Skip to main content

ECVAM and New Technologies for Toxicity Testing

  • Chapter
New Technologies for Toxicity Testing

Abstract

The development of alternative empirical (testing) and non-empirical (nontesting) methods to traditional toxicological tests for complex human health effects is a tremendous task. Toxicants may potentially interfere with a vast number of physiological mechanisms thereby causing disturbances on various levels of complexity of human physiology. Only a limited number of mechanisms relevant for toxicity (‘pathways’ of toxicity) have been identified with certainty so far and, presumably, many more mechanisms by which toxicants cause adverse effects remain to be identified. Recapitulating in empirical model systems (i.e., in vitro test systems) all those relevant physiological mechanisms prone to be disturbed by toxicants and relevant for causing the toxicity effect in question poses an enormous challenge. First, the mechanism(s) of action of toxicants in relation to the most relevant adverse effects of a specific human health endpoint need to be identified. Subsequently, these mechanisms need to be modeled in reductionist test systems that allow assessing whether an unknown substance may operate via a specific (array of) mechanism(s). Ideally, such test systems should be relevant for the species of interest, i.e., based on human cells or modeling mechanisms present in humans. Since much of our understanding about toxicity mechanisms is based on studies using animal model systems (i.e., experimental animals or animal-derived cells), designing test systems that model mechanisms relevant for the human situation may be limited by the lack of relevant information from basic research. New technologies from molecular biology and cell biology, as well as progress in tissue engineering, imaging techniques and automated testing platforms hold the promise to alleviate some of the traditional difficulties associated with improving toxicity testing for complex endpoints. Such new technologies are expected (1) to accelerate the identification of toxicity pathways with human relevance that need to be modeled in test methods for toxicity testing (2) to enable the reconstruction of reductionist test systems modeling at a reduced level of complexity the target system/organ of interest (e.g., through tissue engineering, use of human-derived cell lines and stem cells etc.), (3) to allow the measurement of specific mechanisms relevant for a given health endpoint in such test methods (e.g., through gene and protein expression, changes in metabolites, receptor activation, changes in neural activity etc.), (4) to allow to measure toxicity mechanisms at higher throughput rates through the use of automated testing. In this chapter, we discuss the potential impact of new technologies on the development, optimization and use of empirical testing methods, grouped according to important toxicological endpoints. We highlight, from an ECVAM perspective, the areas of topical toxicity, skin absorption, reproductive and developmental toxicity, carcinogenicity/genotoxicity, sensitization, hematopoeisis and toxicokinetics and discuss strategic developments including ECVAM’s database service on alternative methods. Neither the areas of toxicity discussed nor the highlighted new technologies represent comprehensive listings which would be an impossible endeavor in the context of a book chapter. However, we feel that these areas are of utmost importance and we predict that new technologies are likely to contribute significantly to test development in these fields. We summarize which new technologies are expected to contribute to the development of new alternative testing methods over the next few years and point out current and planned ECVAM projects for each of these areas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Committee on Toxicity Testing and Assessment of Environmental Agents, National Research Council. Toxicity Testing in the 21st Century: A Vision and a Strategy. Washington, DC: National Academies Press, 2007: Available at: http://www.nap.edu/catalog.php?record_id=11970#toc.

    Google Scholar 

  2. Adler S, Basketter D, Creton S et al. Alternative (non-animal) methods for cosmetics testing: current status and future prospects—2010. Arch Toxicol 2011; 85:367–485.

    PubMed  CAS  Google Scholar 

  3. Bremer S, Balduzzi D, Cortvrindt R et al. The effects of chemicals on mammalian fertility. Altern Lab Anim—ATLA 2005; 33:391–416.

    CAS  Google Scholar 

  4. OECD. Information webpage on work on endocrine disruptors. Paris: Organisation for Economic Co-operation and Development, 2011: Available at: http://www.oecd.org/document/61/0,3746,en_2649_34377_2348733_1_1_1_1,00.html.

    Google Scholar 

  5. EC ECVAM. Statement on the Scientific Validity of the Embryonic Stem Cell Test (EST)—an In Vitro Test for Embryotoxicity. Ispra: European Centre for the Validation of Alternative Methods, 2001: Available at http://ecvam.jrc.it/publication/Embryotoxicity_statements.pdf.

