Skip to main content

Trends in Cell Culture Technology

  • Chapter
New Technologies for Toxicity Testing

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 745))

Abstract

Dynamic macroscale bioreactor systems are the most recent breakthrough in cell culture technology. This major achievement, at the beginning of the 21st century, fortunately coincided with an embarrassing gap in the measures to predict the safety and modes of action of chemicals, cosmetics, air particles and pharmaceuticals. The major hurdles to the translation of these breakthrough achievements of cell culture technology into meaningful solutions for predictive high throughput substance testing remain miniaturization from the milliliter to the microliter scale and the supply of relevant amounts of standardized human tissue. This chapter provides insights into the latest developments in this area, illustrates an original multi-micro-organ bioreactor concept and identifies highways for closing the gap.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Clair EWS. The calm after the cytokine storm: lessons from the TGN1412 trial. J Clin Invest 2008; 118(4):1344–1347.

    Article  Google Scholar 

  2. Carrel A. On the permanent life of tissue outside of the organism. J Exp Medicine 1912; 15:516–528.

    Article  CAS  Google Scholar 

  3. Fell HB, Robison R. The growth, development and phosphatase activity of embryonic avian femora and limb buds cultivated in vitro. Biochem J 1929; 23:767–784.

    PubMed  CAS  Google Scholar 

  4. McLimans WF, Crouse EJ, Tunnah KV et al. Kinetics of gas diffusion in mammalian cell culture systems. Biotech Bioeng 1968; 10:725–740.

    Article  CAS  Google Scholar 

  5. Dexter TM, Lajtha LG. Proliferation of hemopoetic stem cells in vitro. J Haematol 1974; 28:525.

    Article  CAS  Google Scholar 

  6. Griffith LG, Swartz MA. Capturing complex 3D tissue physiology in vitro. Nat Rev Mol Cell Biol 2006; 7:211–224.

    Article  PubMed  CAS  Google Scholar 

  7. Gerlach JC, Encke J, Hole O et al. Hepatocyte culture between three dimensionally arranged biomatrix-coated independent artificial capillary systems and sinusoidal endothelial cell coculture compartments. Int J Artif Organs 1994; 17:301–306.

    PubMed  CAS  Google Scholar 

  8. Sauer IM, Zeilinger K, Obermayer N et al. Primary human liver cells as source for modular extracorporeal liver support—a preliminary report. Int J Artif Organs 2002; 25:1001–1005.

    PubMed  CAS  Google Scholar 

  9. Sauer IM, Kardassis D, Zeillinger K et al. Clinical extracorporeal hybrid liver support—phase I study with primary porcine liver cells. Xenotransplantation 2003; 10(5):460–9.

    Article  PubMed  CAS  Google Scholar 

  10. Sauer IM, Zeilinger K, Pless G et al. Extracorporeal liver support based on primary human liver cells and albumin dialysis—treatment of a patient with primary graft nonfunction. J Hepatol 2003; 39:649–653.

    Article  PubMed  Google Scholar 

  11. Powers MJ, Domansky K, Kaazempur-Mofrad MR et al. A microfabricated array bioreactor for perfused 3D liver culture. Biotechnol Bioeng 2002; 78(3):257–69.

    Article  PubMed  CAS  Google Scholar 

  12. Catapano G, Gerlach JC. Bioreactors for liver tissue engineering. Topics in Tissue Engineering 2007; 3:1–42.

    Google Scholar 

  13. Giese C, Demmler CD, Ammer R et al. A human lymph node in vitro—challenges and progress. Artif Organs 2006; 10:803–808.

    Article  Google Scholar 

  14. Pörtner R, Giese C. Overview on bioreactor design, prototyping and in process controls for reproducible three-dimensional tissue culture. In: Marx U, Sandig V, eds. Drug Testing In Vitro—Breakthroughs and Trends in Cell Culture Technology. Weinheim: Wiley-VCH, 2007:53–70.

    Google Scholar 

  15. Mertsching H, Walles T, Hofmann M et al. Engineering of a vascularized scaffold for artificial tissue and organ generation. Biomaterials 2005; 26(33):6610–6617.

    Article  PubMed  CAS  Google Scholar 

  16. Linke K, Schanz J, Hansmann J et al. Engineered liver-like tissue on a capillarized matrix for applied research. Tissue Eng 2007; 13(11):2699–2707.

