Skip to main content

The Role of Thyroid Modulation by Methylmercury in Developmental Neurotoxicity

  • Chapter
  • First Online:
Methylmercury and Neurotoxicity

Part of the book series: Current Topics in Neurotoxicity ((Current Topics Neurotoxicity,volume 2))

  • 799 Accesses

Abstract

The developing brain is extremely susceptible to methylmercury (MeHg) and thyroid hormone deficiency. Because of some analogy in neurological deficits between MeHg neurotoxicity and thyroid insufficiency, recent studies have focused on thyroid modulation by MeHg. Activities of iodothyronine deiodinases, critical enzymes for local production and degradation of active thyroid hormone 3,3′, 5-triiodothyronine (T3), in the brain are affected by MeHg exposure, suggesting that impaired maintenance of adequate T3 levels may play a role in the MeHg-induced neurological manifestations. In addition, MeHg reportedly interferes with thyroid hormone synthesis. However, the presence of other pollutants such as polychlorinated biphenyls in MeHg-contaminated food makes the interpretation of thyroidal involvement in MeHg neurotoxicity complicated. Despite interesting circumstantial evidence, whether impaired thyroid hormone homeostasis is involved in MeHg neurotoxicity remains unclear.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen JW, Shanker G, Tan KH, et al. The consequences of methylmercury exposure on interactive functions between astrocytes and neurons. Neurotoxicology. 2002;23:755–9.

    Article  PubMed  CAS  Google Scholar 

  • Anselmo J, Cao D, Karrison T, et al. Fetal loss associated with excess thyroid hormone exposure. JAMA. 2004;292:691–5.

    Article  PubMed  CAS  Google Scholar 

  • Barter RA, Klaassen CD. Reduction of thyroid hormone levels and alteration of thyroid function by four representative UDP-glucuronosyltransferase inducers in rats. Toxicol Appl Pharmacol. 1994;128:9–17.

    Article  PubMed  CAS  Google Scholar 

  • Bates JM, Spate VL, Morris JS, et al. Effects of selenium deficiency on tissue selenium content, deiodinase activity, and thyroid hormone economy in the rat during development. Endocrinology. 2000;141:2490–500.

    Article  PubMed  CAS  Google Scholar 

  • Bernal J. Thyroid hormone receptors in brain development and function. Nat Clin Pract Endocrinol Metab. 2007;3:249–59.

    Article  PubMed  CAS  Google Scholar 

  • Bernal J, Pekonen F. Ontogenesis of the nuclear 3,5,3’-triiodothyronine receptor in the human fetal brain. Endocrinology. 1984;114:677–9.

    Article  PubMed  CAS  Google Scholar 

  • Bianco AC, Kim BW. Deiodinases: implications of the local control of thyroid hormone action. J Clin Invest. 2006;116:2571–9.

    Article  PubMed  CAS  Google Scholar 

  • Bradley DJ, Young WS, Weinburger C. Differential expression of alpha and beta thyroid hormone receptor genes in rat brain and pituitary. Proc Natl Acad Sci USA. 1989;86:7250–4.

    Article  PubMed  CAS  Google Scholar 

  • Calvo R, Obregón MJ, Ruiz de Ona C, et al. Congenital hypothyroidism, as studied in rats. Crucial role of maternal thyroxine but not 3,5,3’-triiodothyronine in the protection of the fetal brain. J Clin Invest. 1990;86:889–99.

    Article  PubMed  CAS  Google Scholar 

  • Chan S, Kachilele S, McCabe CJ, et al. Early expression of thyroid hormone deiodinases and receptors in human fetal brain cortex. Brain Res Dev Brain Res. 2002;138:109–16.

    Article  PubMed  CAS  Google Scholar 

  • Chanoine J-P, Alex S, Fang SL, et al. Role of transthyretin in the transport of thyroxine from the blood to the choroid plexus, the cerebrospinal fluid, and the brain. Endocrinology. 1992;130:933–8.

    Article  PubMed  CAS  Google Scholar 

  • Choi BH. The effects of methylmercury on the developing brain. Prog Neurobiol. 1989;32: 447–70.