    Google Scholar 

  6. Genschow E, Spielmann H, Scholz G et al. The ECVAM international validation study on in vitro embryotoxicity tests: results of the definitive phase and evaluation of prediction models. Altern Lab Anim—ATLA 2002; 30(2):151–176.

    CAS  Google Scholar 

  7. Marx-Stoelting P, Adriaens E, Ahr HJ et al. A review of the implementation of the embryonic stem cell test (EST). The report and recommendations of an ECVAM/ReProTect Workshop. Altern Lab Anim —ATLA 2009; 37(3):313–328.

    CAS  Google Scholar 

  8. Kirkland D, Aardema M, Henderson L et al. Evaluation of the ability of a battery of three in vitro genotoxicity tests to discriminate rodent carcinogens and noncarcinogens I. Sensitivity, specificity and relative predictivity. Mutat Res 2005; 584:1–256.

    PubMed  CAS  Google Scholar 

  9. Maurici D, Aardema M, Corvi R et al. Genotoxicity and mutagenicity. Altern Lab Anim—ATLA 2005; 33(Suppl 1):117–130.

    CAS  Google Scholar 

  10. Aardema MJ, Barnett BC, Khambatta Z et al. International prevalidation studies of the EpiDerm 3D human reconstructed skin micronucleus (RSMN) assay: transferability and reproducibility. Mutat Res 2010; 701(2):123–131.

    PubMed  CAS  Google Scholar 

  11. Kirkland D, Pfuhler S, Tweats D et al. How to reduce false positive results when undertaking in vitro genotoxicity testing and thus avoid unnecessary follow-up animal tests: report of an ECVAM workshop. Mutat Res 2007; 628:31–55.

    PubMed  CAS  Google Scholar 

  12. Hastwell PW, Chai LL, Roberts KJ et al. High-specificity and high-sensitivity genotoxicity assessment in a human cell line: validation of the GreenScreen HC GADD45a-GFP genotoxicity assay. Mutat Res 2006; 607:160–175.

    PubMed  CAS  Google Scholar 

  13. Coecke S, Ahr H, Blaauboer BJ et al. Metabolism: a bottleneck in in vitro toxicological test development. The report and recommendations of ECVAM workshop 54. Altern Lab Anim—ATLA 2006; 34(1):49–84.

    CAS  Google Scholar 

  14. Azqueta A, Meier S, Priestley C et al. The influence of scoring method on variability in results obtained with the comet assay. Mutagenesis 2011; 26(3):393–399.

    PubMed  CAS  Google Scholar 

  15. Hayashi M, MacGregor JT, Gatehouse DG et al. In vivo erythrocyte micronucleus assay. Validation and regulatory acceptance of automated scoring and the use of rat peripheral blood reticulocytes, with discussion on nonhematopoietic target cells and a single dose-level limit test. Mutat Res 2007; 627:10–30.

    PubMed  CAS  Google Scholar 

  16. Pfuhler S, Kirkland D, Kasper P et al. Reduction of use of animals in regulatory genotoxicity testing: identification and implementation opportunities—report from an ECVAM workshop. Mutat Res 2009; 680(1–2):31.

    PubMed  CAS  Google Scholar 

  17. Yamasaki H, Mesnil M, Nakasawa H. Interaction and distinction of genotoxic and nongenotoxic events in carcinogenesis. Toxicol Lett 1992; 64–65:597–604.

    PubMed  Google Scholar 

  18. Vanparys PH, Corvi R, Aardema M et al. ECVAM prevalidation of three cell transformation assays. ALTEX 2010; 27:267–270.

    Google Scholar 

  19. EC ECVAM. ESAC opinion based on the ESAC peer review of an ECVAM-coordinated prevalidation study concerning three protocols of the Cell Transformation Assay (CTA) for in vitro carcinogenicity testing. Ispra: European Centre for the Validation of Alternative Methods, 2011.

