference on Field Programmable Logic and Applications, (2007), pp. 117–123Google Scholar
  25. 25.
    G. Lemieux , D. Lewis, Design of Interconnection Networks for Programmable Logic (Kluwer Academic Publishers, New York, 2004)Google Scholar
  26. 26.
    J. Lin, D. Chen , J. Cong, Optimal simultaneous mapping and clustering for FPGA delay optimization. ACM/IEEE Design Automation Conference, (2006), pp. 472–477Google Scholar
  27. 27.
    A. Ling, J. Zhu, S. Brown, Scalable synthesis and clustering techniques using decision diagrams. IEEE Trans. CAD 27(3), 423 (2008)Google Scholar
  28. 28.
    K. Wang, M. Yang, L. Wang, X. Zhou, J. Tong, A novel packing algorithm for sparse crossbar FPGA architectures. In:International Conference on Solid-State and Integrated-Circuit Technology, (2008), pp. 2345–2348Google Scholar
  29. 29.
    V. Betz, J. Rose, A. Marquart, Architecture and CAD for Deep-Submicron FPGAs (Kluwer Academic Publishers, New York, 1999)Google Scholar
  30. 30.
    P. Lambin, A.A. Lucas, J.C. Charlier, Electronic properties of carbon nanotubes containing defects. J. Phys. Chem. Solids 58(11), 1833–1837 (1997)CrossRefGoogle Scholar
  31. 31.
    E.K. Vida-Torku, W. Reohr, J.A. Monzel, P. Nigh, Bipolar, CMOS and BiCMOS circuit technologies examined for testability. In:34th Midwest Symposium on Circuits and Systems, 14–17 May 1991, pp. 1015–1020Google Scholar
  32. 32.
    J.R. Heath, P.J. Kuekes, G.S. Snider, R.S. Williams, A defect-tolerant computer architecture: opportunities for nanotechnology. Sciencel 280(5370), 1716–1721 (1998)Google Scholar
  33. 33.
    BLIF circuit benchmarks,: http://cadlab.cs.edu/~kirill/
  34. 34.
    N. Yakymets, I. O’Connor, Matrice interconnectee de cellules logiques reconfigurables avec une topologie d’interconnexion croisee. Patent FR0958957, (2010)Google Scholar
  35. 35.
    N. Yakymets, K. Jabeur, I. O’Connor, S. Le Beux, Interconnect Topology for Cell Matrices Based on Low-Power Nanoscale Devices, Faible Tension Faible Consommation Marrakech, Morocco, May 30–June 1 (2011)Google Scholar
  36. 36.
    A. Lin, N. Patil, H. Wai, S. Mitra, H.-S.P. Wong, A metallic-CNT-tolerant carbon nanotube technology using asymmetrically-correlated CNTs (ACCNT). In:Symposium on VLSI Technology, 16–18 June 2009, pp.182–183Google Scholar
  37. 37.
    N. Patil, J. Deng, A. Lin, H.S.-P. Wong, S. Mitra, Design methods for misaligned and mis-positioned carbon-nanotube-immune circuits. IEEE Trans. Computer Aided Design 27(10), 1725–1726 (2008) Google Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Pierre-Emmanuel Gaillardon
    • 1
  • Ian O’Connor
    • 2
  • Fabien Clermidy
    • 3
  1. 1.INF 339 (Bâtiment INF)EPFL IC ISIM LSI1LausanneSwitzerland
  2. 2.Bâtiment F7INL, Site Ecole Centrale de LyonEcullyFrance
  3. 3.CEA-LETIMINATECGrenobleFrance

Personalised recommendations