    Article  PubMed  CAS  Google Scholar 

  • Crantz FR, Silva JE, Larsen PR. An analysis of the source and quantity of 3,5,3’-triiodothyronine specifically bound to nuclear receptors in rat cerebral cortex and cerebellum. Endocrinology. 1982;110:367–75.

    Article  PubMed  CAS  Google Scholar 

  • Croteau W, Davey JC, Galton VA, et al. Cloning of the mammalian type II iodothyronine deiodinase: a selenoprotein differentially expressed and regulated in human and rat brain and other tissues. J Clin Invest. 1996;98:405–17.

    Article  PubMed  CAS  Google Scholar 

  • Das K, Chainy GB. Thyroid hormone influences antioxidant defense system in adult rat brain. Neurochem Res. 2004;29:1755–66.

    Article  PubMed  CAS  Google Scholar 

  • Dasgupta A, Das S, Sarkar PK. Thyroid hormone promotes glutathione synthesis in astrocytes by up regulation of glutamate cysteine ligase through differential stimulation of its catalytic and modulator subunit mRNAs. Free Radic Biol Med. 2007;42:617–26.

    Article  PubMed  CAS  Google Scholar 

  • DeLong GR, Stanbury JB, Fierro-Benitez R. Neurological signs in congenital iodine-deficiency disorder (endemic cretinism). Dev Med Child Neurol. 1985;27:317–24.

    Article  PubMed  CAS  Google Scholar 

  • Dohán O, Carrasco N. Advances in Na+/I- symporter (NIS) research in the thyroid and beyond. Mol Cell Endocrinol. 2003;213:59–70.

    Article  PubMed  CAS  Google Scholar 

  • Dumitrescu AM, Liao XH, Best TB, et al. A novel syndrome combining thyroid and neurological abnormalities is associated with mutations in a monocarboxylate transporter gene. Am J Hum Genet. 2004;74:168–75.

    Article  PubMed  CAS  Google Scholar 

  • Episkopou V, Maeda S, Nishigushi S, et al. Disruption of the transthyretin gene results in mice with depressed levels of plasma retinol and thyroid hormone. Proc Natl Acad Sci USA. 1993;90:2375–9.

    Article  PubMed  CAS  Google Scholar 

  • Fang SC, Fallin E. The binding of various mercurial compounds to serum proteins. Bull Environ Contam Toxicol. 1976;15:110–7.

    Article  PubMed  CAS  Google Scholar 

  • Farwell AP, Dubord-Tomasetti SA. Thyroid hormone regulates the extracellular organization of laminin on astrocytes. Endocrinology. 1999;140:5014–21.

    Article  PubMed  CAS  Google Scholar 

  • Ferreiro B, Bernal J, Goodyer CG, et al. Estimation of nuclear thyroid hormone receptor saturation in human fetal brain and lung during early gestation. J Clin Endocrinol Metab. 1988;67:853–6.

    Article  PubMed  CAS  Google Scholar 

  • Fisher DA, Dussault JH, Sack J, et al. Ontogenesis of hypothalamic-pituitary-thyroid function and metabolism in man, sheep and rat. Recent Prog Horm Res. 1977;33:59–116.

    Google Scholar 

  • Flamant F, Poguet AL, Platcroti M, et al. Congenital hypothyroid Pax8 (−/−) mutant mice can be rescued by inactivating the TRalpha gene. Mol Endocrinol. 2002;16:24–32.

    Article  PubMed  CAS  Google Scholar 

  • Fredriksson A, Gardlund A, Bergman K, et al. Effects of maternal dietary supplementation with selenite on the postnatal development of rat offspring exposed to methylmercury in utero. Pharmacol Toxicol. 1993;72:377–82.

    Article  PubMed  CAS  Google Scholar 

  • Galton VA, Wood ET, St. Germain EA, et al. Thyroid hormone homeostasis and action in the type 2 deiodinase-deficient rodent brain during development. Endocrinology. 2007;148:3080–8.

    Article  PubMed  CAS  Google Scholar 

  • Galton VA, Schneider MJ, Clark AS, et al. Life without thyroxin to 3,5,3’-triiodothyronine conversion: studies in mice devoid of 5’-deiodinases. Endocrinology. 2009;150:2957–63.