    Google Scholar 

  20. EC ECVAM. ESAC Working Group Peer Review Consensus Report on an ECVAM-coordinated study concerning three protocols of the Cell Transformation Assay (CTA) for in vitro carcinogenicity testing. Ispra: European Centre for the Validation of Alternative Methods, 2011.

    Google Scholar 

  21. EC ECVAM. ECVAM recommendation on the in vitro Cell Transformation Assay for carcinogenicity testing. Ispra: European Centre for the Validation of Alternative Methods, 2011.

    Google Scholar 

  22. Walsh MJ, Bruce SW, Pant K et al. Discrimination of a transformation phenotype in Syrian golden hamster embryo (SHE) cells using ATR-FTIR spectroscopy. Toxicol 2009; 258:33–38.

    CAS  Google Scholar 

  23. Urani C, Stefanini FM, Bussinelli L et al. Image analysis and automatic classification of transformed foci. J Microsc 2009; 234:269–279.

    PubMed  CAS  Google Scholar 

  24. Poth A, Kunz S, Heppenheimer A. Bhas cell transformation assay as a predictor of carcinogenicity. ALTEX 2007; 14 (Special Issue):519–521.

    Google Scholar 

  25. Ao L, Liu JY, Liu WB et al. Comparison of gene expression profiles in BALB/c 3T3 transformed foci exposed to tumor promoting agents. Toxicol In Vitro 2010; 24:430–438.

    PubMed  CAS  Google Scholar 

  26. Rohrbeck A, Salinas G, Maaser K et al. Toxicogenomics applied to in vitro carcinogenicity testing with Balb/c 3T3 cells revealed a gene signature predictive of chemical carcinogens. Toxicol Sci 2010; 118:31–41.

    PubMed  CAS  Google Scholar 

  27. Thierbach R, Steinberg P. Automated soft agar assay for the high-throughput screening of anticancer compounds. Anal Biochem 2009; 87:318–320.

    Google Scholar 

  28. Ohmori K, Umeda M, Tanaka N et al. Non-Genotoxic Carcinogen Study Group in the Environmental Mutagen Society of Japan. An inter-laboratory collaborative study by the Non-Genotoxic Carcinogen Study Group in Japan, on a cell transformation assay for tumour promoters using Bhas 42 cells. Altern Lab Anim—ATLA 2005; 33(6):619–639.

    CAS  Google Scholar 

  29. Combes R, Balls M, Curren R et al. Cell transformation assays as predictors of human carcinogenicity. ECVAM Workshop Report 39. Altern Lab Anim—ATLA 1999; 27(5):745–767.

    Google Scholar 

  30. Aubrecht J, Caba E. Gene expression profile analysis: an emerging approach to investigate mechanisms of genotoxicity. Pharmacogenomics 2005; 6:419–428.

    PubMed  CAS  Google Scholar 

  31. Ellinger-Ziegelbauer H, Stuart B, Wahle B et al. Comparison of the expression profiles induced by genotoxic and nongenotoxic carcinogens in rat liver. Mutat Res 2005; 575:61–84.

    PubMed  CAS  Google Scholar 

  32. Corvi R, Ahr HJ, Albertini S et al. Meeting report: Validation of toxicogenomics-based test systems: ECVAM-ICCVAM/NICEAT M considerations for regulatory use. Environ Health Perspect 2006; 114:420–429.

    PubMed  CAS  Google Scholar 

  33. Basketter D, Casati S, Gerberick F et al. Subchapter 3.4. Skin Sensitisation. In: Eskes C, Zuang V, eds. Alternative (non-animal) Methods for Cosmetics Testing: Current Status and Future Prospects. Altern Lab Anim—ATLA 2005; 33(Suppl 1):83–103.

    Google Scholar 

  34. Casati S, Aeby P, Basketter DA et al. Dendritic cells as a tool for the predictive identification of skin sensitisation hazard. The report and recommendations of ECVAM workshop 51. Altern Lab Anim— ATLA 2005; 33(1):47–62.

    CAS  Google Scholar 

  35. Natsch A, Bauch C, Foertsch L et al. The intra-and inter-laboratory reproducibility and predictivity of the KeratinoSens assay to predict skin sensitizers in vitro: results of a ring-study in five laboratories. Toxicol In Vitro 2011; 25(3):733–744.

