Vaccine-Based Immunotherapy and Targeting the Tumor Microenvironment in Renal Cell Carcinoma

  • Johannes ViewegEmail author


Despite the recent emergence of pathway-targeted therapies, no curative treatment for metastatic renal cell carcinoma (RCC) exists to date, thus fostering continued interest in developing new treatment strategies to eradicate renal malignancy. Active specific immunotherapy via cancer vaccines is one alternative approach that has shown clinical activity in several solid tumor systems, including RCC. However, critical questions regarding the optimal vaccine design, molecular effector mechanisms, vaccine delivery, and optimal vaccine–drug synergisms are, at present, only poorly understood. In addition, tumor-derived factors lead to profound immunosuppression in the cancer patient, thus mitigating the therapeutic effects of cancer vaccination. New insights suggest that effective stimulation of therapeutically useful antitumor responses requires the development of immunization protocols that fulfill two major criteria: (a) overcoming tumor-induced immunosuppression and (b) stimulating robust T-cell responses against tumor-associated antigens via an optimized vaccine approach. Such dual-pronged strategies represent important directions for the future advancements of anticancer vaccines toward clinical practice. In this chapter, the basic concepts and current approaches of RCC vaccination are discussed, and the molecular and cellular components in the tumor microenvironment that mediate immunosuppression are described. We further point out new insights suggesting synergies between active immunotherapy approaches, multikinase inhibitors, and other forms of targeted therapy.


Dendritic Cell Renal Cell Carcinoma Major Histocompatibility Complex Class Metastatic Renal Cell Carcinoma Cancer Vaccine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Some of the results referred to in this manuscript were in part supported by grants from the National Cancer Institute (K24 CA118454-04).


  1. 1.
    Motzer RJ, Hutson TE et al (2007) Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. N Engl J Med 356(2):115–124PubMedCrossRefGoogle Scholar
  2. 2.
    Kantoff PW, Higano CS et al (2010) Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med 363(5):411–422PubMedCrossRefGoogle Scholar
  3. 3.
    Robert C, Thomas L et al (2011) Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N Engl J Med 364(26):2517–2526PubMedCrossRefGoogle Scholar
  4. 4.
    Jago CB, Yates J et al (2004) Differential expression of CTLA-4 among T cell subsets. Clin Exp Immunol 136(3):463–471PubMedCrossRefGoogle Scholar
  5. 5.
    Hoos A, Parmiani G et al (2007) A clinical development paradigm for cancer vaccines and related biologics. J Immunother 30(1):1–15PubMedCrossRefGoogle Scholar
  6. 6.
    Vieweg J, Jackson A (2005) Modulation of antitumor responses by dendritic cells. Springer Semin Immunopathol 26(3):329–341PubMedCrossRefGoogle Scholar
  7. 7.
    Kusmartsev S, Nefedova Y et al (2004) Antigen-specific inhibition of CD8+ T cell response by immature myeloid cells in cancer is mediated by reactive oxygen species. J Immunol 172(2):989–999PubMedGoogle Scholar
  8. 8.
    Dillman RO, Barth NM et al (2011) Should high-dose interleukin-2 still be the preferred treatment for patients with metastatic renal cell cancer? Cancer Biother Radiopharm 26(3):273–277PubMedCrossRefGoogle Scholar
  9. 9.
    Hiles JJ, Kolesar JM (2008) Role of sunitinib and sorafenib in the treatment of metastatic renal cell carcinoma. Am J Health Syst Pharm 65(2):123–131PubMedCrossRefGoogle Scholar
  10. 10.
    Biswas S, Eisen T (2009) Immunotherapeutic strategies in kidney cancer – when TKIs are not enough. Nat Rev Clin Oncol 6(8):478–487PubMedCrossRefGoogle Scholar
  11. 11.
    Weber J (2010) Immune checkpoint proteins: a new therapeutic paradigm for cancer – preclinical background: CTLA-4 and PD-1 blockade. Semin Oncol 37(5):430–439PubMedCrossRefGoogle Scholar
  12. 12.
    Weber J (2011) Immunotherapy for melanoma. Curr Opin Oncol 23(2):163–169PubMedCrossRefGoogle Scholar
  13. 13.