    Article  PubMed  CAS  Google Scholar 

  • Gauger KJ, Kato Y, Haraguchi K, et al. Polychlorinated biphenyls (PCBs) exert thyroid hormone-like effects in the fetal rat brain but do not bind to thyroid hormone receptors. Environ Health Perspect. 2003;112:516–23.

    Article  CAS  Google Scholar 

  • Glass CK. Differential recognition of target genes by nuclear receptor monomers, dimmers, and heterodimers. Endocr Rev. 1994;15:391–407.

    PubMed  CAS  Google Scholar 

  • Gothe S, Wang Z, Ng L, et al. Mice devoid of all known thyroid hormone receptors are viable but exhibit disorders of the pituitary-thyroid axis, growth, and bone maturation. Genes Dev. 1999;13:1329–41.

    Article  PubMed  CAS  Google Scholar 

  • Guadaño-Ferraz A, Obregón MJ, St. Germain DL, et al. The type 2 iodothyronine deiodinase is expressed primarily in glial cells in the neonatal rat brain. Proc Natl Acad Sci USA. 1997;94:10391–6.

    Article  PubMed  Google Scholar 

  • Guadaño-Ferraz A, Benavides-Piccione R, Venero C, et al. Lack of thyroid hormone receptor alpha1 is associated with selective alterations in behavior and hippocampal circuits. Mol Psychiatry. 2003;8:30–8.

    Article  PubMed  CAS  Google Scholar 

  • Haddow JE, Palmomaki GE, Allan WC, et al. Maternal thyroid deficiency during pregnancy and subsequent neuropsychological development of the child. N Engl J Med. 1999;341:549–55.

    Article  PubMed  CAS  Google Scholar 

  • Hernandez A, Martinez ME, Fiering S, et al. Type 3 deiodinase is critical for the maturation and function of the thyroid axis. J Clin Invest. 2006;116:476–84.

    Article  PubMed  CAS  Google Scholar 

  • Hernandez A, Quignodon L, Martinez ME, et al. Type 3 deiodinase deficiency causes spatial and temporal alterations in brain T3 signaling that are dissociated from serum thyroid hormone levels. Endocrinology. 2010;151:5550–8.

    Article  PubMed  CAS  Google Scholar 

  • Heuer H, Visser TJ. Minireview: pathophysiological importance of thyroid hormone transporters. Endocrinology. 2009;150:1078–83.

    Article  PubMed  CAS  Google Scholar 

  • Heuer H, Maier MK, Iden S, et al. The monocarboxylate transporter 8 linked to human psychomotor retardation is highly expressed in thyroid hormone-sensitive neuron populations. Endocrinology. 2005;146:1701–6.

    Article  PubMed  CAS  Google Scholar 

  • Horn S, Heuer H. Thyroid hormone action during brain development: more questions than answers. Mol Cell Endocrinol. 2010;315:19–26.

    Article  PubMed  CAS  Google Scholar 

  • Hughes WL. A physicochemical rationale for the biological activity of mercury and its compounds. Ann N Y Acad Sci. 1957;65:454–60.

    Article  PubMed  CAS  Google Scholar 

  • Jugan M-L, Levi Y, Blondeau J-P. Endocrine disruptors and thyroid hormone physiology. Biochem Pharmacol. 2010;79:939–47.

    Article  PubMed  CAS  Google Scholar 

  • Kabuto M. Acute endocrine effects of a single administration of methylmercury chloride (MMC) in rats. Endocrinol Jpn. 1986;33:683–90.

    Article  PubMed  CAS  Google Scholar 

  • Kaplan MM, McCann UD, Yaskoski KA, et al. Anatomical distribution of phenolic and tyrosyl ring iodothyronine deiodination in the nervous system of normal and hypothyroid rats. Endocrinology. 1981;109:397–402.

    Article  PubMed  CAS  Google Scholar 

  • Kato Y, Ikushiro S, Haraguchi K, et al. A possible mechanism for decrease in serum thyroxine level by polychlorinated biphenyls in Wister and Gunn rats. Toxicol Sci. 2004;81:309–15.

    Article  PubMed  CAS  Google Scholar 

  • Kawada J, Nishida M, Yoshimura Y, et al. Effects of organic and inorganic mercurials on thyroid functions. J Pharmacobiodyn. 1980;3:149–59.