    Google Scholar 

  36. EC. Manual of Decisions for Implementation of the 6th and 7th Amendments to Directive 67/548/EEC on Dangerous Substances. Updated version of July 2004 (EUR 20519). Ispra: European Chemicals Bureau, European Commission JRC, 2004.

    Google Scholar 

  37. Eskes C, Bessou S, Bruner L et al. Subchapter 3.3. Eye Irritation. In: Eskes C, Zuang V, eds. Alternative (non-animal) Methods for Cosmetics Testing: Current Status and Future Prospects. Altern Lab Anim— ATLA 2005; 33(Suppl 1):47–81.

    Google Scholar 

  38. Scott L, Eskes C, Hoffmann S et al. A proposed eye irritation testing strategy to reduce and replace in vivo studies using Bottom-Up and Top-Down approaches. Toxicol In Vitro 2010; 24(1):1–9.

    PubMed  CAS  Google Scholar 

  39. Maurer JK, Parker RD, Jester JV. Extent of initial corneal injury as the mechanistic basis for ocular irritation: key findings and recommendations for the development of alternative assays. Regul Toxicol Pharmacol 2002; 36:106–117.

    PubMed  CAS  Google Scholar 

  40. Garle MJ, Fry JR. Sensory nerves, neurogenic inflammation and pain: missing components of alternative irritation strategies? A review and a potential strategy. Altern Lab Anim—ATLA 2003; 31(3):295–316.

    CAS  Google Scholar 

  41. EC ECVAM. ESAC Statement on the scientific validity of the Episkin test (an in vitro test for skin corrosivity). Ispra: European Centre for the Validation of Alternative Methods, 1998: Available at: http://ecvam.jrc.it/publication/EPISKIN_statement.pdf.

    Google Scholar 

  42. EC ECVAM. ESAC Statement on the scientific validity of the rat skin transcutaneous electrical resistance (TER) test (an in vitro test for skin corrosivity). Ispra: European Centre for the Validation of Alternative Methods, 1998: Available at: http://ecvam.jrc.it/publication/TER_statement.pdf.

    Google Scholar 

  43. EC ECVAM. ESAC Statement on the application of the EpiDerm human skin model for skin corrosivity testing. Ispra: European Centre for the Validation of Alternative Methods, 2000: Available at: http://ecvam.jrc.it/publication/EpiDerm_statement.pdf.

    Google Scholar 

  44. EC ECVAM. ESAC Statement on the application of the Corrositex assay for skin corrosivity testing. Ispra: European Centre for the Validation of Alternative Methods, 2000. Available at: http://ecvam.jrc.it/publication/CRTX_statement.pdf.

    Google Scholar 

  45. EC ECVAM. ESAC Statement on the Application of the Skinethic™ Human Skin Model. Ispra: European Centre for the Validation of Alternative Methods, 2006: Available at: http://ecvam.jrc.it/publication/ESAC25_statement_SKINETHIC_correction_on181206_C.pdf

    Google Scholar 

  46. EC ECVAM. ESAC Statement on the scientific validity of an in vitro test method for skin corrosivity testing. Ispra: European Centre for the Validation of Alternative Methods, 2009: Available at: http://ecvam.jrc.it/publication/ESAC30_skincorrosion_revised_20100921.pdf.

    Google Scholar 

  47. EC ECVAM. ESAC Statement on the validity of in vitro tests for skin irritation. Ispra: European Centre for the Validation of Alternative Methods, 2007: Available at: http://ecvam.jrc.it/publication/ESAC26_statement_SkinIrritation_20070525_C.pdf.

    Google Scholar 

  48. EC ECVAM. ESAC Statement on the scientific validity of in vitro tests for skin irritation testing. Ispra: European Centre for the Validation of Alternative Methods, 2008: Available at: http://ecvam.jrc.it/publication/ESAC_Statement_SkinEthic+EpiDerm%20FINAL%200812-01.pdf.

    Google Scholar 

  49. Willis CM, Stephens CJ, Wilkinson JD. Epidermal damage induced by irritants in man: a light and electron microscopic study. J Invest Dermatol 1989; 93:695–699.