    Article  PubMed  CAS  Google Scholar 

  17. Jones DL, Wagers AJ. No place like home: anatomy and function of the stem cell niche. Nat Rev Mol Cell Biol 2008; 9(1):11–21.

    Article  PubMed  CAS  Google Scholar 

  18. Kloepper JE, Tiede S, Brinckmann J et al. Immunophenotyping of the human bulge region: the quest to define useful in situ markers for human epithelial hair follicle stem cells and their niche. Exp Dermatol 2008; 17(7):592–609.

    Article  PubMed  Google Scholar 

  19. Walker MR, Stappenbeck TS. Deciphering the ‘black box’ of the intestinal stem cell niche: taking direction from other systems. Curr Opin Gastroenterol 2008; 24(2):115–120.

    Article  PubMed  Google Scholar 

  20. Kim CF. Paving the road for lung stem cell biology: bronchioalveolar stem cells and other putative distal lung stem cells. Am J Physiol Lung Cell Mol Physiol 2007; 293:1092–1098.

    Article  Google Scholar 

  21. Can A. Haematopoietic stem cells niches: interrelations between structure and function. Transfus Apher Sci 2008; 38(3):261–268.

    Article  PubMed  Google Scholar 

  22. Martinez-Agosto JA, Mikkola HK, Hartenstein V et al. The hematopoietic stem cell and its niche: a comparative view. Genes Dev 2007; 21(23):3044–3060.

    Article  PubMed  CAS  Google Scholar 

  23. Yin T, Li L. The stem cell niches in bone. J Clin Invest 2006; 116(5):1195–1201.

    Article  PubMed  CAS  Google Scholar 

  24. Riquelme PA, Drapeau E, Doetsch F. Brain micro-ecologies: neural stem cell niches in the adult mammalian brain. Philos Trans R Soc Lond B Biol Sci 2008; 12; 363(1489):123–137.

    Google Scholar 

  25. Kloss D, Kurz R, Jahnke HG et al. Microcavity array (MCA)-based biosensor chip for functional drug screening of 3D tissue models. Biosensors Bioelectron 2008; 23:1473–1480.

    Article  CAS  Google Scholar 

  26. Kobayashi A, Miyake H, Hattori H et al. In vitro formation of capillary networks using optical lithographic techniques. Biochem Biophys Res Commun 2007; 358(3):692–7.

    Article  PubMed  CAS  Google Scholar 

  27. Young EW, Wheeler AR, Simmons CA. Matrix-dependent adhesion of vascular and valvular endothelial cells in microfluidic channels. Lab Chip 2007; 7(12):1759–1766.

    Article  PubMed  CAS  Google Scholar 

  28. Barbulovic-Nad I, Yang H et al. Digital microfluidics for cell-based assays. Lab Chip 2008; 8:519–526.

    Article  PubMed  CAS  Google Scholar 

  29. Tanaka Y, Sato K, Shimizu T et al. Biological cells on microchips: new technologies and applications. Biosensors Bioelectron 2007; 23:449–458.

    Article  CAS  Google Scholar 

  30. Powers MJ, Janigian DM, Wack KE et al. Functional behavior of primary rat liver cells in a 3D perfused microarray bioreactor. Tissue Eng 2002; 8:499–513.

    Article  PubMed  Google Scholar 

  31. Sivaraman A, Leach JK, Townsend S et al. A microscale in vitro physiological model of the liver: predictive screens for drug metabolism and enzyme induction. Curr Drug Metab 2005; 6(6):569–591.

    Article  PubMed  CAS  Google Scholar 

  32. Schumacher K, Khong YM, Chang S et al. Perfusion culture improves the maintenance of cultured liver tissue slices. Tissue Eng 2007; 13(1):197–205.

    Article  PubMed  CAS  Google Scholar 

  33. Engel E, Michiardi A et al. Nanotechnology in regenerative medicine: the materials side. Trends Biotechnol 2007; 26(1):39–47.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Marx, U. (2012). Trends in Cell Culture Technology. In: Balls, M., Combes, R.D., Bhogal, N. (eds) New Technologies for Toxicity Testing. Advances in Experimental Medicine and Biology, vol 745. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3055-1_3

Download citation

Publish with us

Policies and ethics