    Article  PubMed  CAS  Google Scholar 

  • Kester MHA, Martinez de Mena R, Obregón MJ, et al. Iodothyronine levels in the human developing brain: major regulatory roles of iodothyronine deiodinases in different areas. J Clin Endocrinol Metab. 2004;89:3117–28.

    Article  PubMed  CAS  Google Scholar 

  • Koibuchi N, Chin WW. Thyroid hormone action and brain development. Trends Endocrinol Metab. 2000;11:123–8.

    Article  PubMed  CAS  Google Scholar 

  • Kunimoto M, Suzuki T. Migration of granule neurons in cerebellar organotypic cultures is impaired by methylmercury. Neurosci Lett. 1997;226:183–6.

    Article  PubMed  CAS  Google Scholar 

  • Lamirand A, Pollud-Mothré S, Ramaugé M, et al. Oxidative stress regulates type 3 deiodinase and type 2 deiodinase in cultured rat astrocytes. Endocrinology. 2008;149:3713–21.

    Article  PubMed  CAS  Google Scholar 

  • Lavado-Autric R, Ausó E, Garcia-Velasco JV, et al. Early maternal hypothyroxinemia alters histogenesis and cerebral cortex cytoarchitecture of the progeny. J Clin Invest. 2003;111:1072–82.

    Google Scholar 

  • Legrand J. Morphogenetic actions of thyroid hormones. Trends Neurosci. 1979;2:234–6.

    Article  Google Scholar 

  • Marsh-Armstrong N, Huang H, Remo BF, et al. Asymmetric growth and development of the Xenopus laevis retina during metamorphosis is controlled by type III deiodinase. Neuron. 1999;24:871–8.

    Article  PubMed  CAS  Google Scholar 

  • Mendel CM. The free hormone hypothesis: a physiologically based mathematical model. Endocr Rev. 1989;10:232–74.

    Article  PubMed  CAS  Google Scholar 

  • Miller MD, Crofton KM, Rice DC, et al. Thyroid-disrupting chemicals: interpreting upstream biomarkers of adverse outcomes. Environ Health Perspect. 2009;117:1033–41.

    PubMed  CAS  Google Scholar 

  • Miyazaki W, Iwasaki T, Takeshita A, et al. Polychlorinated biphenyls suppress thyroid hormone receptor-mediated transcription through a novel mechanism. J Biol Chem. 2004;279: 18195–202.

    Article  PubMed  CAS  Google Scholar 

  • Mori K, Yoshida K, Tani JI, et al. Methylmercury inhibits type II 5’-deiodinase activity in NB41A3 neuroblastoma cells. Toxicol Lett. 2006a;161:96–101.

    Article  PubMed  CAS  Google Scholar 

  • Mori K, Yoshida K, Hoshikawa S, et al. Effects of perinatal exposure to low doses of cadmium or methylmercury on thyroid hormone metabolism in metallothionein-deficient mouse neonates. Toxicology. 2006b;228:77–84.

    Article  PubMed  CAS  Google Scholar 

  • Mori K, Yoshida K, Nakagawa Y, et al. Methylmercury inhibition of type II 5’-deiodinase activity resulting in a decrease in growth hormone production in GH3 cells. Toxicology. 2007;237: 203–9.

    Article  PubMed  CAS  Google Scholar 

  • Moriyama K, Tagami T, Akamizu T, et al. Thyroid hormone action is disrupted by bisphenol A as an antagonist. J Clin Endocrinol Metab. 2002;87:5185–90.

    Article  PubMed  CAS  Google Scholar 

  • Morreale de Escobar G, Obregón MJ, Escobar del Rey F. Role of thyroid hormone during early brain development. Eur J Endocrinol. 2004;151:U25–37.

    Article  PubMed  CAS  Google Scholar 

  • Morte B, Mansano J, Scanlan T, et al. Deletion of the thyroid hormone receptor alpha 1 prevents the structural alterations of the cerebellum induced by hypothyroidism. Proc Natl Acad Sci USA. 2002;99:3985–9.

    Article  PubMed  CAS  Google Scholar 

  • Morte B, Ceballos A, Diez D, et al. Thyroid hormone-regulated mouse cerebral cortex genes are differentially dependent on the source of the hormones: a study in monocarboxylate transporter-8- and deiodinase-2-deficient mice. Endocrinology. 2010;151:2381–7.