    PubMed  CAS  Google Scholar 

  50. Willis CM, Stephens CJ, Wilkinson JD. Selective expression of immune-associated surface antigens by keratinocytes in irritant contact dermatitis. J Invest Dermatol 1991; 96:505–511.

    PubMed  CAS  Google Scholar 

  51. Spiekstra SW, Toebak MJ, Sampat-Sardjoepersad S et al. Induction of cytokine (interleukin-1alpha and tumor necrosis factor-alpha) and chemokine (CCL20, CCL27 and CXCL8) alarm signals after allergen and irritant exposure. Exp Dermatol 2005; 14:109–116.

    PubMed  CAS  Google Scholar 

  52. Fluhr JW, Darlenski R, Angelova-Fischer I et al. Skin irritation and sensitization: mechanisms and new approaches for risk assessment. Skin Pharmacol Physiol 2008; 21:124–135.

    PubMed  CAS  Google Scholar 

  53. EC ECVAM. ESAC Statement on the performance under UN GHS of three in vitro assays for skin irritation testing and the adaptation of the reference chemicals and defined accuracy values of the ECVAM skin irritation performances standards. Ispra: European Centre for the Validation of Alternative Methods, 2009: Available at: http://ecvam.jrc.it/publication/ESAC31_skin-irritation-statement_20090922.pdf.

    Google Scholar 

  54. Griesinger C, Barroso J, Zuang V et al. Explanatory background document to the OECD draft test guideline on in vitro skin irritation testing. Ispra: European Centre for the Validation of Alternative Methods, 2009.

    Google Scholar 

  55. Prudovsky I, Mandinova A, Soldi R et al. The nonclassical export routes: FGF1 and IL-1alpha point the way. J Cell Sci 2003; 116(24):4871–4881.

    PubMed  CAS  Google Scholar 

  56. Nickel W. The mystery of nonclassical protein secretion. A current view on cargo proteins and potential export routes. Eur J Biochem 2003; 270:2109–2119.

    PubMed  CAS  Google Scholar 

  57. Borlon C, Godard P, Eskes C et al. The usefulness of toxicogenomics for predicting acute skin irritation on in vitro reconstructed human epidermis. Toxicology 2007; 241:157–166.

    PubMed  CAS  Google Scholar 

  58. Zuang V, Eskes C, Griesinger C et al. ECVAM key area topical toxicity: update on activities. AATEX 2007; 14(Special Issue):523–528.

    Google Scholar 

  59. EC-ECVAM. ECVAM Technical Report 2006-2007. Ispra: European Centre for the Validation of Alternative Methods, 2008: Available at: http://ecvam.jrc.it/publication/ECVAM%20Technical%20Report%202006-2007%20final.pdf.

    Google Scholar 

  60. Smijs TG, Bouwstra JA. Focus on skin as a possible port of entry for solid nanoparticles and the toxicological impact. J Biomed Nanotechnol 2010; 6(5):469–484.

    PubMed  CAS  Google Scholar 

  61. Baroli B. Penetration of nanoparticles and nanomaterials in the skin: fiction or reality? J Pharm Sci. 2010; 99(1):21–50.

    PubMed  CAS  Google Scholar 

  62. Schroeter A, Engelbrecht T, Neubert RH et al. New nanosized technologies for dermal and transdermal drug delivery. A review. J Biomed Nanotechnol 2010; 6(5):511–528.

    PubMed  CAS  Google Scholar 

  63. Steiling W, Kreutz J, Hofer H. Percutaneous penetration/dermal absorption of hair dyes in vitro. Toxicol In Vitro 2001; 15(4–5):565–570.

    PubMed  CAS  Google Scholar 

  64. OECD. OECD guideline for the testing of chemicals Nr. 427. Skin absorption: in vivo method. Paris: Organisation of Economic Co-operation and Development, 2004.

    Google Scholar 

  65. OECD. OECD guideline for the testing of chemicals Nr. 428. Skin absorption: in vitro method. Paris: Organisation of Economic Co-operation and Development, 2004.