    Corse E, Gottschalk RA et al (2011) Strength of TCR-peptide/MHC interactions and in vivo T cell responses. J Immunol 186(9):5039–5045PubMedCrossRefGoogle Scholar
  14. 14.
    Steinman RM, Banchereau J (2007) Taking dendritic cells into medicine. Nature 449(7161):419–426PubMedCrossRefGoogle Scholar
  15. 15.
    Sharpe AH (2009) Mechanisms of costimulation. Immunol Rev 229(1):5–11PubMedCrossRefGoogle Scholar
  16. 16.
    Gilboa E (1999) The makings of a tumor rejection antigen. Immunity 11(3):263–270PubMedCrossRefGoogle Scholar
  17. 17.
    Vieweg J, Jackson A (2004) Antigenic targets for renal cell carcinoma immunotherapy. Expert Opin Biol Ther 4(11):1791–1801PubMedCrossRefGoogle Scholar
  18. 18.
    Cheever MA, Allison JP et al (2009) The prioritization of cancer antigens: a national cancer institute pilot project for the acceleration of translational research. Clin Cancer Res 15(17):5323–5337PubMedCrossRefGoogle Scholar
  19. 19.
    Van Poppel H, Joniau S et al (2009) Vaccine therapy in patients with renal cell carcinoma. Eur Urol 55(6):1333–1342PubMedCrossRefGoogle Scholar
  20. 20.
    Jocham D, Richter A et al (2004) Adjuvant autologous renal tumour cell vaccine and risk of tumour progression in patients with renal-cell carcinoma after radical nephrectomy: phase III, randomised controlled trial. Lancet 363(9409):594–599PubMedCrossRefGoogle Scholar
  21. 21.
    van der Burg SH, Bijker MS et al (2006) Improved peptide vaccine strategies, creating synthetic artificial infections to maximize immune efficacy. Adv Drug Deliv Rev 58(8):916–930PubMedCrossRefGoogle Scholar
  22. 22.
    Toes RE, Ossendorp F et al (1999) CD4 T cells and their role in antitumor immune responses. J Exp Med 189(5):753–756PubMedCrossRefGoogle Scholar
  23. 23.
    Shuch B, Li Z et al (2008) Carbonic anhydrase IX and renal cell carcinoma: prognosis, response to systemic therapy, and future vaccine strategies. BJU Int 101(Suppl 4):25–30PubMedCrossRefGoogle Scholar
  24. 24.
    Rahma OE, Ashtar E et al (2010) A pilot clinical trial testing mutant von Hippel-Lindau peptide as a novel immune therapy in metastatic renal cell carcinoma. J Transl Med 8:8PubMedCrossRefGoogle Scholar
  25. 25.
    Srivastava PK (2005) Immunotherapy for human cancer using heat shock protein-peptide complexes. Curr Oncol Rep 7(2):104–108PubMedCrossRefGoogle Scholar
  26. 26.
    Parmiani G, Testori A et al (2004) Heat shock proteins and their use as anticancer vaccines. Clin Cancer Res 10(24):8142–8146PubMedCrossRefGoogle Scholar
  27. 27.
    Wood C, Srivastava P et al (2008) An adjuvant autologous therapeutic vaccine (HSPPC-96; vitespen) versus observation alone for patients at high risk of recurrence after nephrectomy for renal cell carcinoma: a multicentre, open-label, randomised phase III trial. Lancet 372 (9633):145–154PubMedCrossRefGoogle Scholar
  28. 28.
    Wang Y, Wang XY et al (2011) Temsirolimus, an mTOR inhibitor, enhances anti-tumour effects of heat shock protein cancer vaccines. Br J Cancer 104(4):643–652PubMedCrossRefGoogle Scholar
  29. 29.
    Araki K, Turner AP et al (2009) mTOR regulates memory CD8 T-cell differentiation. Nature 460(7251):108–112PubMedCrossRefGoogle Scholar
  30. 30.
    Jonuleit H, Knop J et al (1996) Cytokines and their effects on maturation, differentiation and migration of dendritic cells. Arch Dermatol Res 289(1):1–8PubMedCrossRefGoogle Scholar
  31. 31.
    Avigan DE, Vasir B et al (2007) Phase I/II study of vaccination with electrofused allogeneic dendritic cells/autologous tumor-derived cells in patients with stage IV renal cell carcinoma. J Immunother 30(7):749–761PubMedCrossRefGoogle Scholar
  32. 32.