    Article  PubMed  CAS  Google Scholar 

  • Mortimer RH, Galligan JP, Cannell GR, et al. Maternal to fetal thyroxine transmission in the human term placenta is limited by inner ring deiodination. J Clin Endocrinol Metab. 1996;81: 2247–9.

    Article  PubMed  CAS  Google Scholar 

  • Nagashima K. A review of experimental methylmercury toxicity in rats: neuropathology and evidence for apoptosis. Toxicol Pathol. 1997;25:624–31.

    Article  PubMed  CAS  Google Scholar 

  • Nakai K, Satoh H. Developmental neurotoxicity following prenatal exposure to methylmercury and PCBs in humans from epidemiological studies. Tohoku J Exp Med. 2002;196:89–98.

    Article  PubMed  CAS  Google Scholar 

  • Nakamura M, Yasutake A, Fujimura M, et al. Effect of methylmercury administration on choroid plexus function in rats. Arch Toxicol. 2011;85(8):911–8.

    Article  PubMed  CAS  Google Scholar 

  • Ng L, Goodyear RJ, Woods CA, et al. Hearing loss and retarded cochlear development in mice lacking type 2 iodothyronine deiodinase. Proc Natl Acad Sci USA. 2004;101:3473–9.

    Article  CAS  Google Scholar 

  • Ng L, Hernandez A, He W, et al. A protective role for type 3 deiodinase, a thyroid hormone-inactivating enzyme, in cochlear development and auditory function. Endocrinology. 2009;150: 1952–60.

    Article  PubMed  CAS  Google Scholar 

  • Nishida M, Yamamoto T, Yoshimura Y, et al. Subacute toxicity of methylmercuric chloride and mercuric chloride on mouse thyroid. J Pharmacobiodyn. 1986;9:331–8.

    Article  PubMed  CAS  Google Scholar 

  • Nishida M, Muraoka K, Nishikawa K, et al. Differential effects of methylmercuric chloride and mercuric chloride on the histochemistry of rat thyroid peroxidase and the thyroid peroxidase activity of isolated pig thyroid cells. J Histochem Cytochem. 1989;37:723–7.

    Article  PubMed  CAS  Google Scholar 

  • Palha JA, Fernandes R, Morreale de Escobar GM, et al. Transthyretin regulates thyroid hormone levels in the choroid plexus, but not in the brain parenchyma: study in a transthyretin-null mouse model. Endocrinology. 2000;141:3267–72.

    Article  PubMed  CAS  Google Scholar 

  • Pearce EN, Braverman LE. Environmental pollutants and the thyroid. Best Pract Res Clin Endocrinol Metab. 2009;23:801–13.

    Article  PubMed  CAS  Google Scholar 

  • Pop VJ, Kuijpens JT, van Baar AL, et al. Low maternal free thyroxine concentrations during early pregnancy are associated with impaired psychomotor development in infancy. Clin Endocrinol. 1999;50:149–55.

    Article  CAS  Google Scholar 

  • Porterfield SP, Hendrich CE. The role of thyroid hormones in prenatal and neonatal neurological development—current perspectives. Endocr Rev. 1993;14:94–106.

    PubMed  CAS  Google Scholar 

  • Quignodon L, Vincent S, Winter H, et al. A point mutation in the activation function 2 domain of thyroid hormone receptor alpha1 expressed after CRE-mediated recombination partially recapitulates hypothyroidism. Mol Endocrinol. 2007;21:2350–60.

    Article  PubMed  CAS  Google Scholar 

  • Rabie A, Favre C, Clavel MC, et al. Effects of thyroid dysfunction on the development of the rat cerebellum, with special reference to cell death within the internal granular layer. Brain Res. 1977;120:521–31.

    Article  PubMed  CAS  Google Scholar 

  • Redzic ZB, Segal MB. The structure of the choroid plexus and the physiology of the choroid plexus epithelium. Adv Drug Deliv Rev. 2004;56:1695–716.

    Article  PubMed  CAS  Google Scholar 

  • Richardson SJ, Lemkine GF, Alfama G, et al. Cell division and apoptosis in the neural stem cell niche are differentially affected in transthyretin null mice. Neurosci Lett. 2007;421:234–8.