    Google Scholar 

  66. OECD. OECD series on testing and assessment Nr. 28. Guidance document on the conduct of skin absorption studies. Paris: Organisation of Economic Co-operation and Development, 2004.

    Google Scholar 

  67. Van der Sandt JJM, Meuling WJA, Elliott GR et al. Comparative in vitro-in vivo percutaneous absorption of pesticide propoxur. Toxicol Sci 2000; 58:15–22.

    PubMed  Google Scholar 

  68. Barbero AM, Frasch HF. Pig and guinea pig skin as surrogates for human in vitro penetration studies: a quantitative review. Toxicol In Vitro 2009; 23(1):1–13.

    PubMed  CAS  Google Scholar 

  69. Ng SF, Rouse JJ, Sanderson FD et al. Validation of a static Franz diffusion cell system for in vitro permeation studies. AAPS Pharm Sci Tech 2010; 11(3):1432–1441.

    Google Scholar 

  70. EDETOX Project. Evaluations and predictions of dermal absorption of toxic chemicals. Newcastle-Upon-Tyne: EDETOX Project, 2004: Available at: http://research.ncl.ac.uk/edetox/EDETOX%20PDF%20Amended.pdf.

    Google Scholar 

  71. Williams FM. EDETOX Evaluations and predictions of dermal absorption of toxic chemicals. Int Arch Occup Environ Health 2004; 77(2):150–151.

    PubMed  Google Scholar 

  72. van de Sandt JJ, van Burgsteden JA, Cage S et al. In vitro predictions of skin absorption of caffeine, testosterone and benzoic acid: a multi-centre comparison study. Regul Toxicol Pharmacol 2004; 39(3):271–281.

    PubMed  Google Scholar 

  73. Chilcott RP, Barai N, Beezer AE et al. Inter-and intralaboratory variation of in vitro diffusion cell measurements: an international multicenter study using quasi-standardized methods and materials. J Pharm Sci 2005; 94(3):632–638.

    PubMed  CAS  Google Scholar 

  74. Schmook FP, Meingassner JG, Billich A. Comparison of human skin or epidermis models with human and animal skin in in-vitro percutaneous absorption. Int J Pharm 2001; 215(1–2):51–56.

    PubMed  CAS  Google Scholar 

  75. Zghoul N, Fuchs R, Lehr CM, Schaefer UF. Reconstructed skin equivalents for assessing percutaneous drug absorption from pharmaceutical formulations. ALTEX 2001; 18(2):103–6.

    PubMed  CAS  Google Scholar 

  76. Netzlaff F, Lehr CM, Wertz PW et al. The human epidermis models EpiSkin, SkinEthic and EpiDerm: an evaluation of morphology and their suitability for testing phototoxicity, irritancy, corrosivity and substance transport. Eur J Pharm Biopharm 2005; 60(2):167–178.

    PubMed  CAS  Google Scholar 

  77. Schäfer-Korting M, Mahmoud A, Lombardi Borgia S et al. Reconstructed epidermis and full-thickness skin for absorption testing: influence of the vehicles used on steroid permeation. Altern Lab Anim—ATLA 2008; 36(4):441–52.

    Google Scholar 

  78. Ackermann K, Borgia SL, Korting HC et al. The Phenion full-thickness skin model for percutaneous absorption testing. Skin Pharmacol Physiol 2010; 23(2):105–112.

    PubMed  CAS  Google Scholar 

  79. Schäfer-Korting M, Bock U, Gamer A et al. Reconstructed human epidermis for skin absorption testing: results of the German prevalidation study. Altern Lab Anim—ATLA 2006; 34(3):283–294.

    Google Scholar 

  80. Schäfer-Korting M, Bock U, Diembeck W et al. The use of reconstructed human epidermis for skin absorption testing: Results of the validation study. Altern Lab Anim—ATLA 2008; 36(2):161–187.

    Google Scholar 

  81. Van Gele M, Geusens B, Brochez L et al. Three-dimensional skin models as tools for transdermal drug delivery: challenges and limitations. Expert Opin Drug Deliv 2011; 8(6):705–720.

    PubMed  Google Scholar 

  82. Mitragotri S, Anissimov YG, Bunge AL et al. Mathematical models of skin permeability: An overview. Int J Pharm 2011; 418(1):115–29.