    Rosenberg SA, Yang JC et al (2004) Cancer immunotherapy: moving beyond current vaccines. Nat Med 10(9):909–915PubMedCrossRefGoogle Scholar
  33. 33.
    Cheever MA, Higano CS (2011) PROVENGE (Sipuleucel-T) in prostate cancer: the first FDA-approved therapeutic cancer vaccine. Clin Cancer Res 17(11):3520–3526PubMedCrossRefGoogle Scholar
  34. 34.
    Webster WS, Lohse CM et al (2006) Mononuclear cell infiltration in clear-cell renal cell carcinoma independently predicts patient survival. Cancer 107(1):46–53PubMedCrossRefGoogle Scholar
  35. 35.
    Uzzo RG, Clark PE et al (1999) Alterations in NFkappaB activation in T lymphocytes of patients with renal cell carcinoma. J Natl Cancer Inst 91(8):718–721PubMedCrossRefGoogle Scholar
  36. 36.
    Kaelin WG Jr (2007) The von Hippel-Lindau tumor suppressor protein and clear cell renal carcinoma. Clin Cancer Res 13(2 Pt 2):680s–684sPubMedCrossRefGoogle Scholar
  37. 37.
    Gabrilovich D (2004) Mechanisms and functional significance of tumour-induced dendritic-cell defects. Nat Rev Immunol 4(12):941–952PubMedCrossRefGoogle Scholar
  38. 38.
    Gabrilovich DI, Nagaraj S (2009) Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 9(3):162–174PubMedCrossRefGoogle Scholar
  39. 39.
    Gabrilovich DI, Velders MP et al (2001) Mechanism of immune dysfunction in cancer mediated by immature Gr-1+ myeloid cells. J Immunol 166(9):5398–5406PubMedGoogle Scholar
  40. 40.
    Kusmartsev S, Su Z et al (2008) Reversal of myeloid cell-mediated immunosuppression in patients with metastatic renal cell carcinoma. Clin Cancer Res 14(24):8270–8278PubMedCrossRefGoogle Scholar
  41. 41.
    Bronte V, Serafini P et al (2003) IL-4-induced arginase 1 suppresses alloreactive T cells in tumor-bearing mice. J Immunol 170(1):270–278PubMedGoogle Scholar
  42. 42.
    Bronte V, Zanovello P (2005) Regulation of immune responses by L-arginine metabolism. Nat Rev Immunol 5(8):641–654PubMedCrossRefGoogle Scholar
  43. 43.
    Kusmartsev S, Eruslanov E et al (2008) Oxidative stress regulates expression of VEGFR1 in myeloid cells: link to tumor-induced immune suppression in renal cell carcinoma. J Immunol 181(1):346–353PubMedGoogle Scholar
  44. 44.
    Kaplan RN, Riba RD et al (2005) VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438(7069):820–827PubMedCrossRefGoogle Scholar
  45. 45.
    Hamada I, Kato M et al (2002) Clinical effects of tumor-associated macrophages and dendritic cells on renal cell carcinoma. Anticancer Res 22(6C):4281–4284PubMedGoogle Scholar
  46. 46.
    Huang B, Pan PY et al (2006) Gr-1+CD115+ immature myeloid suppressor cells mediate the development of tumor-induced T regulatory cells and T-cell anergy in tumor-bearing host. Cancer Res 66(2):1123–1131PubMedCrossRefGoogle Scholar
  47. 47.
    Cesana GC, DeRaffele G et al (2006) Characterization of CD4+CD25+ regulatory T cells in patients treated with high-dose interleukin-2 for metastatic melanoma or renal cell carcinoma. J Clin Oncol 24(7):1169–1177PubMedCrossRefGoogle Scholar
  48. 48.
    Siddiqui SA, Frigola X et al (2007) Tumor-infiltrating Foxp3-CD4+CD25+ T cells predict poor survival in renal cell carcinoma. Clin Cancer Res 13(7):2075–2081PubMedCrossRefGoogle Scholar
  49. 49.
    Ahmadzadeh M, Rosenberg SA (2006) IL-2 administration increases CD4+ CD25(hi) Foxp3+ regulatory T cells in cancer patients. Blood 107(6):2409–2414PubMedCrossRefGoogle Scholar
  50. 50.