    Article  PubMed  CAS  Google Scholar 

  • Roegge CS, Morris JR, Villareal S, et al. Purkinje cell and cerebellar effects following developmental exposure to PCBs and/or MeHg. Neurotoxicol Teratol. 2006;28:74–85.

    Article  PubMed  CAS  Google Scholar 

  • Roti E, Braverman LE, Fang SL, et al. Ontogenesis of placental inner ring thyroxine deiodinase and amniotic fluid 3,3’,5’-triiodothyronine concentration in the rat. Endocrinology. 1982;111: 959–63.

    Article  PubMed  CAS  Google Scholar 

  • Samuels HH, Shapiro LE. Thyroid hormone stimulates de novo growth hormone synthesis in cultured GH1 cells: evidence for accumulation of a rate limiting RNA species in the induction process. Proc Natl Acad Sci USA. 1976;73:3369–73.

    Article  PubMed  CAS  Google Scholar 

  • Sap J, Munoz A, Damm K, et al. The c-erb-A protein is a high-affinity receptor for thyroid hormone. Nature. 1986;324:635–40.

    Article  PubMed  CAS  Google Scholar 

  • Schimmel M, Utiger RD. Thyroidal and peripheral production of thyroid hormones. Review of recent findings and their clinical implications. Ann Intern Med. 1977;87:760–8.

    PubMed  CAS  Google Scholar 

  • Schreiber G, Aldred AR, Jaworowski A, et al. Thyroxine transport from blood to brain via transthyretin synthesis in choroid plexus. Am J Physiol. 1990;258:R338–45.

    PubMed  CAS  Google Scholar 

  • Schussler GC. The thyroxine-binding proteins. Thyroid. 2000;10:141–9.

    Article  PubMed  CAS  Google Scholar 

  • Schwartz HL, Strait KA, Ling NC, et al. Quantitation of rat tissue thyroid hormone binding receptor isoforms by immunoprecipitation of nuclear triiodothyronine biding capacity. J Biol Chem. 1992;267:11794–9.

    PubMed  CAS  Google Scholar 

  • Schweizer U, Chiu J, Köhrle J. Peroxides and peroxide-degrading enzymes in the thyroid. Antioxid Redox Signal. 2008;10:1577–92.

    Article  PubMed  CAS  Google Scholar 

  • Soldin OP, O’Mara DM, Aschner M. Thyroid hormones and methylmercury toxicity. Biol Trace Elem Res. 2008;126:1–12.

    Article  PubMed  CAS  Google Scholar 

  • Stauder AJ, Dickson PW, Aldred AR, et al. Synthesis of transthyretin (prealbumin) mRNA in choroid plexus epithelial cells, localized by in situ hybridization in the rat brain. J Histochem Cytochem. 1986;34:949–52.

    Article  PubMed  CAS  Google Scholar 

  • Sugiyama D, Kusuhara H, Taniguchi H, et al. Functional characterization of rat brain-specific organic anion transporter (Oatp14) at the blood-brain barrier: high affinity transporter for thyroxine. J Biol Chem. 2003;278:43489–95.

    Article  PubMed  CAS  Google Scholar 

  • Suzuki T, Miyama T, Katsunuma H. Affinity of mercury to the thyroid. Ind Health. 1966;4:69–75.

    Article  CAS  Google Scholar 

  • Tu HM, Legradi G, Bartha T, et al. Regional expression of the type 3 iodothyronine deiodinase messenger ribonucleic acid in the rat central nervous system and its regulation by thyroid hormone. Endocrinology. 1999;140:784–90.

    Article  PubMed  CAS  Google Scholar 

  • Venero C, Guadaño-Ferraz A, Herrero AI, et al. Anxiety, memory impairment, and locomotor dysfunction caused by a mutant thyroid hormone receptor alpha1 can be ameliorated by T3 treatment. Genes Dev. 2005;19:2152–63.

    Article  PubMed  CAS  Google Scholar 

  • Viluksela M, Raasmaja A, Lebofsky M, et al. Tissue-specific effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on the activity of 5’-deiodinase I and II in rats. Toxicol Lett. 2004;147: 133–42.