    PubMed  CAS  Google Scholar 

  83. Ghafourian T, Samaras EG, Brooks JD et al. Validated models for predicting skin penetration from different vehicles. Eur J Pharm Sci 2010; 41(5):612–616.

    PubMed  CAS  Google Scholar 

  84. Spielmann H, Balls M, Brand M et al. EC/COLIPA project on in vitro phototoxicity testing: first results obtained with the Balb/c 3T3 cell phototoxicity assay. Toxicol In Vitro 1994; 8:793–796.

    PubMed  CAS  Google Scholar 

  85. Spielmann H, Balls M, Dupuis J et al. The international EU/COLIPA In vitro phototoxicity validation study: results of phase II (blind trial), part 1: the 3T3 NRU phototoxicity test. Toxicol In Vitro 1998; 12:305–327.

    PubMed  CAS  Google Scholar 

  86. EC. Commission Directive 2000/33/EC of 25 April 2000 adapting to technical progress for the 27th time Council Directive 67/548/EC on the approximation of laws, regulations and administrative provisions relating to the classification, packaging and labelling of dangerous substances. Annex V B.41 Phototoxicity—in vitro 3T3 NRU phototoxicity test. Off J Eur Comm 2000; L136:98–107.

    Google Scholar 

  87. OECD. OECD guidelines for the testing of chemicals Nr. 432. In vitro 3T3 NRU phototoxicity test. Paris: Organisation for Economic Co-operation and Development, 2004.

    Google Scholar 

  88. Edwards SM, Donnelly TA, Sayre RM et al. Quantitative in vitro assessment of phototoxicity using a human skin model, Skin2. Photodermatol Photoimmunol Photomed 1994; 10:111–117.

    PubMed  CAS  Google Scholar 

  89. Liebsch M, Barrabas C, Traue T et al. Entwicklung eines in vitro Tests auf dermale Phototoxizitaet in einem Modell menschlicher Epidermis (EpiDerm™). ALTEX 1997; 14:165–174.

    PubMed  Google Scholar 

  90. Liebsch M, Döring B, Donelly TA et al. Application of the human dermal model Skin2 ZK 1350 to phototoxicity and skin corrosivity testing. Toxicol In Vitro 1995; 9:557–562.

    PubMed  CAS  Google Scholar 

  91. Api AM. In vitro assessment of phototoxicity. In Vitro Toxicol 1997; 10:339–350.

    CAS  Google Scholar 

  92. Liebsch M, Traue D, Barrabas C et al. Prevalidation of the EpiDerm phototoxicity test. In: Clark D, Lisansky S, Macmillan R, eds. Alternatives to Animal Testing II: Proceedings of the Second International Scientific Conference Organised by the European Cosmetic Industry. Brussels/Newbury: CPL Press, 1999: 160–166.

    Google Scholar 

  93. Jones PA, King AV, Lovell W et al. Phototoxicity testing using 3-D reconstructed human skin models. In: Clark D, Lisansky S, Macmillan R, eds. Alternatives to Animal Testing II: Proceedings of the Second International Scientific Conference Organised by the European Cosmetic Industry. Brussels/Newbury: CPL Press, 1999:160–166.

    Google Scholar 

  94. EMEA. Note for guidance on photosafety testing (CPMP/SWP/398/01). London: European Agency for the Evaluation of Medicinal Products, Committee for Proprietary Medicinal Products, 2002: Available at:http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2009/09/WC500003353.pdf.

    Google Scholar 

  95. Kejlová K, Jírová D, Bendová H et al. Phototoxicity of bergamot oil assessed by in vitro techniques in combination with human patch tests. Toxicol In Vitro 2007; 21(7):1298–303.

    PubMed  Google Scholar 

  96. Lynch AM, Smith MD, Lane AS et al. An evaluation of chemical photoreactivity and the relationship to photogenotoxicity. Regul Toxicol Pharmacol 2010; 58(2):219–223.

    PubMed  CAS  Google Scholar 

  97. Blaauboer BJ, Bayliss MK, Castell JV et al. The use of biokinetics and in vitro methods in toxicological risk evaluation. Altern Lab Anim—ATLA 1996; 24(4):473–497.