    Hou DY, Muller AJ et al (2007) Inhibition of indoleamine 2,3-dioxygenase in dendritic cells by stereoisomers of 1-methyl-tryptophan correlates with antitumor responses. Cancer Res 67(2):792–801PubMedCrossRefGoogle Scholar
  51. 51.
    Dannull J, Su Z et al (2005) Enhancement of vaccine-mediated antitumor immunity in cancer patients after depletion of regulatory T cells. J Clin Invest 115(12):3623–3633PubMedCrossRefGoogle Scholar
  52. 52.
    Kusmartsev S, Vieweg J (2009) Enhancing the efficacy of cancer vaccines in urologic oncology: new directions. Nat Rev Urol 6(10):540–549PubMedCrossRefGoogle Scholar
  53. 53.
    Bacher N, Graulich E et al (2011) Interferon-alpha Abrogates Tolerance Induction by Human Tolerogenic Dendritic Cells. PLoS One 6(7):e22763PubMedCrossRefGoogle Scholar
  54. 54.
    Wu J, Zhang Y et al (2011) Prostaglandin E2 regulates renal cell carcinoma invasion through a EP4-Rap signal transduction pathway. J Biol Chem 286(39):33954–62PubMedCrossRefGoogle Scholar
  55. 55.
    Eruslanov E, Daurkin I et al (2011) Aberrant PGE metabolism in bladder tumor microenvironment promotes immunosuppressive phenotype of tumor-infiltrating myeloid cells. Int Immunopharmacol 11(7):848–855PubMedCrossRefGoogle Scholar
  56. 56.
    Tauler J, Mulshine JL (2008) Combination therapy of PPARgamma ligands and inhibitors of arachidonic acid in lung cancer. PPAR Res 2008:750238PubMedCrossRefGoogle Scholar
  57. 57.
    Melstrom LG, Bentrem DJ et al (2008) Overexpression of 5-lipoxygenase in colon polyps and cancer and the effect of 5-LOX inhibitors in vitro and in a murine model. Clin Cancer Res 14(20):6525–6530PubMedCrossRefGoogle Scholar
  58. 58.
    Matsuyama M, Yoshimura R (2008) Relationship between arachidonic acid pathway and human renal cell carcinoma. Onco Targets Ther 1:41–48PubMedGoogle Scholar
  59. 59.
    Daurkin I et al (2011) Tumor-associated macrophages mediate immunosuppression in the renal cancer microenvironment by activating the 15-lipoxygenase-2 pathway. Cancer Res 71(20):6400–9Google Scholar
  60. 60.
    Zwick E, Bange J et al (2001) Receptor tyrosine kinase signaling as a target for cancer intervention strategies. Endocr Relat Cancer 8(3):161–173.PubMedCrossRefGoogle Scholar
  61. 61.
    Yang F, Jove V et al (2010) Sunitinib induces apoptosis and growth arrest of medulloblastoma tumor cells by inhibiting STAT3 and AKT signaling pathways. Mol Cancer Res 8(1):35–45PubMedCrossRefGoogle Scholar
  62. 62.
    Xin H, Zhang C et al (2009) Sunitinib inhibition of Stat3 induces renal cell carcinoma tumor cell apoptosis and reduces immunosuppressive cells. Cancer Res 69(6):2506–2513PubMedCrossRefGoogle Scholar
  63. 63.
    Wander SA, Hennessy BT et al (2011) Next-generation mTOR inhibitors in clinical oncology: how pathway complexity informs therapeutic strategy. J Clin Invest 121(4):1231–1241PubMedCrossRefGoogle Scholar
  64. 64.
    Campbell L, Jasani B et al (2008) Combined expression of caveolin-1 and an activated AKT/mTOR pathway predicts reduced disease-free survival in clinically confined renal cell carcinoma. Br J Cancer 98(5):931–940PubMedCrossRefGoogle Scholar
  65. 65.
    Dancey J (2010) mTOR signaling and drug development in cancer. Nat Rev Clin Oncol 7(4):209–219PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Urology and Prostate Disease Center, College of MedicineUniversity of FloridaGainesvilleUSA

Personalised recommendations