    Article  PubMed  CAS  Google Scholar 

  • Vulsma T, Gons MH, de Vijlder JJ. Maternal-fetal transfer of thyroxine in congenital hypothyroidism due to total organification defect or thyroid agenesis. N Engl J Med. 1989;321:13–6.

    Article  PubMed  CAS  Google Scholar 

  • Watanabe C. Modification of mercury toxicity by selenium: practical importance? Tohoku J Exp Med. 2002;196:71–7.

    Article  PubMed  CAS  Google Scholar 

  • Watanabe C, Yoshida K, Kasanuma Y, et al. In utero methylmercury exposure differentially affects the activities of selenoenzymes in the fetal mouse brain. Environ Res. 1999a;80:208–14.

    Article  PubMed  CAS  Google Scholar 

  • Watanabe C, Yin K, Kasanuma Y, et al. In utero exposure to methylmercury and Se deficiency converge on the neurobehavioral outcome in mice. Neurotoxicol Teratol. 1999b;21:83–8.

    Article  PubMed  CAS  Google Scholar 

  • Weinberger C, Thompson CC, Ong ES, et al. The c-erb-A gene encodes a thyroid hormone receptor. Nature. 1986;324:641–6.

    Article  PubMed  CAS  Google Scholar 

  • Weiss B, Clarkson T, Simon W. Silent latency periods in methylmercury poisoning and in neurodegenerative disease. Environ Health Perspect. 2005;110:851–4.

    Article  Google Scholar 

  • West AK, Hidalgo J, Eddins D, et al. Metallothionein in the central nervous system: roles in ­protection, regeneration and cognition. Neurotoxicology. 2008;29:489–503.

    Article  PubMed  CAS  Google Scholar 

  • Williams GR. Neurodevelopmental and neurophysiological actions of thyroid hormone. J Neuroendocrinol. 2008;20:784–94.

    Article  PubMed  CAS  Google Scholar 

  • Yamauchi K, Ishihara A, Fukazawa H, et al. Competitive interactions of chlorinated phenol compounds with 3,3’,5-triiodothyronine binding to transthyretin: detection of possible thyroid-­disrupting chemicals in environmental waste water. Toxicol Appl Pharmacol. 2003;187:110–7.

    Article  PubMed  CAS  Google Scholar 

  • Yeiser EC, Fitch CA, Horning MS, et al. Regulation of metallothionein-3 mRNA by thyroid ­hormone in developing rat brain and primary cultures of rat astrocytes and neurons. Brain Res Dev Brain Res. 1999;115:195–200.

    Article  PubMed  CAS  Google Scholar 

  • Yen PM. Physiological and molecular basis of thyroid hormone action. Physiol Rev. 2001;81: 1097–142.

    PubMed  CAS  Google Scholar 

  • Yin Z, Jiang H, Syversen T, et al. The methylmercury-L-cysteine conjugate is a substrate for the L-type large neutral amino acid transporter. J Neurochem. 2008;107:1083–90.

    PubMed  CAS  Google Scholar 

  • Yoshida M, Shimizu N, Suzuki M, et al. Emergence of delayed methylmercury toxicity after perinatal exposure in metallothionein-null and wild-type C57BL mice. Environ Health Perspect. 2008;116:746–51.

    Article  PubMed  CAS  Google Scholar 

  • Zoeller RT, Rover J. Timing of thyroid hormone action in the developing brain: clinical observations and experimental findings. J Neuroendocrinol. 2004;16:809–18.

    Article  PubMed  CAS  Google Scholar 

  • Zoeller RT, Bansal R, Parris C. Bisphenol-A, an environmental contaminant that acts as a thyroid hormone receptor antagonist in vitro, increases serum thyroxine, and alters RC3/neurogranin expression in the developing rat brain. Endocrinology. 2005;146:607–12.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The authors thank Dr. Chiho Watanabe (Department of Human Ecology, University of Tokyo) for valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kouki Mori MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Mori, K., Yoshida, K. (2012). The Role of Thyroid Modulation by Methylmercury in Developmental Neurotoxicity. In: Ceccatelli, S., Aschner, M. (eds) Methylmercury and Neurotoxicity. Current Topics in Neurotoxicity, vol 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-2383-6_7

Download citation

Publish with us

Policies and ethics