    Google Scholar 

  98. Blaauboer BJ. The necessity of biokinetic information in the interpretation of in vitro toxicity data. Altern Lab Anim—ATLA 2002; 30(Suppl 2):85–91.

    CAS  Google Scholar 

  99. Boobis A, Gundert-Remy U, Kremers P et al. In silico prediction of ADME and pharmacokinetics. Report of an expert meeting organised by COST B15. Eur J Pharm Sci 2002; 17:183–193.

    PubMed  CAS  Google Scholar 

  100. Parrott N, Paquereau N, Coassolo P et al. An evaluation of the utility of physiologically based models of pharmacokinetics in early drug discovery. J Pharm Sci 2005; 94:2327–2343.

    PubMed  CAS  Google Scholar 

  101. EPA. Approaches for the application of Physiologically Based Pharmacokinetic (PBPK) Models and supporting data in risk assessment. EPA/600/R-05/043F. Washington, DC: US Enivronmental Protection Agency, 2007.

    Google Scholar 

  102. Parrott N, Jones H, Paquereau N et al. Application of full physiological models for pharmaceutical drug candidate selection and extrapolation of pharmacokinetics to man. Basic Clin Pharmacol Toxicol 2005; 96:193–199.

    PubMed  CAS  Google Scholar 

  103. Theil FP, Guentert TW, Haddad S et al. Utility of physiologically based pharmacokinetic models to drug development and rational drug discovery candidate selection. Toxicol Lett 2003; 138:29–49.

    PubMed  CAS  Google Scholar 

  104. Jones HM, Parrott N, Jorga K et al. A novel strategy for physiologically based predictions of human pharmacokinetics. Clin Pharmacokinet 2006; 45:511–542.

    PubMed  CAS  Google Scholar 

  105. Pessina A, Albella B, Bayo M et al. Application of the CFU-GM assay to predict acute drug-induced neutropenia: an international blind trial to validate a prediction model for the maximum tolerated dose (MTD) of myelosuppressive xenobiotics. Toxicol Sci 2003; 75:355–367.

    PubMed  CAS  Google Scholar 

  106. Davila JC, Cezar GG, Thiede M et al. Use and application of stem cells in toxicology. Toxicol Sci 2004; 79:214–223.

    PubMed  CAS  Google Scholar 

  107. Crosta G, Fumarola L, Malerba I et al. Scoring CFU-GM colonies in vitro by data fusion: A first account. Exp Hematol 2007; 35(1):1–12.

    PubMed  Google Scholar 

  108. Burczynski ME, Dorner AJ. Transcriptional profiling of peripheral blood cells in clinical pharmacogenomic studies. Pharmacogenomics 2006; 7:187–202.

    PubMed  CAS  Google Scholar 

  109. Parng C, Seng WL, Semino C et al. Zebrafish: a preclinical model for drug screening. Assay Drug Dev Technol 2002; 1:41–48.

    PubMed  CAS  Google Scholar 

  110. van Vliet E, Morath S, Eskes C et al. A novel in vitro metabolomics approach for neurotoxicity testing, proof of principle for methyl mercury chloride and caffeine. Neurotoxicology 2008; 29(1):1–12.

    PubMed  Google Scholar 

  111. van Vliet E, Stoppini L, Balestrino M et al. Electrophysiological recording of re-aggregating brain cell cultures on multi-electrode arrays to detect acute neurotoxic effects. Neurotoxicology 2007; 28(6):1136–1146.

    PubMed  Google Scholar 

  112. Roi AJ, Flego M. ECVAM’s Database Service on Alternative Methods (DB-ALM)—Online. ALTEX 2006; 23(Special Issue):177–180.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudius Griesinger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Bouvier d’Yvoire, M. et al. (2012). ECVAM and New Technologies for Toxicity Testing. In: Balls, M., Combes, R.D., Bhogal, N. (eds) New Technologies for Toxicity Testing. Advances in Experimental Medicine and Biology, vol 745. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3055-1_10

Download citation

Publish with us

Policies and ethics